
INF4820: Algorithms for AI and NLP

INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

Common Lisp Essentials

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

August 21, 2014



Topic of the Day

Lisp
2



Why Common Lisp

Eric S. Raymond (2001), How to Become a Hacker:

Lisp is worth learning for the profound enlightenment experience
you will have when you finally get it; that experience will make you

a better programmer for the rest of your days,
even if you never actually use Lisp itself a lot.

I High-level and efficient language with especially strong support for
symbolic and functional programming.

I Rich language: multitude of built-in data types and operations.
I Easy to learn:

I extremely simple syntax,
I straightforward semantics.

I ANSI-standardized and stable.
I Incremental and interactive development.

3



Lisp

I Conceived in the late 1950s by
John McCarthy—one of the
founding fathers of AI.

I Originally intended as a
mathematical formalism.

I A family of high-level languages.

I Several dialects, e.g. Scheme,
Clojure, Emacs Lisp, and
Common Lisp.

I Although a multi-paradigm
language, functional style
prevalent.

4



Basic Common Lisp in a Couple of Minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

5



A Note on Terminology

I Lisp manipulates so-called symbolic expressions.

I AKA s-expressions or sexps.
I Two fundamental types of sexps;

1. atoms (e.g., nil, t, numbers, strings, symbols)
2. lists containing other sexps.

I Sexps are used to represent both data and code.

6



Function Calls

I “Parenthesized prefix notation”

I First element (prefix) = operator
(i.e. the procedure or function).

I The rest of the list is the operands
(i.e. the arguments or parameters).

I Use nesting (of lists) to build
compound expressions.

I Expressions can span multiple lines;
indentation for readability.

Examples
? (+ 1 2)
→ 3

? (+ 1 2 10 7 5)
→ 25

? (/ (+ 10 20) 2)
→ 15

? (* (+ 42 58)
(- (/ 8 2) 2))

→ 200

7



The Syntax and Semantics of CL

? (expt (- 8 4) 2)
→ 16

I You now know (almost) all there is to know about (the rules) of CL.

I The first element of a list names a function that is invoked with the
values of all remaining elements as its arguments.

I A few exceptions, called special forms, with their own evaluation rules.

8



Creating our own functions

I The special form defun associates a function definition with a symbol:

General form

(defun name (parameter1 . . . parametern) body)

Example

? (defun average (x y)
(/ (+ x y) 2))

? (average 10 20)
→15

9



The ‘Hello World!’ of Functional Programming

I Classic example: the factorial
function.

I A recursive procedure; calls itself,
directly or indirectly.

I May seem circular, but is
well-defined as long as there’s a
base case terminating the recursion.

I For comparison: a non-recursive
implementation (in Python).

n! =
{

1 if n = 0
n × (n − 1)! if n > 0

(defun ! (n)
(if (= n 0)

1
(* n (! (- n 1)))))

def fac(n):
r = 1
while (n > 0):

r = r * n
n = n - 1

return r

10



A Special Case of Recursion: Tail Recursion
I A more efficient way to
define n! recursively.

I Use a helper procedure
with an accumulator
variable to collect the
product along the way.

I The recursive call is in tail
position;

(defun ! (n)
(!-aux 1 1 n))

(defun !-aux (r i n)
(if (> i n)

r
(!-aux (* i r)

(+ i 1)
n)))

I no work remains to be done in the calling function.

I Once we reach the base case, the return value is ready.

I Most CL compilers do tail call optimization (TCO), so that the
recursion is executed as an iterative loop.

I (The next lecture will cover CL’s built-in loop construct.)
11



Tracing the processes

Recursive
(defun ! (n)

(if (= n 0)
1
(* n (! (- n 1)))))

? (! 7)
⇒ (* 7 (! 6))
⇒ (* 7 (* 6 (! 5)))
⇒ (* 7 (* 6 (* 5 (! 4))))
⇒ (* 7 (* 6 (* 5 (* 4 (! 3)))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (! 2))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (! 1)))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 2)))))
⇒ (* 7 (* 6 (* 5 (* 4 6))))
⇒ (* 7 (* 6 (* 5 24)))
⇒ (* 7 (* 6 120))
⇒ (* 7 720)
→ 5040

Tail-Recursive
(defun ! (n)

(!-aux 1 1 n))

(defun !-aux (r i n)
(if (> i n)

r
(!-aux (* r i)

(+ i 1)
n)))

? (! 7)
⇒ (!-aux 1 1 7)
⇒ (!-aux 1 2 7)
⇒ (!-aux 2 3 7)
⇒ (!-aux 6 4 7)
⇒ (!-aux 24 5 7)
⇒ (!-aux 120 6 7)
⇒ (!-aux 720 7 7)
⇒ (!-aux 5040 8 7)
→ 5040

