
INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

Common Lisp Data Structures

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

September 4, 2014

Agenda

Previously
I More Common Lisp
I Higher-order functions
I Argument lists
I Iteration: (the mighty) loop

Today
I More of (the mighty) loop
I Input and output via streams
I Data structures: plists, alists, hash tables, structures
I A Common Lisp quiz
I Some suggestions for best coding practises

2

loop: The Swiss Army Knife of Iteration

I Iteration over lists or vectors: for symbol { in | on | across } list
I Counting through ranges:

for symbol [from number] { to | downto } number [by number]
I Iteration over hash tables:

for symbol being each { hash-key | hash-value } in hash table
I Stepwise computation: for symbol = sexp then sexp
I Accumulation: { collect | append | sum | minimize | count | . . . } sexp
I Control: { while | until | repeat | when | unless | . . . } sexp
I Local variables: with symbol = sexp
I Initialization and finalization: { initially | finally } sexp+

I All of these can be combined freely, e.g. iterating through a list,
counting a range, and stepwise computation, all in parallel.

I Note: without at least one accumulator, loop will only return nil.

3

loop: A Few More Examples

? (loop for foo in ’(1 2 3) collect foo)
→ (1 2 3))

? (loop for foo on ’(1 2 3) collect foo)
→ ((1 2 3) (2 3) (3))

? (loop for foo on ’(1 2 3) append foo)
→ (1 2 3 2 3 3)

? (loop
for i from 2 to 10
when (evenp i)
collect i into evens
else collect i into odds
finally (return (list evens odds)))

→ ((2 4 6 8 10) (1 3 5 7 9))

4

Input and Output
I Reading and writing is mediated through streams.

I The symbol t indicates the default stream, the terminal.

? (format t "~a is the ~a.~%" 42 "answer")
; 42 is the answer.
→ nil

I (read-line stream nil) reads one line of text from stream,
returning it as a string.

I (read stream nil) reads one well-formed s-expression.

I The second reader argument asks to return nil upon end-of-file.

(with-open-file (stream "sample.txt" :direction :input)
(loop

for line = (read-line stream nil)
while line do (format t "~a~%" line)))

5

More Data Structures: Arrays
I Integer-indexed container (indices count from zero)

? (defparameter array (make-array 5)) → #(nil nil nil nil nil)

? (setf (aref array 0) 42)→ 42

? array → #(42 nil nil nil nil)

I Can be fixed-sized (default) or dynamically adjustable.
I Can also represent rectangular ‘grids’ of multiple dimensions:

? (defparameter array (make-array ’(2 5) :initial-element 0))
→ #((0 0 0 0 0) (0 0 0 0 0))

? (incf (aref array 1 2)) → 1

0 1 2 3 4

0 0 0 0 0 0

1 0 0 1 0 0
6

Arrays: Specializations and Generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #’numberp ’(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove ’a ’(a b b a)) → (b b)

? (some #’listp ’(1 a "2" 3 (b))) → t

? (sort ’(1 2 1 3 1 0) #’<) → (0 1 1 1 2 3)

I Others: position, every, count, remove-if, find, merge, map,
reverse, concatenate, reduce, . . .

7

Sequences, Function Objects, Keyword Parameters

(member "foo" ’("foo" "baz" "bar" "c" "a" "b" "xy" "yz"))
→ nil

(member "foo" ’("foo" "baz" "bar" "c" "a" "b" "xy" "yz") :test #’equal)
→ nil

(defparameter foo ’("foo" "baz" "bar" "c" "a" "b" "xy" "yz"))
(sort foo #’(lambda (x y)

(let ((i (length x)) (j (length y)))
(or (< i j) (and (= i j) (string< x y))))))

→ ("a" "b" "c" "xy" "yz" "bar" "baz" "foo")

(defparameter bar ’(("baz" 23) ("bar" 47) ("foo" 11)))
(sort bar #’< :key #’(lambda (foo) (first (rest foo))))
→ (("foo" 11) ("baz" 23) ("bar" 47))

I Parameterization through higher-order functions as keyword parameters.
I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

8

Associative Key–Value Look-Up

I Several built-in possibilities.

