
INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

Probabilities and Language Models

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

October 15, 2014

University of Oslo : Department of Informatics



So far: Point-wise classification (geometric models)

What’s next: Structured classification (probabilistic models)

I sequences
I labelled sequences
I trees

Introduction



. . . you should be able to determine
I which string is most likely:

I How to recognise speech vs. How to wreck a nice beach
I which tag sequence is most likely for flies like flowers:

I NNS VB NNS vs. VBZ P NNS
I which syntactic analysis is most likely:
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By the End of the Semester . . .



I Experiment (or trial)
I the process we are observing

I Sample space (Ω)
I the set of all possible outcomes

I Events
I the subsets of Ω we are interested in

P(A) is the probability of event A, a real number ∈ [0, 1]

Probability Basics (1/4)



I Experiment (or trial)
I rolling a die

I Sample space (Ω)
I Ω = {1, 2, 3, 4, 5, 6}

I Events
I A = rolling a six: {6}
I B = getting an even number: {2, 4, 6}

P(A) is the probability of event A, a real number ∈ [0, 1]

Probability Basics (2/4)



I Experiment (or trial)
I flipping two coins

I Sample space (Ω)
I Ω = {HH,HT,TH,TT}

I Events
I A = the same both times: {HH,TT}
I B = at least one head: {HH,HT,TH}

P(A) is the probability of event A, a real number ∈ [0, 1]

Probability Basics (3/4)



I Experiment (or trial)
I rolling two dice

I Sample space (Ω)
I Ω = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, . . . , 63, 64, 65, 66}

I Events
I A = results sum to 6: {15, 24, 33, 42, 51}
I B = both results are even: {22, 24, 26, 42, 44, 46, 62, 64, 66}

P(A) is the probability of event A, a real number ∈ [0, 1]

Probability Basics (4/4)



I P(A,B): probability that both A and B happen
I also written: P(A ∩ B)

A B

What is the probability, when throwing two fair dice, that
I A: the results sum to 6 and
I B: at least one result is a 1?

Joint Probability



I P(A,B): probability that both A and B happen
I also written: P(A ∩ B)

A B

What is the probability, when throwing two fair dice, that
I A: the results sum to 6 and
I B: at least one result is a 1?

Joint Probability



I P(A,B): probability that both A and B happen
I also written: P(A ∩ B)

A B

What is the probability, when throwing two fair dice, that
I A: the results sum to 6 and 5

36
I B: at least one result is a 1?

Joint Probability



I P(A,B): probability that both A and B happen
I also written: P(A ∩ B)

A B

What is the probability, when throwing two fair dice, that
I A: the results sum to 6 and 5

36

I B: at least one result is a 1? 11
36

Joint Probability



Often, we know something about a situation.

What is the probability P(A|B), when throwing two fair dice,
that
I A: the results sum to 6 given
I B: at least one result is a 1?

A B

Ω

A B

�



�
	P(A|B) =

P(A∩B)
P(B) (where P(B) > 0)

Conditional Probability



Since joint probability is symmetric:

P(A ∩ B) = P(A|B) P(B)
= P(B|A) P(A) (multiplication rule)

More generally, using the chain rule:

P(A1 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) . . .P(An| ∩
n−1
i=1 Ai)

The chain rule will be very useful to us through the semester:

I it allows us to break a complicated situation into parts;
I we can choose the breakdown that suits our problem.

The Chain Rule



If knowing event B is true has no effect on event A, we say

A and B are independent of each other.

If A and B are independent:
I P(A) = P(A|B)
I P(B) = P(B|A)
I P(A ∩ B) = P(A) P(B)

(Conditional) Independence



Let’s say we have a rare disease, and a pretty accurate test for
detecting it. Yoda has taken the test, and the result is positive.

The numbers:

I disease prevalence: 1 in 1000 people
I test false negative rate: 1%
I test false positive rate: 2%

What is the probability that he has the disease?

Intuition? (1/3)



Given:

I event A: have disease
I event B: positive test

We know:
I P(A) = 0.001
I P(B|A) = 0.99
I P(B|¬A) = 0.02

We want
I P(A|B) = ?

