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Today

I Vector spaces
I Quick recap
I Vector space models for Information Retrieval (IR)

I Machine learning: Classification
I Representing classes and membership
I Rocchio classifiers
I kNN classifiers
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Summing up
I Semantic spaces: Vector space models for distributional semantics.

I Words are represented as points/vectors in a space, positioned by their
co-occurrence counts for various context features.

I For each word, extract context features across a corpus.

I Let each feature type correspond to a dimension in space.

I Each word oi is represented by a (length-normalized) n-dimensional
feature vector ~xi = 〈xi1, . . . , xin〉 ∈ <n .

I We can now measure, say, the Euclidean
distance of words in the space, d(~x,~y).

I Semantic relatedness ≈
distributional similarity ≈
spatial proximity
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An aside: Term–document spaces for IR

I So far we’ve looked at vector space models for detecting words with
similar meanings.

I It’s important to realize that vector space models are widely used for
other purposes as well.

I For example, vector space models are commonly used in IR for finding
documents with similar content.

I Each document dj is represented by a feature vector, with features
corresponding to the terms t1, . . . , tn occurring in the documents.

I Spatial distance ≈ similarity of content.
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An aside: Term–document spaces for IR (cont’d)

I The term–document vectors can also be used for scoring and ranking a
document’s relevance relative to a given search query.

I Represent the search query as a vector, just like for the documents.

I The relevance of documents relative to the query can be ranked
according to their distance to the query in the feature space.
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Classification Example

I Task: Named Entity Recognition
I Recognize Entities

I Assign them a class (ex. Person Location and Organization)

I Simplification: Classify upper case words/phrases in classes

I Classify using similarity to examples: London , Paris , Oslo , Clinton ...
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Classification Example 2

I Task: Sentiment Analysis
I Classify Sentences into classes Positive, Negative Neutral

I Vector of features is assigned to entire sentence

I Use example sentences

I Tailored subset of words in context (ex. good, nice awful ..)
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Classification Example 3

I Task: Textual Entailment
I Classify pair of sentences A and B into 2 classes: YES (A implies B) and
NO (A does not imply B)

I Vector of features is assigned to the pair

I Use example pairs

I Features: Word Overlap , Longest Common Subsequence, Levenstein
Distance
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Two categorization tasks in machine learning

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No predefined classes or structure, we only specify the similarity
measure. Relies on “self-organization”.

I Topic of the next lecture(s).

Classification
I Supervised learning, requiring labeled training data.
I Train a classifier to automatically assign new instances to predefined
classes, given some set of examples.

I We’ll look at two examples of classifiers that use a vector space
representation: Rocchio and kNN.
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Classes and classification

I A class can simply be thought of as a collection of objects.
I In our vector space model, objects are represented as points, so a class
will correspond to a collection of points; a region.

I Vector space classification is based on the the contiguity hypothesis:

I Objects in the same class form a
contiguous region, and regions of
different classes do not overlap.

I Classification amounts to
computing the boundaries in the
space that separate the classes;
the decision boundaries.

I How we draw the boundaries is
influenced by how we choose to
represent the classes.
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Different ways of representing classes

Exemplar-based
I No abstraction. Every stored instance of a group can potentially
represent the class.

I Used in so-called instance based or memory based learning (MBL).
I In its simplest form; the class = the collection of points.
I Another variant is to use medoids, – representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based
I The average, or the center of mass in the region.
I Given a class ci , where each object oj being a member is represented as
a feature vector ~xj , we can compute the class centroid ~µi as

~µi = 1
|ci |

∑
~xj∈ci

~xj
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Different ways of representing classes (cont’d)

Some more notes on centroids, medoids and typicality
I Centroids and medoids both represent a group of objects by a single
point, a prototype.

I But while a medoid is an actual member of the group, a centroid is an
abstract prototype; an average.

I The typicality of class members can be determined by their distance to
the prototype.

I The centroid could also be distance weighted; let each member’s
contribution to the average be determined by its average pairwise
similarity to the other members of the group.

I The discussion of how to represent classes in machine learning parallels
the discussion of how to represent classes and determine typicality
within linguistic and psychological prototype theory.
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Representing class membership

Hard Classes
I Membership considered a Boolean property: a given object is either
part of the class or it is not.

I A crisp membership function.
I A variant: disjunctive classes. Objects can be members of more than
one class, but the memberships are still crisp.

Soft Classes
I Class membership is a graded property.
I Probabilistic. The degree of membership for a given restricted to [0, 1],
and the sum across classes must be 1.

I Fuzzy: The membership function is still restricted to [0, 1], but without
the probabilistic constraint on the sum.
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Rocchio classification

I Uses centroids to represent classes.

I Each class ci is represented by its centroid ~µi , computed as the average
of the normalized vectors ~xj of its members;

~µi = 1
|ci |

∑
~xj∈ci

~xj

I To classify a new object oj (represented by a feature vector ~xj);
– determine which centroid ~µi that ~xj is closest to,
– and assign it to the corresponding class ci .

