
INF4820: Algorithms for AI and NLP

Classification

Milen Kouylekov & Stephan Oepen

Language Technology Group
University of Oslo

Sep. 18, 2014

Today

I Vector spaces
I Quick recap
I Vector space models for Information Retrieval (IR)

I Machine learning: Classification
I Representing classes and membership
I Rocchio classifiers
I kNN classifiers

2

Summing up
I Semantic spaces: Vector space models for distributional semantics.

I Words are represented as points/vectors in a space, positioned by their
co-occurrence counts for various context features.

I For each word, extract context features across a corpus.

I Let each feature type correspond to a dimension in space.

I Each word oi is represented by a (length-normalized) n-dimensional
feature vector ~xi = 〈xi1, . . . , xin〉 ∈ <n .

I We can now measure, say, the Euclidean
distance of words in the space, d(~x,~y).

I Semantic relatedness ≈
distributional similarity ≈
spatial proximity

3

An aside: Term–document spaces for IR

I So far we’ve looked at vector space models for detecting words with
similar meanings.

I It’s important to realize that vector space models are widely used for
other purposes as well.

I For example, vector space models are commonly used in IR for finding
documents with similar content.

I Each document dj is represented by a feature vector, with features
corresponding to the terms t1, . . . , tn occurring in the documents.

I Spatial distance ≈ similarity of content.

4

An aside: Term–document spaces for IR (cont’d)

I The term–document vectors can also be used for scoring and ranking a
document’s relevance relative to a given search query.

I Represent the search query as a vector, just like for the documents.

I The relevance of documents relative to the query can be ranked
according to their distance to the query in the feature space.

5

Classification Example

I Task: Named Entity Recognition
I Recognize Entities

I Assign them a class (ex. Person Location and Organization)

I Simplification: Classify upper case words/phrases in classes

I Classify using similarity to examples: London , Paris , Oslo , Clinton ...

6

Classification Example 2

I Task: Sentiment Analysis
I Classify Sentences into classes Positive, Negative Neutral

I Vector of features is assigned to entire sentence

I Use example sentences

I Tailored subset of words in context (ex. good, nice awful ..)

7

Classification Example 3

I Task: Textual Entailment
I Classify pair of sentences A and B into 2 classes: YES (A implies B) and
NO (A does not imply B)

I Vector of features is assigned to the pair

I Use example pairs

I Features: Word Overlap , Longest Common Subsequence, Levenstein
Distance

8

Two categorization tasks in machine learning

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No predefined classes or structure, we only specify the similarity
measure. Relies on “self-organization”.

I Topic of the next lecture(s).

Classification
I Supervised learning, requiring labeled training data.
I Train a classifier to automatically assign new instances to predefined
classes, given some set of examples.

I We’ll look at two examples of classifiers that use a vector space
representation: Rocchio and kNN.

9

Classes and classification

I A class can simply be thought of as a collection of objects.
I In our vector space model, objects are represented as points, so a class
will correspond to a collection of points; a region.

I Vector space classification is based on the the contiguity hypothesis:

I Objects in the same class form a
contiguous region, and regions of
different classes do not overlap.

I Classification amounts to
computing the boundaries in the
space that separate the classes;
the decision boundaries.

I How we draw the boundaries is
influenced by how we choose to
represent the classes.

10

Different ways of representing classes

Exemplar-based
I No abstraction. Every stored instance of a group can potentially
represent the class.

I Used in so-called instance based or memory based learning (MBL).
I In its simplest form; the class = the collection of points.
I Another variant is to use medoids, – representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based
I The average, or the center of mass in the region.
I Given a class ci , where each object oj being a member is represented as
a feature vector ~xj , we can compute the class centroid ~µi as

~µi = 1
|ci |

∑
~xj∈ci

~xj

11

Different ways of representing classes (cont’d)

Some more notes on centroids, medoids and typicality
I Centroids and medoids both represent a group of objects by a single
point, a prototype.

I But while a medoid is an actual member of the group, a centroid is an
abstract prototype; an average.

I The typicality of class members can be determined by their distance to
the prototype.

I The centroid could also be distance weighted; let each member’s
contribution to the average be determined by its average pairwise
similarity to the other members of the group.

I The discussion of how to represent classes in machine learning parallels
the discussion of how to represent classes and determine typicality
within linguistic and psychological prototype theory.

12

Representing class membership

Hard Classes
I Membership considered a Boolean property: a given object is either
part of the class or it is not.

I A crisp membership function.
I A variant: disjunctive classes. Objects can be members of more than
one class, but the memberships are still crisp.

Soft Classes
I Class membership is a graded property.
I Probabilistic. The degree of membership for a given restricted to [0, 1],
and the sum across classes must be 1.

I Fuzzy: The membership function is still restricted to [0, 1], but without
the probabilistic constraint on the sum.

13

Rocchio classification

I Uses centroids to represent classes.

