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I Previous context can help predict the next thing in a
sequence;

I Rather than use the whole previous context, the Markov
assumption says that the whole history can be
approximated by the last n − 1 elements;

I An n-gram language model predicts the n-th word,
conditioned on the n − 1 previous words;

I Maximum Likelihood Estimation uses relative frequencies
to approximate the conditional probabilities needed for an
n-gram model;

Recall: N-Gram Language Models



“I want to go to the beach”
w1 w2 C (w1w2) C (w1) P (w2|w1)
〈S〉 I 1039 24243 0.0429
I want 46 4131 0.0111
want to 101 210 0.4810
to go 128 9778 0.0131
go to 59 383 0.1540
to the 1192 9778 0.1219
the beach 14 22244 0.0006

What’s the probability of Others want to go to the beach ?

Bigram MLE Example



I Data sparseness: many perfectly acceptable n-grams will
not be observed

I Zero counts will result in a estimated probability of 0

I Remedy—reassign some of the probability mass of
frequent events to less frequent (or unseen) events.

I Known as smoothing or discounting
I The simplest approach is Laplace (‘add-one’) smoothing:

PL (wn|wn−1) =
C (wn−1wn) + 1
C (wn−1) + V

Problems with MLE of N-Grams



“Others want to go to the beach”
w1 w2 C (w1w2) C (w1) P (w2|w1) PL (w2|w1)
〈S〉 I 1039 24243 0.0429 0.01934
〈S〉 Others 17 24243 0.0007 0.00033
I want 46 4131 0.0111 0.00140
Others want 0 4131 0 0.00003
want to 101 210 0.4810 0.00343
to go 128 9778 0.0131 0.00328
go to 59 383 0.1540 0.00201
to the 1192 9778 0.1219 0.03035
the beach 14 22244 0.0006 0.00029

PL (wn|wn−1) =
C (wn−1wn) + 1

C (wn−1) + 29534

Bigram MLE Example with Laplace Smoothing



I The likelihood of the next word depends on its context.
I We can calculate this using the chain rule:
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I In an n-gram model, we approximate this with a Markov

chain:
P
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)
I We use Maximum Likelihood Estimation to estimate the

conditional probabilities.
I Smoothing techniques are used to avoid zero probabilities.

N-Gram Summary



Determining
I which string is most likely: X

I How to recognise speech vs. How to wreck a nice beach
I which tag sequence is most likely for flies like flowers:

I NNS VB NNS vs. VBZ P NNS
I which syntactic analysis is most likely:
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I Known by a variety of names: part-of-speech, POS, lexical
categories, word classes, morphological classes, . . .

I ‘Traditionally’ defined semantically (e.g. “nouns are
naming words”), but more accurately by their
distributional properties.

http://chronicle.com/blogs/linguafranca/2012/06/20/being-a-noun/

I Open-classes
I New words created/updated/deleted all the time

I Closed-classes
I Smaller classes, relatively static membership
I Usually function words

Parts of Speech

http://chronicle.com/blogs/linguafranca/2012/06/20/being-a-noun/


I Nouns: dog, Oslo, scissors, snow, people, truth, cups
I proper or common; countable or uncountable; plural or

singular; masculine, feminine or neuter; . . .
I Verbs: fly, rained, having, ate, seen

I transitive, intransitive, ditransitive; past, present, passive;
stative or dynamic; plural or singular; . . .

I Adjectives: good, smaller, unique, fastest, best, unhappy
I comparative or superlative; predicative or attributive;

intersective or non-intersective; definite or indefinite; . . .
I Adverbs: again, somewhat, slowly, yesterday, aloud

I intersective; scopal; discourse; degree; temporal;
directional; comparative or superlative; . . .

Open Class Words



I Prepositions: on, under, from, at, near, over, . . .
I Determiners: a, an, the, that, . . .
I Pronouns: she, who, I, others, . . .
I Conjunctions: and, but, or, when, . . .
I Auxiliary verbs: can, may, should, must, . . .
I Interjections, particles, numerals, negatives, politeness

markers, greetings, existential there . . .