I In order of increasing power:
I Plists (property lists)
I Alists (association lists)
I Hash Tables

9

Plists (Property Lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

10

Alists (Association Lists)
I An association list is a list of pairs of keys and values:

? (defparameter alist (pairlis ’(:artist :title)
’("Elvis" "Blue Hawaii")))

→ ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) → (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))

→ ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

I Note: The result of cons’ing something to an atomic value other than
nil is displayed as a dotted pair; (cons ’a ’b) → (a . b)

I With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

I With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

11

Hash tables

I While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

I Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #’equal))

? (gethash "foo" table) → nil

? (setf (gethash "foo" table) 42) → 42

I ‘Trick’ to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) → 1

? (gethash "bar" table) → 1

I Hash table iteration: use maphash or specialized loop directives.
12

Structures (‘Structs’)
I defstruct creates a new abstract data type with named slots.

I Encapsulates a group of related data (i.e. an ‘object’).

I Each structure type is a new type distinct from all existing Lisp types.

I Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
→ #S(album :artist "Elvis" :title "unknown")

? (listp foo) → nil

? (album-p foo) → t

? (setf (album-title foo) "Blue Hawaii")

? foo → #S(album :artist "Elvis" :title "Blue Hawaii")

13

Finally: Give us Those Bonus Points

Rules of the Game

I Up to four bonus points towards completion of Obligatory Exercise (1).

I Get one post-it; at the top, write down your first and last name.

I Further, write down your UiO account name (e.g. oe, in my case).

I Write each answer on a line of its own, prefix by question number.

I Do not consult with your neighbors; they will likely mess things up.

After the Quiz
I Post your answers at the front of your table, we will collect all notes.

I Discuss your answers with your neighbor(s); explain why you are right.

14

Question (1): Use of cons Cells

(defparameter foo ’(:foo 47 :bar 11))

(defparameter bar ’((:foo . 47) (:bar . 11)))

(1) How many cons cells are used by foo and bar, respectively?

15

Question (2): Parameter List Flexibility

(defparameter a 47)

(defun foo (a &optional (b 42) c &rest list)
(list a b c list))

? (foo ’a :b 11 :rest ’list) →

(2) What is the return value of the function call to foo?

16

Question (3): Global and Local Variables

(defparameter foo ’(1 2 3))

(defun foo (foo bar)
(let ((foo (* foo 2))

(bar (+ foo 1)))
(list foo bar)))

? (foo (first (rest foo)) (first (last foo))) →

(3) What is the return value of the function call to foo?

17

Question (4): Mysterious Common Lisp

(defun ? (?)
(if (null ?)

?
(cons (first ?) (? (rest ?)))))

(4) What argument type does ? take, and what does it compute?

18

Answer (1): Use of cons Cells

(defparameter foo ’(:foo 47 :bar 11))

(defparameter bar ’((:foo . 47) (:bar . 11)))

(1) How many cons cells are used by foo and bar, respectively?

4 (in both cases)

19

Answer (2): Parameter List Flexibility

(defparameter a 47)

(defun foo (a &optional (b 42) c &rest list)
(list a b c list))

? (foo ’a :b 11 :rest ’list) →

(2) What is the return value of the function call to foo?

(a :b 11 (:rest list))

20

Answer (3): Global and Local Variables

(defparameter foo ’(1 2 3))

(defun foo (foo bar)
(let ((foo (* foo 2))

(bar (+ foo 1)))
(list foo bar)))

? (foo (first (rest foo)) (first (last foo))) →

(3) What is the return value of the function call to foo?

(4 3)

21

Answer (4): Mysterious Common Lisp

(defun ? (?)
(if (null ?)

?
(cons (first ?) (? (rest ?)))))

(4) What argument type does ? take, and what does it compute?

Lists; foo returns a fresh, equivalent copy.

22

Good Lisp Style

Bottom-Up Design
I Instead of trying to solve everything with one large function: Build your
program with layers of smaller functions.

I Eliminate repetition and patterns.

I Related; define abstraction barriers.
I Separate the code that uses a given data abstraction from the code that
implements that data abstraction.

I Promotes code re-use:
I Makes the code shorter and easier to read, debug, and maintain.

I Somewhat more mundane:
I Adhere to the time-honored 80 column rule.
I Close multiple parentheses on the same line.
I Use auto-indentation (TAB) in emacs.

23

Next Time: Wednesday, September 17, 2014

I Can we automatically infer the meaning of words?

I Distributional semantics

I Vector spaces: Spatial models for representing data

I Semantic spaces

24

