
Obligatory exercise 1 (INF4820, Fall 2013)

This is the first out of three obligatory exercises (and the first out of five problem sets) in INF4820. In order to pass
this first exercise (all exercises must be passed to qualify for the final exam), you need to obtain minimally 6 points
out of a maximum of 10. Please see the course web page for more details on how the exercises are organized:
http://www.uio.no/studier/emner/matnat/ifi/INF4820/h13/oblig.html

If you haven’t already done so, have a look at the “get started guide” on how to get up and running with Common
Lisp, also available from the course page.

Submitting: Solutions must be submitted through Devilry by the end of the day (23:59) on Thursday, September 12th:
https://devilry.ifi.uio.no/. Please provide your solution as a single ‘.lisp’ file, including your code and an-
swers (in the form of Lisp comments. Please also generously document your code with comments! (The Lisp reader
will ignore everything following a semicolon / ‘;’)

1 List processing

From each of the following lists, show code examples for selecting the element pear:

(a) ’(apple orange pear lemon)

(b) ’((apple orange) (pear lemon))

(c) ’((apple) (orange) (pear))

(d) Show how the lists (b) and (c) above can be created through nested applications of the cons function. To
illustrate, for the list in example (a):

(cons ’apple (cons ’orange (cons ’pear (cons ’lemon nil))))

(e) Assume that the symbol *foo* is bound to a long list of unknown length (but with at least two or more
elements), e.g. ’(a b c ... x y z). Show a few different approaches for selecting the next-to-last element
of *foo*. As always with programming, there are many ways to do it — try using both built-in functions and
writing your own.

2 Interpreting Common Lisp

What is the purpose of the following function? How does it achieve that goal?

(defun foo (foo)
(if foo

(+ 1 (foo (rest foo)))
0))

Note: Please comment specifically on the various usages of the symbol ‘foo’ in the function definition.

http://www.uio.no/studier/emner/matnat/ifi/INF4820/h13/oblig.html
https://devilry.ifi.uio.no/


3 Variable assignment

In this exercise we will try to get familiar with how to modify values in various data structures (more specifically
lists, association lists, hash tables and arrays). Fill in the missing s-expressions below (i.e. replace ‘????’) so that
all the let-expressions will evaluate to 42.

(a) (let ((foo (list 0 42 2 3)))
????
(first foo))

(b) (let* ((keys ’(:a :b :c))
(values ’(0 1 2))
(pairs ????))

????
(rest (assoc :b pairs)))

(c) (let ((foo (make-hash-table)))
(setf (gethash ’meaning foo) 41)
????
(gethash ’meaning foo))

(d) (let ((foo (make-array 5)))
????
(aref foo 2))

4 Recursion and iteration

(a) Write a recursive function that counts the number of times that a given symbol appears as an element in a list.
(Actually there’s already a built-in sequence function called count that does the same thing, but that would be
cheating.:)

(defun count-member (symbol list)
...)

Example of expected behaviour:
? (count-member ’c ’(c a a c a c))→ 3.

As a bonus (optional), see if you can write the function using tail-recursion in addition to “plain” recursion.

(b) Now write a non-recursive function that does the same thing (for example by iterating over the list using
dolist or loop).

5 Reading a corpus file; basic counts

For this exercise you need the file ‘brown1000.txt’ which you can copy to your own home directory with the
following terminal command:

‘cp ~erikve/inf4820/brown1000.txt ~/’

The file contains the first 1000 sentences from the historic Brown Corpus, one of the first electronic corpora for
English. (A note on terminology; by corpus (plural corpora) we simply mean a large collection of texts.)

To break up each line of text from the corpus file into a list of tokens (word-like units), we suggest the following
function. Make sure to understand the various ‘loop’ constructs used here, and also look up the descriptions of
‘position’ and ‘subseq’, to work out how this function works:



(defun tokenize (string)
(loop
for start = 0 then (+ space 1)
for space = (position #\space string :start start)
for token = (subseq string start space)
unless (string= token "") collect token
until (not space)))

For reading the contents of the corpus file, remember that it is easy to connect an input stream to a file and invoke
one of the reader functions, for example:

(with-open-file (stream "brown1000.txt" :direction :input)
(loop

for line = (read-line stream nil)
while line
append (tokenize line)))

(a) Make sure you understand all components of this expression; when in doubt, talk to your neighbor or one of
the instructors. Can you describe the return value of the above expression?

(b) Bind the result of the whole (with-open-file ...) expression to a global variable *corpus*. How
many tokens are there in our corpus?

(c) The term tokenization refers to the task of breaking up of lines of text into individual words. What exactly
is our current strategy for tokenization? Inspecting the contents of *corpus*, can you spot examples where our
current tokenization strategy might be further refined, e.g., single tokens that maybe should be further split up, or
sequences of tokens that possibly would better be treated as a single word-like unit?

(d) Write an s-expression that iterates through all tokens in *corpus* and returns a hash-table where the keys
are the unique word types (i.e., each distinct word from the corpus corresponds to a hash key) and where the values
count the corresponding occurrences (i.e., the number of times a given word is found in *corpus*).

(e) How many unique word types are there in *corpus*?

Happy coding!