12



The quote Operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘’’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? ’pi → pi

? foobar → error; unbound variable

? ’foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? ’(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? ’() → ()
13



Both Code and Data are S-Expressions

I We’ve mentioned how sexps are used to represent both data and code.
I Note the double role of lists:
I Lists are function calls;

? (* 10 (+ 2 3)) → 50

? (bar 1 2) → error; function bar undefined

I But, lists can also be data;

? ’(foo bar) → (foo bar)

? (list ’foo ’bar) → (foo bar)

14



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)

? (cons 0 ’(1 2 3)) → (0 1 2 3)

? (first ’(1 2 3)) → 1

? (rest ’(1 2 3)) → (2 3)

? (first (rest ’(1 2 3))) → 2

? (rest (rest (rest ’(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)

? (append ’(1 2) ’(3) ’(4 5 6)) → (1 2 3 4 5 6)

? (length ’(1 2 3)) → 3

? (reverse ’(1 2 3)) → (3 2 1)

? (nth 2 ’(1 2 3)) → 3

? (last ’(1 2 3)) → (3) Wait, why not 3?
15



Lists are really chained ‘cons cells’

(1 2 3) ((1 2) 3)

�
��	

@
@@R

1

�
��	

@
@@R

2

�
��	

@
@@R

3 nil

�
��	

@
@@R

�
��	

?1

�
���

@
@@R

3 nil

�
��	

@
@@R

2 nil

(cons 1 (cons 2 (cons 3 nil))) (cons (cons 1 (cons 2 nil)) (cons 3 nil))

16



Assigning Values: ‘Generalized Variables’
I defparameter declares a ‘global variable’ and assigns a value:

? (defparameter *foo* 42) → *FOO*

? *foo* → 42

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (setf *foo* (+ *foo* 1))

? *foo* → 43

? (setf *foo* ’(2 2 3))

? (setf (first *foo*) 1)

? *foo* → (1 2 3)
17



Some Other Macros for Assignment

Example Type of x Effect

(incf x y) number (setf x (+ x y))

(incf x) number (incf x 1)

(decf x y) number (setf x (- x y))

(decf x) number (decf x 1)

(push y x) list (setf x (cons y x))

(pop x) list (let ((y (first x)))
(setf x (rest x)) y)

(pushnew y x) list (if (member y x)
x
(push y x))

Shall we jointly write our own push and pop?

18



Local Variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42) → *FOO*

? (defparameter *bar* 100) → *BAR*

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* → 100
? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

19



Predicates
I A predicate tests some condition.
I Evaluates to a boolean truth value:

I nil (the empty list) means false.
I Anything non-nil (including t) means true.

? (listp ’(1 2 3)) → t

? (null (rest ’(1 2 3))) → nil

? (evenp 2) → t

? (defparameter foo 42)

? (or (not (numberp foo))
(and (>= foo 0)

(<= foo 42))) → t

I Plethora of equality tests: eq, eql, equal, and equalp.
20



Equality for One and All
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.
21



Conditional Evaluation

Examples
? (defparameter foo 42)

? (if (numberp foo)
"number"
"something else")

→ "number"

? (cond ((< foo 3) "less")
((> foo 3) "more")
(else "equal"))

→ "more"

General Form
? (defparameter foo 42)

(if 〈predicate〉
〈then clause〉
〈else clause〉)

(cond (〈predicate1〉 〈clause1〉)
(〈predicate2〉 〈clause2〉)
(〈predicatei〉 〈clausei〉)
(t 〈default clause〉))

22



Rewind: A Note on Symbol Semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



In Conclusion

http://xkcd.com/297/

24

http://xkcd.com/297/


Programming in INF4820

I In the IFI Linux environment, we have available Allegro Common Lisp,
a commercial Lisp interpreter and compiler.

I We will provide a pre-configured, integrated setup with emacs and the
SLIME Lisp interaction mode.

I Several open-source Lisp implementation exist, e.g. Clozure or SBCL;
compatible with SLIME, so feel free to experiment (at some later point).

I First-time user, please spend some time studying basic keyboard
commands, for example: C-h t and M-x doctor RET.

I We will post a Getting Started guide and Emacs Cheat Sheet on the
course pages next week.

25



In Two Weeks (Wednesday, September 3)

More Common Lisp.
I More on argument lists (optional arguments, keywords, defaults).

I More data types: Hash-tables, a-lists, arrays, sequences, and structures

I More higher-order functions.

I Iteration (loop) and mapping.

26