(Examples from Jurafsky & Martin, 2008)

Closed Class Words



The (automatic) assignment of POS tags to word sequences

I non-trivial where words are ambiguous: fly (v) vs. fly (n)
I choice of the correct tag is context-dependent
I useful in pre-processing for parsing, etc; but also directly

for text-to-speech synthesis: content (n) vs. content (adj)
I difficulty and usefulness can depend on the tagset

I English
I Penn Treebank (PTB)—45 tags: NNS, NN, NNP, JJ, JJR, JJS

http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

I Norwegian
I Oslo-Bergen Tagset—multi-part: 〈subst appell fem be ent〉

http://tekstlab.uio.no/obt-ny/english/tags.html

POS Tagging

http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
http://tekstlab.uio.no/obt-ny/english/tags.html


I We are interested in the probability of sequences like:
flies like the wind

or
flies like the wind

nns vb dt nn vbz p dt nn

I In normal text, we see the words, but not the tags.
I Consider the POS tags to be underlying skeleton of the

sentence, unseen but influencing the sentence shape.
I A structure like this, consisting of a hidden state sequence,

and a related observation sequence can be modelled as a
Hidden Markov Model.

Labelled Sequences



The generative story:

〈S〉 DT

the

NN

cat

VBZ

eats

NNS

mice

〈/S〉

P(DT|〈S〉)

P(the|DT)

P(NN|DT)

P(cat|NN)

P(VBZ|NN)

P(eats|VBZ)

P(NNS|VBZ)

P(mice|NNS)

P(〈/S〉|NNS)

P(S,O) = P( DT|〈S〉) P(the|DT) P(NN|DT) P(cat|NN)
P(VBZ|NN) P(eats|VBZ) P(NNS|VBZ) P(mice|NNS)
P(〈/S〉|NNS)

Hidden Markov Models



For a bi-gram HMM, with ON
1 :

P(S,O) =

N+1∏
i=1

P(si|si−1)P(oi|si) where s0 = 〈S〉, sN+1 = 〈/S〉

I The transition probabilities model the probabilities of
moving from state to state.

I The emission probabilities model the probability that a
state emits a particular observation.

Hidden Markov Models



The HMM models the process of generating the labelled
sequence. We can use this model for a number of tasks:

I P(S,O) given S and O
I P(O) given O
I S that maximises P(S|O) given O
I P(sx|O) given O
I We can also learn the model parameters, given a set of

observations.

Using HMMs



As so often in NLP, we learn an HMM from labelled data:

Transition probabilities
Based on a training corpus of previously tagged text, with tags
as our state, the MLE can be computed from the counts of
observed tags:

P(ti|tt−1) =
C(ti−1, ti)
C(ti−1)

Emission probabilities
Computed from relative frequencies in the same way, with the
words as observations:

P(wi|tj) =
C(ti,wj)

C(ti)

Estimation



P(S,O) = P(s1|〈S〉)P(o1|s1)P(s2|s1)P(o2|s2)P(s3|s2)P(o3|s3) . . .
= 0.0429 × 0.0031 × 0.0044 × 0.0001 × 0.0072 × . . .

I Multiplying many small probabilities→ underflow
I Solution: work in log(arithmic) space:

I log(AB) = log(A) + log(B)
I hence P(A)P(B) = exp(log(A) + log(B))
I log(P(S,O)) = −1.368 + −2.509 + −2.357 + −4 + −2.143 + . . .

The issues related to MLE / smoothing that we discussed for
n-gram models also applies here . . .

Implementation Issues



Missing records of weather in Baltimore for Summer 2007
I Jason likes to eat ice cream.
I He records his daily ice cream consumption in his diary.
I The number of ice creams he ate was influenced, but not

entirely determined by the weather.
I Today’s weather is partially predictable from yesterday’s.

A Hidden Markov Model!
with:
I Hidden states: {H,C} (plus pseudo-states 〈S〉 and 〈/S〉)
I Observations: {1, 2, 3}

Ice Cream and Global Warming



〈S〉

H C

〈/S〉

0.8 0.2

0.2

0.6 0.2

0.2

0.5

0.3

P(1|H)=0.2
P(2|H)=0.4
P(3|H)=0.4

P(1|C) = 0.5
P(2|C) = 0.4
P(3|C) = 0.1

Ice Cream and Global Warming



The HMM models the process of generating the labelled
sequence. We can use this model for a number of tasks:

I P(S,O) given S and O
I P(O) given O
I S that maximises P(S|O) given O
I P(sx|O) given O
I We can also learn the model parameters, given a set of

observations.

Using HMMs



We want to find the tag sequence, given a word sequence. With
tags as our states and words as our observations, we know:

P(S,O) =

N+1∏
i=1

P(si|si−1)P(oi|si)

We want: P(S|O) =
P(S,O)
P(O)

Actually, we want the state sequence that maximises P(S|O):

Sbest = arg max
S

P(S,O)
P(O)

Since P(O) always is the same, we can drop the denominator.

