
INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

Context-Free Grammars

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

October 29, 2014

University of Oslo : Department of Informatics

Last Time
I Sequence Labeling
I Dynamic programming
I Viterbi algorithm

Today
I Syntactic structure

I Context-free grammar
I Treebanks

I Basic parsing strategies
I Bottom-up
I Top-down

Overview

I Dynamic programming algorithms
I solve large problems by compounding answers from

smaller sub-problems
I record sub-problem solutions for repeated use

I They are used for complex problems that
I can be described recursively
I require the same calculations over and over again

I Examples:
I Dijkstra’s shortest path
I minimum edit distance
I longest common subsequence
I Viterbi

Dynamic Programming

I To find the best state sequence, maximize:
P(s1 . . . sn|o1 . . . on) = P(s1|s0)P(o1|s1)P(s2|s1)P(o2|s2) . . .

I The value we cache at each step:

vi(x) =
L

max
k=1

[vi−1(k) · P(x|k) · P(oi|x)]

I The variable vi(x) represents the maximum probability that
the i-th state is x, given that we have seen Oi

1.
I At each step, we record backpointers showing which

previous state led to the maximum probability.

Viterbi Algorithm

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

H H H〈 〉

P(H|S
)P(3|H

)

0.8
∗ 0.4

P(C|S)P(3|C)
0.2
∗ 0.1

P(H|H)P(1|H)
0.6 ∗ 0.2

P(C
|H)P(1|C)

0.2
∗ 0.5

P(H
|C)P(1|

H)

0.3
∗

0.2

P(C|C)P(1|C)
0.5 ∗ 0.5

P(H|H)P(3|H)
0.6 ∗ 0.4

P(C
|H)P(3|C)

0.2
∗ 0.1

P(H
|C)P(3|

H)

0.3
∗

0.4

P(C|C)P(3|C)
0.5 ∗ 0.1

P(〈/S〉|H)0.2

P(〈/S
〉|C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =
max(.32 ∗ .12, .02 ∗ .06)

= .0384

v2(C) =
max(.32∗.1, .02∗.25)

= .032

v3(H) =
max(.0384∗.24, .032∗.12)

= .009216

v3(C) =
max(.0384∗.02, .032∗.05)

= .0016

vf (〈/S〉) =

max(.009216 ∗ .2,
.0016 ∗ .2)

= .0018432

An Example of the Viterbi Algorithmn

The HMM models the process of generating the labelled
sequence. We can use this model for a number of tasks:

I P(S,O) given S and O
I P(O) given O
I S that maximizes P(S|O) given O
I P(sx|O) given O
I We can learn model parameters from a set of observations.

Using HMMs

Task
Given an observation sequence O, determine the
likelihood P(O), according to the HMM.

Compute the sum over all possible state sequences:

P(O) =
∑

S

P(O,S)

For example, the ice cream sequence 3 1 3:

P(3 1 3) = P(3 1 3, cold cold cold) +

P(3 1 3, cold cold hot) +

P(3 1 3,hot hot cold) + . . .

Computing Likelihoods

Again, we use dynamic programming—storing and reusing
the results of partial computations in a trellis α.

Each cell in the trellis stores the probability of being in state x
after seeing the first i observations:

αi(x) = P(o1 . . . oi, si = x)

=

L∑
k=1

αi−1(k) · P(x|k) · P(oi|x)

Note
∑

, instead of the max in Viterbi.

