INF4820: Algorithms for

Artificial Intelligence and

Natural Language Processing

The Common Lisp Core

Stephan Oepen & Milen Kouylekov
Language Technology Group (LTG)

September 3, 2014

Previously

>

>

>

>

>

>

Common Lisp essentials

S-expressions (= atoms or lists of s-expressions)
Recursion

Quote

List processing

Identity vs. Equality

Today

>

>

>

More Common Lisp
Higher-order functions
Argument lists

Iteration: (the mighty) loop

Did You Check the Course Page Today?

™M inbox (55... | B Google Ca... | E ESD Cons... | B SPIEGEL ... | B SemEval2.. | & Semest.. % \ K INF4820:... | B SPIEGEL... | @ CLHS: Typ.. | il Langusge ... | B ACL Antho.. | B wiihasht.. [+ - & %
s (€ wio.no

L
v & [BY wikihash table Qe ¥ &0

For employees Norwegian ws

UiO ¢ University of Oslo

Home Research Studies StudentLi Services and tools AboutUiO People

Studios

< INF4820 - Algorithms for artificial intelligence and natural language processing Contact
Semester page for INF4820 - Hgst 2014 Department o nform:
Courses
Schedule Examination: Time and place
INF4820 Teachers
Syllabus/achievement Stephan Oepen
Hmst 2014 requirements Milen Kouylekov
. Messages
- slides Requirements 9

Sell-Help Group
Obligatory Assignments Sample Exam

General Regulations

First Assignment
Au 10434 P
Additional Resources f”““““";‘
Common Lisp the Language Discussion & Seft-Help Group Lecture Materials
Common Lisp HyperSpec Aug 20, 2014

Lisp in the 21st Century

am: B

ting the Average Paul Graham: Revenge of the Nerds
ken: Inside Orbitz

http://www.uio.no/studier/emner/matnat/ifi/INF4820/h14/

http://www.uio.no/studier/emner/matnat/ifi/INF4820/h14/

INF4820: Algorithms for Al and NLP (University of Oslo) Q

[

DRI TED OF)
B e o e f o pusrower. Tow 7 v
STRUCTURE OF LISP C00E: UNROLD BEFORE ME |
2 herm e - I -
== weo <.
e
5 Events
= -
| THE PATTERNS AND METAPATTERNS DAVCED. T MEAY, OSTENSIRLY, YES,
INF482; Algorth SUDDENLY, T WAS BATHED | fsiwike roen, avox Svin WTHE PIRIYOF | o b cinare otiiations =<
E Infomates: Lagu IN A SUFFUSION OF BLUE. | [lGuAVTFED ConCePmon. OF 106 MrEsT ' OF IT TOGETHEX WITH PEKL
. Mastars In Langua... 200 INF4820: Algorithms for Al and N. Members Events. Photos Files earch this group
T NewToOs zue
& EswsiFuws 20
= cuier Al Mombers (10)2 + Add People mar
Tu
& Manage Your Groups Stephan Milen | Erik Velldal Informl cacussions, slFhlp tiia, and
Stephe e el around an ol MSe s on (0
5. FinNew Grups Qepan, 3 Kouve et Lo s Seeore - it
T Create Group Universitetat University of g:‘p(:mm“ o : ,::,,,b_,, (15 new) - Message - Invite by
oemais
B Games = e to Grou
+ Sugges Eis
& OnThis Day & & University of Oslo
 Trpaovir
Pettor Hohlo PorWessel [Aila Aspés
B ains Uil o nore OsloNorwny Groups ki aasartan ver
B s OU i Ol Norvy Lo 1o s iy
v e
1z Photos o
Games Fead 2 ® o Al
B Saling The Farm - A Sea
§ Oslo Nonay Ara 200 | e Bondlk G o T e rosen BALH 50
S &:J Segrov > ¥ ramm Sommestucert | GG Tova Lokse and Erk Velcal
& SchilerGymnasium | oo [25 AlSEN atle +doin
8 Fres Uiveiy o Ol Norvar

https://www.facebook.com/groups/2876156961438426/

20 Chat (oM

https://www.facebook.com/groups/287615961438426/

Higher-Order Functions

» Functions that accept functions as arguments or return values.

» Functions in Lisp are first-class objects.

» Can be created at run-time, passed as arguments, returned as values,
stored in variables ... just like any other type of data.