Part-of-Speech Tagging



Task
What is the most likely state sequence S, given an
observation sequence O and an HMM.

HMM if O = 3 1 3

P(H|〈S〉) = 0.8 P(C|〈S〉) = 0.2 〈S〉 H H H 〈/S〉 0.0018432
P(H|H) = 0.6 P(C|H) = 0.2 〈S〉 H H C 〈/S〉 0.0001536
P(H|C) = 0.3 P(C|C) = 0.5 〈S〉 H C H 〈/S〉 0.0007680

P(〈/S〉|H) = 0.2 P(〈/S〉|C) = 0.2 〈S〉 H C C 〈/S〉 0.0003200

P(1|H) = 0.2 P(1|C) = 0.5 〈S〉 C H H 〈/S〉 0.0000576
P(2|H) = 0.4 P(2|C) = 0.4 〈S〉 C H C 〈/S〉 0.0000048
P(3|H) = 0.4 P(3|C) = 0.1 〈S〉 C C H 〈/S〉 0.0001200

〈S〉 C C C 〈/S〉 0.0000500

Decoding



For (only) two states and a (short) observation sequence of
length three, comparing all possible sequences is workable, but
. . .

I for N observations and L states, there are LN sequences
I we do the same calculations over and over again

Enter dynamic programming:
I records sub-problem solutions for further re-use
I useful when a complex problem can be described

recursively
I examples: Dijkstra’s shortest path, minimum edit distance,

longest common subsequence, Viterbi algorithm

Dynamic Programming



Recall our problem:

maximise P(s1 . . . sn|o1 . . . on) = P(s1|s0)P(o1|s1)P(s2|s1)P(o2|s2) . . .

Our recursive sub-problem:

vi(x) =
L

max
k=1

[vi−1(k) · P(x|k) · P(oi|x)]

The variable vi(x) represents the maximum probability that the
i-th state is x, given that we have seen Oi

1.

At each step, we record backpointers showing which previous
state led to the maximum probability.

Viterbi Algorithm



C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P(H|S
)P(3|H

)

0.8
∗ 0.4

P(C|S)P(3|C)
0.2
∗ 0.1

P(H|H)P(1|H)
0.6 ∗ 0.2

P(C
|H)P(1|C)

0.2
∗ 0.5

P(H
|C)P(1|

H)

0.3
∗

0.2

P(C|C)P(1|C)
0.5 ∗ 0.5

P(H|H)P(3|H)
0.6 ∗ 0.4

P(C
|H)P(3|C)

0.2
∗ 0.1

P(H
|C)P(3|

H)

0.3
∗

0.4

P(C|C)P(3|C)
0.5 ∗ 0.1

P(〈/S〉|H)0.2

P(〈/S
〉|C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32∗.1, .02∗.25)

= .032

v3(H) =
max(.0384∗.24, .032∗.12)

= .009216

v3(C) =
max(.0384∗.02, .032∗.05)

= .0016

vf (〈/S〉) =

max(.009216 ∗ .2,
.0016 ∗ .2)

= .0018432

An Example of the Viterbi Algorithmn



Input: observations of length N, state set of size L
Output: best-path
create a path probability matrix viterbi[N,L + 2]
create a path backpointer matrix backpointer[N,L + 2]
for each state s from 1 to L do

viterbi[1, s]← trans(〈S〉, s) × emit(o1, s)
backpointer[1, s]← 0

end
for each time step i from 2 to N do

for each state s from 1 to L do
viterbi[i, s]← maxL

s′=1 viterbi[i − 1, s′] × trans(s′, s) × emit(oi, s)
backpointer[i, s]← arg maxL

s′=1 viterbi[i − 1, s′] × trans(s′, s)
end

end
viterbi[N,L + 1]← maxL

s=1 viterbi[s,N] × trans(s, 〈/S〉)
backpointer[N,L + 1]← arg maxL

s=1 viterbi[N, s] × trans(s, 〈/S〉)
return the path by following backpointers from backpointer[N,L + 1]

Pseudocode for the Viterbi Algorithm



Big-O notation describes the complexity of an algorithm.