I The centroids define the boundaries of the class regions.
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The decision boundary of the Rocchio classifier

I Defines the boundary between
two classes by the set of points
equidistant from the centroids.

I In two dimensions, this set of
points corresponds to a line.

I In multiple dimensions: A line in
2D corresponds to a hyperplane in
a higher-dimensional space.
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Problems with the Rocchio classifier
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Problems with the Rocchio classifier

I Ignores details of the distribution of points within a class, only based on
the centroid distance.

I Implicitly assumes that classes are spheres with similar radii.

I Does not work well for classes than cannot be accurately represented by
a single prototype or “center” (e.g. disconnected or elongated regions).

I Because the Rocchio classifier defines a linear decision boundary, it is
only suitable for problems involving linearly separable classes.
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kNN-classification

I k Nearest Neighbor classification.
I For k = 1: Assign each object to the class of its closest neighbor.
I For k > 1: Assign each object to the majority class among its k closest
neighbors.

I Rationale: given the contiguity hypothesis, we expect a test object oi to
have the same label as the training objects located in the local region
surrounding ~xi .

I The parameter k must be specified in advance, either manually or by
optimizing on held-out data.

I An example of a non-linear classifier.
I Unlike Rocchio, the kNN decision boundary is determined locally.

I The decision boundary defined by the Voronoi tessellation.
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Voronoi tessellation

I Assuming k = 1: For a given set of objects in the space, let each object
define a cell consisting of all points that are closer to that object than
to other objects.

I Results in a set of convex
polygons; so-called Voronoi cells.

I Decomposing a space into such
cells gives us the so-called
Voronoi tessellation.

I In the general case of k ≥ 1, the Voronoi cells are given by the regions
in the space for which the set of k nearest neighbors is the same.
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Voronoi tessellation for 1NN

Decision boundary for 1NN: defined along the regions of Voronoi cells for
the objects in each class. Shows the non-linearity of kNN.
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“Softened” kNN-classification

A probabilistic version
I Estimate the probability of membership in class c as the proportion of
the k nearest neighbors in c.
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“Softened” kNN-classification

A probabilistic version
I Estimate the probability of membership in class c as the proportion of
the k nearest neighbors in c.

A distance weighted version
I The score for a given class ci can be computed as

score(ci , oj) =
∑

~xn∈knn(~xj)
I(ci ,~xn) sim( ~xn , ~xj)

where knn(~xj) is the set of k nearest neighbors of ~xj , sim is whatever
similarity measure we’re using, and I(ci ,~xn) is simply a membership
function returning 1 if ~xn ∈ ci and 0 otherwise.

I Such distance weighted votes can often give more accurate results, and
also help resolve ties.
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Some peculiarities of kNN

I Not really any learning or estimation going on at all;

I simply memorizes all training examples.

I Example of so-called memory-based learning or instance-based learning.

I In general in machine learning, the more training data the better.

I But for kNN, large training sets comes with an efficiency penalty in
classification.

I Notice the similarity to the problem of ad hoc retrieval (e.g., returning
relevant documents for a given query);

I Both are instances of finding nearest neighbors.

I Test time is linear in the size of the training set,

I and independent of the number of classes.

I A potential advantage for problems with many classes.
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Testing a classifier

I We’ve seen how vector space classification amounts to computing the
boundaries in the space that separate the class regions;
the decision boundaries.

I To evaluate the boundary, we measure the number of correct
classification predictions on unseeen test items.

I Many ways to do this. . .

I We want to test how well a model generalizes on a held-out test set.
I (Or, if we have little data, by n-fold cross-validation.)
I Labeled test data is sometimes refered to as the gold standard.
I Why can’t we test on the training data?
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Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:
gold = positive gold = negative

prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)
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Example: Evaluating classifier decisions

accuracy = TP+TN
N

= 1+6
10 = 0.7

precision = TP
TP+FP

= 1
1+1 = 0.5

recall = TP
TP+FN

= 1
1+2 = 0.33

F -score =
2recision×recall
precision+recall = 0.4
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Evaluation measures

I accuracy = TP+TN
N = TP+TN

TP+TN+FP+FN
I The ratio of correct predictions.
I Not suitable for unbalanced numbers of positive / negative examples.

I precision = TP
TP+FP

I The number of detected class members that were correct.

I recall = TP
TP+FN

I The number of actual class members that were detected.
I Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

I F -score = 2×precision×recall
precision+recall

I Balanced measure of precision and recall (harmonic mean).
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Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.
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Next Lecture

I Unsupervised machine learning for class discovery: Clustering
I Flat vs. hierarchical clustering.
I C-Means Clustering.
I Reading: Chapters 16 and 17 in Manning, Raghavan & Schütze (2008)
(see course page for the relevant sections).
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