I Each class ci is represented by its centroid ~µi , computed as the average
of the normalized vectors ~xj of its members;

~µi = 1
|ci |

∑
~xj∈ci

~xj

I To classify a new object oj (represented by a feature vector ~xj);
– determine which centroid ~µi that ~xj is closest to,
– and assign it to the corresponding class ci .

I The centroids define the boundaries of the class regions.

14

The decision boundary of the Rocchio classifier

I Defines the boundary between
two classes by the set of points
equidistant from the centroids.

I In two dimensions, this set of
points corresponds to a line.

I In multiple dimensions: A line in
2D corresponds to a hyperplane in
a higher-dimensional space.

15

Problems with the Rocchio classifier

16

Problems with the Rocchio classifier

I Ignores details of the distribution of points within a class, only based on
the centroid distance.

I Implicitly assumes that classes are spheres with similar radii.

I Does not work well for classes than cannot be accurately represented by
a single prototype or “center” (e.g. disconnected or elongated regions).

I Because the Rocchio classifier defines a linear decision boundary, it is
only suitable for problems involving linearly separable classes.

17

kNN-classification

I k Nearest Neighbor classification.
I For k = 1: Assign each object to the class of its closest neighbor.
I For k > 1: Assign each object to the majority class among its k closest
neighbors.

I Rationale: given the contiguity hypothesis, we expect a test object oi to
have the same label as the training objects located in the local region
surrounding ~xi .

I The parameter k must be specified in advance, either manually or by
optimizing on held-out data.

I An example of a non-linear classifier.
I Unlike Rocchio, the kNN decision boundary is determined locally.

I The decision boundary defined by the Voronoi tessellation.

18

Voronoi tessellation

I Assuming k = 1: For a given set of objects in the space, let each object
define a cell consisting of all points that are closer to that object than
to other objects.

I Results in a set of convex
polygons; so-called Voronoi cells.

I Decomposing a space into such
cells gives us the so-called
Voronoi tessellation.

I In the general case of k ≥ 1, the Voronoi cells are given by the regions
in the space for which the set of k nearest neighbors is the same.

19

Voronoi tessellation for 1NN

Decision boundary for 1NN: defined along the regions of Voronoi cells for
the objects in each class. Shows the non-linearity of kNN.

20

“Softened” kNN-classification

A probabilistic version
I Estimate the probability of membership in class c as the proportion of
the k nearest neighbors in c.

21

“Softened” kNN-classification

A probabilistic version
I Estimate the probability of membership in class c as the proportion of
the k nearest neighbors in c.

A distance weighted version
I The score for a given class ci can be computed as

score(ci , oj) =
∑

~xn∈knn(~xj)
I(ci ,~xn) sim(~xn , ~xj)

where knn(~xj) is the set of k nearest neighbors of ~xj , sim is whatever
similarity measure we’re using, and I(ci ,~xn) is simply a membership
function returning 1 if ~xn ∈ ci and 0 otherwise.

I Such distance weighted votes can often give more accurate results, and
also help resolve ties.

22

Some peculiarities of kNN

I Not really any learning or estimation going on at all;

I simply memorizes all training examples.

I Example of so-called memory-based learning or instance-based learning.

I In general in machine learning, the more training data the better.

I But for kNN, large training sets comes with an efficiency penalty in
classification.

I Notice the similarity to the problem of ad hoc retrieval (e.g., returning
relevant documents for a given query);

I Both are instances of finding nearest neighbors.

I Test time is linear in the size of the training set,

I and independent of the number of classes.

I A potential advantage for problems with many classes.
23

Testing a classifier

I We’ve seen how vector space classification amounts to computing the
boundaries in the space that separate the class regions;
the decision boundaries.

I To evaluate the boundary, we measure the number of correct
classification predictions on unseeen test items.

I Many ways to do this. . .

I We want to test how well a model generalizes on a held-out test set.
I (Or, if we have little data, by n-fold cross-validation.)
I Labeled test data is sometimes refered to as the gold standard.
I Why can’t we test on the training data?

24

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:
gold = positive gold = negative

prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

25

Example: Evaluating classifier decisions

accuracy = TP+TN
N

= 1+6
10 = 0.7

precision = TP
TP+FP

= 1
1+1 = 0.5

recall = TP
TP+FN

= 1
1+2 = 0.33

F -score =
2recision×recall
precision+recall = 0.4

26

Evaluation measures

I accuracy = TP+TN
N = TP+TN

TP+TN+FP+FN
I The ratio of correct predictions.
I Not suitable for unbalanced numbers of positive / negative examples.

I precision = TP
TP+FP

I The number of detected class members that were correct.

I recall = TP
TP+FN

I The number of actual class members that were detected.
I Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

I F -score = 2×precision×recall
precision+recall

I Balanced measure of precision and recall (harmonic mean).

27

Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.

28

Next Lecture

I Unsupervised machine learning for class discovery: Clustering
I Flat vs. hierarchical clustering.
I C-Means Clustering.
I Reading: Chapters 16 and 17 in Manning, Raghavan & Schütze (2008)
(see course page for the relevant sections).

29