? (defun filter (list test)
(cond ((null list) nil)
((funcall test (first list))
(cons (first list) (filter (rest list) test)))
(t (filter (rest list) test))))

? (defparameter foo ’(11 22 33 44 55))

? (filter foo #’evenp)
— (22 44)

» Functions, recursion, conditionals, predicates, lists for code and data.

Anonymous Functions

» We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

» A function definition without the defun and symbol part.

? (filter foo
#’ (lambda (x)
(and (> x 20)
(< x 50))))
— (22 33 44)

» Typically used for ad-hoc functions that are only locally relevant and
simple enough to be expressed inline.

» Or, when constructing functions as return values.

Returning Functions

» We have seen how to create anonymous functions using lambda and
pass them as arguments.

» So we can combine that with a function that itself returns another
function (which we then bind to a variable).

? (defparameter foo ’(11 22 33 44 55))

? (defun make-range-test (lower upper)
#’ (lambda (x)
(and (> x lower)
(< x upper))))

? (filter foo (make-range-test 10 30))

— (11 22)

Parameter Lists: Variable Arities and Ordering

Optional Parameters Keyword Parameters

? (defun foo (x &optional y (z 42)) ? (defun foo (x &key y (z 42))

(list x y 2)) (list x y 2))
? (foo 1) — (1 nil 42) ? (foo 1) — (1 nil 42)
? (foo 1 2 3) — (1 2 3) ? (foo 1 :z 3 :y 2) = (1 2 3)

Rest Parameters

? (defun avg (x &rest rest)
(let ((numbers (cons x rest)))

(/ (apply #’+ numbers)

(length numbers))))

7 (avg 3) — 3

?(avg 1 234567) —4

Recap: Equality for One and All

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

-~

(equal "foo" "foo") — t

? (equalp "FOO" "foo") — t

» Also many type-specialized tests like =, string=, etc.

Some Live Programming

From the 2013 Final Exam

Write two versions of a function swap; one based on recursion and
one based on iteration. The function should take three
parameters—z, y and list— where the goal is to replace every
element matching = with vy in the list 1ist. Here is an example of
the expected behavior:

? (swap Ilfooll Ilbarll)(Ilzapll Ilfooll Ilfooll Ilzapll Ilfooll))

— (l!zapll Ilba'T.II Ilba’,r// Ilzapll Ilba,rll)

Try to avoid using destructive operations if you can. [7 points]

10

A Brief Detour: Macros

» Pitch: programs that generate programs.

» Macros provide a way for our code to manipulate itself (before it's
passed to the compiler).

» Can implement transformations that extend the syntax of the language.
» Allows us to control (or even prevent) the evaluation of arguments.

» We have already encountered some built-in Common Lisp macros:
and, or, if, cond, defun, setf, etc.

» Although macro writing is out of the scope of this course, we will look
at perhaps the best example of how macros can redefine the syntax of
the language—for good or for worse, depending on who you ask:

» loop

11

[teration

» While recursion is a powerful
control structure,

» sometimes jteration comes
more natural.

» dolist and dotimes are fine
for simple iteration.

» But (the mighty) Lloop is much
more general and versatile.

(let ((result nil))
(dolist (x (0 1 2 3 4 5))
(when (evenp x)
(push x result)))
(reverse result))

— (0 2 4)

(let ((result nil))
(dotimes (x 6)
(when (evenp x)
(push x result)))
(reverse result))

— (0 2 4)

(loop
for x below 6
when (evenp x)
collect x)

— (0 2 4)
12

[teration with

(1oop
for i from 10 to 50 by 10
collect i)

— (10 20 30 40 50)

v

[llustrates the power of syntax extension through macros;

v

loop is basically a mini-language for iteration.

v

Reduced uniformity: different syntax based on special keywords.

v

Paul Graham on loop: “one of the worst flaws in Common Lisp”.

v

But non-Lispy as it may be, loop is extremely general and powerful!

13

: A Few More Examples

7 (loop
for i below 10
when (oddp i)
sum i)

— 25

? (loop for x across "foo" collect x)

— (#\f #\o #\o)

7 (loop
with foo = ’(a b ¢ d)
for i in foo
for j from O
until (eq i ’c)
do (format t "~a: ~a ~%" j 1))

oy
W =