Intuition? (2/3)



A ¬ A
B 0.00099 0.01998 0.02097
¬ B 0.00001 0.97902 0.97903

0.001 0.999 1

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02

P(A ∩ B) = P(B|A)P(A)

P(A|B) =
P(A ∩ B)

P(B)
=

0.00099
0.02097

= 0.0472

Intuition? (3/3)



P(A|B) =
P(B|A)P(A)

P(B)

I reverses the order of dependence
I in conjunction with the chain rule, allows us to determine

the probabilities we want from the probabilities we have

Other useful axioms
I P(Ω) = 1
I P(A) = 1 − P(¬A)

Bayes’ theorem



I On a gameshow, there are three doors.
I Behind 2 doors, there is a goat.
I Behind the 3rd door, there is a car.
I The contestant selects a door that he hopes has the car

behind it.
I Before he opens that door, the gameshow host opens one of

the other doors to reveal a goat.
I The contestant now has the choice of opening the door he

originally chose, or switching to the other unopened door.

What should he do?

Bonus: The Monty Hall Problem



Determining
I which string is most likely:

I How to recognise speech vs. How to wreck a nice beach
I which tag sequence is most likely for flies like flowers:

I NNS VB NNS vs. VBZ P NNS
I which syntactic analysis is most likely:
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Recall Our Mid-Term Goals



I Do you want to come to the movies and ?
I Det var en ?
I Je ne parle ?

Natural language contains redundancy, hence can be
predictable.

Previous context can constrain the next word
I semantically;
I syntactically;
→ by frequency.

What Comes Next?



I A probabilistic (also known as stochastic) language model
M assigns probabilities PM (x) to all strings x in language L.

I L is the sample space
I 0 ≤ PM (x) ≤ 1
I

∑
x∈L PM (x) = 1

I Language models are used in machine translation, speech
recognition systems, spell checkers, input prediction, . . .

I We can calculate the probability of a string using the chain
rule:

P(w1 . . .wn) = P(w1)P(w2|w1)P(w3|w1 ∩ w2) . . .P(wn| ∩
n−1
i=1 wi)

P(I want to go to the beach) =
P(I) P(want|I) P(to|I want) P(go|I want to) P(to|I want to go) . . .

Language Models



We simplify using the Markov assumption (limited history):

the last n − 1 elements can approximate the effect of the full sequence.

That is, instead of
I P(beach| I want to go to the)

selecting an n of 3, we use
I P(beach| to the)

We call these short sequences of words n-grams:

I bigrams: I want, want to, to go, go to, to the, the beach
I trigrams: I want to, want to go, to go to, go to the
I 4-grams: I want to go, want to go to, to go to the

N-Grams



A generative model models a joint probability in terms of
conditional probabilities.

We talk about the generative story:

〈S〉 the cat

and

eat

P(and|the)

P(cat|the)

P(eat|the)

eats mice 〈/S〉

P(the|〈S〉) P(cat|the) P(eats|cat) P(mice|eats) P(〈/S〉|mice)

P(S) = P(the|〈S〉) P(cat|the) P(eats|cat) P(mice|eats) P(〈/S〉|mice)

N-Gram Models



An n-gram language model records the n-gram conditional
probabilities:

P(I| 〈S〉) = 0.0429 P(to|go) = 0.1540
P(want|I) = 0.0111 P(the|to) = 0.1219
P(to|want) = 0.4810 P(beach|the) = 0.0006
P(go|to) = 0.0131

We calculate the probability of a sentence according to:

P
(
wn

1

)
≈

n∏
k=i

P (wk|wk−1)

≈ P (I| 〈S〉) × P (want|I) × P (to|want) × P
(
go|to

)
× P

(
to|go

)
×

P (the|to) × P (beach|the)

≈ 0.0429 × 0.0111 × 0.4810 × 0.0131 × 0.1540 ×
0.1219 × 0.0006 = 3.38 × 10−11

N-Gram Models



How to estimate the probabilities of n-grams?

By counting (e.g. for trigrams):

P (bananas|i like) =
C (i like bananas)

C (i like)

The probabilities are estimated using the relative frequencies
of observed outcomes. This process is called Maximum
Likelihood Estimation (MLE).

Training an N-Gram Model



“I want to go to the beach”
w1 w2 C (w1w2) C (w1) P (w2|w1)
〈S〉 I 1039 24243 0.0429
I want 46 4131 0.0111
want to 101 210 0.4810
to go 128 9778 0.0131
go to 59 383 0.1540
to the 1192 9778 0.1219
the beach 14 22244 0.0006

What’s the probability of Others want to go to the beach ?

Bigram MLE Example