I it describes the worst-case order of growth in terms of the
size of the input

I only the largest order term is represented
I constant factors are ignored
I determined by looking at loops in the code

Diversion: Complexity and O(N)



Input: observations of length N, state set of length L
Output: best-path
create a path probability matrix viterbi[N,L + 2]
create a path backpointer matrix backpointer[N,L + 2]
for each state s from 1 to L do L

viterbi[1, s]← trans(〈S〉, s) × emit(o1, s)
backpointer[1, s]← 0

end
for each time step i from 2 to N do N

for each state s from 1 to L do L
viterbi[i, s]← maxL

s′=1 viterbi[i − 1, s′] × trans(s′, s) × emit(oi, s) L
backpointer[i, s]← arg maxL

s′=1 viterbi[i − 1, s′] × trans(s′, s)
end

end
viterbi[N,L + 1]← maxL

s=1 viterbi[s,N] × trans(s, 〈/S〉)
backpointer[N,L + 1]← arg maxL

s=1 viterbi[N, s] × trans(s, 〈/S〉)
return the path by following backpointers from backpointer[N,L + 1] N

O(L2N)

Pseudocode for the Viterbi Algorithm



The HMM models the process of generating the labelled
sequence. We can use this model for a number of tasks:

I P(S,O) given S and O
I P(O) given O
I S that maximises P(S|O) given O
I P(sx|O) given O
I We can also learn the model parameters, given a set of

observations.

Using HMMs



Task
Given an observation sequence O, determine the
likelihood P(O), according to the HMM.

Compute the sum over all possible state sequences:

P(O) =
∑

S

P(O,S)

For example, the ice cream sequence 3 1 3:

P(3 1 3) = P(3 1 3, cold cold cold) +

P(3 1 3, cold cold hot) +

P(3 1 3,hot hot cold) + . . . ⇒ O(LNN)

Computing Likelihoods



Again, we use dynamic programming—storing and reusing
the results of partial computations in a trellis α.

Each cell in the trellis stores the probability of being in state sx
after seeing the first i observations:

αi(x) = P(o1 . . . oi, si = x)

=

L∑
k=1

αi−1(k) · P(x|k) · P(oi|x)

Note
∑

, instead of the max in Viterbi.

The Forward Algorithm



C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

P(H|S
)P(3|H

)

0.8
∗ 0.4

P(C|S)P(3|C)
0.2
∗ 0.1

P(H|H)P(1|H)
0.6 ∗ 0.2

P(C
|H)P(1|C)

0.2
∗ 0.5

P(H
|C)P(1|

H)

0.3
∗

0.2

P(C|C)P(1|C)
0.5 ∗ 0.5

P(H|H)P(3|H)
0.6 ∗ 0.4

P(C
|H)P(3|C)

0.2
∗ 0.1

P(H
|C)P(3|

H)

0.3
∗

0.4

P(C|C)P(3|C)
0.5 ∗ 0.1

P(〈/S〉|H)0.2

P(〈/S
〉|C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =∑
(.32 ∗ .12, .02 ∗ .06)

= .0396

v2(C) =∑
(.32 ∗ .1, .02 ∗ .25)

= .037

v3(H) =∑
(.0396 ∗ .24, .037 ∗ .12)

= .013944

v3(C) =∑
(.0396 ∗ .02, .037 ∗ .05)

= .002642

vf (〈/S〉) =∑
(.013944 ∗ .2,
.002642 ∗ .2)

= .0033172

P(3 1 3) = 0.0033172

An Example of the Forward Algorithmn



Input: observations of length N, state set of length L
Output: forward-probability
create a probability matrix forward[N,L + 2]
for each state s from 1 to L do

forward[1, s]← trans(〈S〉, s) × emit(o1, s)
end
for each time step i from 2 to N do

for each state s from 1 to L do
forward[i, s]←∑L

s′=1 forward[i − 1, s] × trans(s′, s) × emit(ot, s)
end

end
forward[N,L + 1]←

∑L
s=1 forward[N, s] × trans(s, 〈/S〉)

return forward[N,L + 1]

Pseudocode for the Forward Algorithm



To evaluate a part-of-speech tagger (or any classification
system) we:
I train on a labelled training set
I test on a separate test set

For a POS tagger, the standard evaluation metric is tag
accuracy:

Acc =
number of correct tags

number of words

The other metric sometimes used is error rate:

error rate = 1 − Acc

Tagger Evaluation



Understand
I Why does dynamic programming save time, and what

type of problems can it be used for?
I What is the complexity of the Viterbi algorithm?

Coming Up
I Context-free grammars
I Most likely trees

Summary


