
INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

The Common Lisp Core

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

September 3, 2014



Agenda

Previously
I Common Lisp essentials
I S-expressions (= atoms or lists of s-expressions)
I Recursion
I Quote
I List processing
I Identity vs. Equality

Today
I More Common Lisp
I Higher-order functions
I Argument lists
I Iteration: (the mighty) loop

2



Did You Check the Course Page Today?

http://www.uio.no/studier/emner/matnat/ifi/INF4820/h14/

3

http://www.uio.no/studier/emner/matnat/ifi/INF4820/h14/


Another Communication Channel: Student Self-Help

https://www.facebook.com/groups/287615961438426/

4

https://www.facebook.com/groups/287615961438426/


Higher-Order Functions

I Functions that accept functions as arguments or return values.
I Functions in Lisp are first-class objects.

I Can be created at run-time, passed as arguments, returned as values,
stored in variables . . . just like any other type of data.

? (defun filter (list test)
(cond ((null list) nil)

((funcall test (first list))
(cons (first list) (filter (rest list) test)))

(t (filter (rest list) test))))

? (defparameter foo ’(11 22 33 44 55))

? (filter foo #’evenp)
→ (22 44)
I Functions, recursion, conditionals, predicates, lists for code and data.

5



Anonymous Functions

I We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

I A function definition without the defun and symbol part.

? (filter foo
#’(lambda (x)

(and (> x 20)
(< x 50))))

→ (22 33 44)

I Typically used for ad-hoc functions that are only locally relevant and
simple enough to be expressed inline.

I Or, when constructing functions as return values.

6



Returning Functions

I We have seen how to create anonymous functions using lambda and
pass them as arguments.

I So we can combine that with a function that itself returns another
function (which we then bind to a variable).

? (defparameter foo ’(11 22 33 44 55))

? (defun make-range-test (lower upper)
#’(lambda (x)

(and (> x lower)
(< x upper))))

? (filter foo (make-range-test 10 30))

→ (11 22)

7



Parameter Lists: Variable Arities and Ordering

Optional Parameters
? (defun foo (x &optional y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 2 3) → (1 2 3)

Keyword Parameters
? (defun foo (x &key y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 :z 3 :y 2) → (1 2 3)

Rest Parameters
? (defun avg (x &rest rest)

(let ((numbers (cons x rest)))
(/ (apply #’+ numbers)

(length numbers))))

? (avg 3) → 3

? (avg 1 2 3 4 5 6 7) → 4

8



Recap: Equality for One and All
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.
9



Some Live Programming

From the 2013 Final Exam

Write two versions of a function swap; one based on recursion and
one based on iteration. The function should take three
parameters—x, y and list— where the goal is to replace every
element matching x with y in the list list. Here is an example of
the expected behavior:

? (swap "foo" "bar" ’("zap" "foo" "foo" "zap" "foo"))
→ ("zap" "bar" "bar" "zap" "bar")

Try to avoid using destructive operations if you can. [7 points]

10



A Brief Detour: Macros

I Pitch: programs that generate programs.

I Macros provide a way for our code to manipulate itself (before it’s
passed to the compiler).

I Can implement transformations that extend the syntax of the language.

I Allows us to control (or even prevent) the evaluation of arguments.

I We have already encountered some built-in Common Lisp macros:
and, or, if, cond, defun, setf, etc.

I Although macro writing is out of the scope of this course, we will look
at perhaps the best example of how macros can redefine the syntax of
the language—for good or for worse, depending on who you ask:

I loop

11



Iteration

I While recursion is a powerful
control structure,

I sometimes iteration comes
more natural.

I dolist and dotimes are fine
for simple iteration.

I But (the mighty) loop is much
more general and versatile.

(let ((result nil))
(dolist (x ’(0 1 2 3 4 5))

(when (evenp x)
(push x result)))

(reverse result))

→ (0 2 4)

(let ((result nil))
(dotimes (x 6)

(when (evenp x)
(push x result)))

(reverse result))

→ (0 2 4)

(loop
for x below 6
when (evenp x)
collect x)

→ (0 2 4)
12



Iteration with loop

(loop
for i from 10 to 50 by 10
collect i)

→ (10 20 30 40 50)

I Illustrates the power of syntax extension through macros;

I loop is basically a mini-language for iteration.

I Reduced uniformity: different syntax based on special keywords.

I Paul Graham on loop: “one of the worst flaws in Common Lisp”.

I But non-Lispy as it may be, loop is extremely general and powerful!

13



loop: A Few More Examples

? (loop
for i below 10
when (oddp i)
sum i)

→ 25

? (loop for x across "foo" collect x)

→ (#\f #\o #\o)

? (loop
with foo = ’(a b c d)
for i in foo
for j from 0
until (eq i ’c)
do (format t "~a: ~a ~%" j i))

;
0: A
1: B

14