The Forward Algorithm

C C C

H H H

〈S〉 〈/S〉

3 1 3

o1 o2 o3

P(H|S
)P(3|H

)

0.8
∗ 0.4

P(C|S)P(3|C)
0.2
∗ 0.1

P(H|H)P(1|H)
0.6 ∗ 0.2

P(C
|H)P(1|C)

0.2
∗ 0.5

P(H
|C)P(1|

H)

0.3
∗

0.2

P(C|C)P(1|C)
0.5 ∗ 0.5

P(H|H)P(3|H)
0.6 ∗ 0.4

P(C
|H)P(3|C)

0.2
∗ 0.1

P(H
|C)P(3|

H)

0.3
∗

0.4

P(C|C)P(3|C)
0.5 ∗ 0.1

P(〈/S〉|H)0.2

P(〈/S
〉|C)

0.2

v1(H) = 0.32

v1(C) = 0.02

v2(H) =∑
(.32 ∗ .12, .02 ∗ .06)

= .0396

v2(C) =∑
(.32 ∗ .1, .02 ∗ .25)

= .037

v3(H) =∑
(.0396 ∗ .24, .037 ∗ .12)

= .013944

v3(C) =∑
(.0396 ∗ .02, .037 ∗ .05)

= .002642

vf (〈/S〉) =∑
(.013944 ∗ .2,
.002642 ∗ .2)

= .0033172

P(3 1 3) = 0.0033172

An Example of the Forward Algorithmn

Determining
I which string is most likely: X

I How to recognize speech vs. How to wreck a nice beach

I which tag sequence is most likely for flies like flowers: X
I NNS VB NNS vs. VBZ P NNS

I which syntactic structure is most likely:
S

NP

I

VP

VBD

ate

NP

N

sushi

PP

with tuna

S

NP

I

VP

VBD

ate

NP

N

sushi

PP

with tuna

Today

I The models we have looked at so far:
I n-gram models (Markov chains).

I Purely linear (sequential) and surface oriented.
I sequence labeling: HMMs.

I Adds one layer of abstraction: PoS as hidden variables.
I Still only sequential in nature.

I Formal grammar adds hierarchical structure.
I In NLP, being a sub-discipline of AI, we want our programs

to ‘understand’ natural language (on some level).

I Finding the grammatical structure of sentences is an
important step towards ‘understanding’.

I Shift focus from sequences to syntactic structures.

From Linear Order to Hierarchical Structure

Constituency
I Words tends to lump together into groups that behave like

single units: we call them constituents.
I Constituency tests give evidence for constituent structure:

I interchangeable in similar syntactic environments.
I can be co-ordinated
I can be moved within a sentence as a unit

(1) Kim read [a very interesting book about grammar]NP.
Kim read [it]NP.

(2) Kim [read a book]VP, [gave it to Sandy]VP, and [left]VP.

(3) You said I should read the book and [read it]VP I did.

Examples from Linguistic Fundamentals for NLP: 100 Essentials from Morphology and Syntax. Bender (2013)

Why We Need Structure (1/3)

Constituency
I Constituents are theory-dependent, and are not absolute or

language-independent.

I Language word order is often described in terms of
constituents, and word order may be more or less free
within constituents or between them.

I A constituent usually has a head element, and is often
named according to the type of its head:

I A noun phrase (NP) has a nominal (noun-type) head:

(4) [a very interesting book about grammar]NP

I A verb phrase (VP) has a verbal head:

(5) [gives books to students]VP

Why We Need Structure (2/3)

Grammatical functions
I Terms such as subject and object describe the grammatical

function of a constituent in a sentence.

I Agreement is generally feature of the relationship between
grammatical features.

The decision of the Nobel committee members
surprises most of us.

I Why would a purely linear model have problems
predicting this phenomenon?

I Verb agreement reflects the grammatical structure of the
sentence, not just the sequential order of words.

Why We Need Structure (3/3)

(Courtesy of the Speculative Grammarian, –the journal of satirical linguistics.)

Syntactic Ambiguity

Formal grammars describe a language, giving us a way to:
I judge or predict well-formedness

Kim was happy because passed the exam.

Kim was happy because final grade was an A.

I make explicit structural ambiguities

Have her report on my desk by Friday!

I like to eat sushi with { chopsticks | tuna }.

I derive abstract representations of meaning

Kim gave Sandy a book.

Kim gave a book to Sandy.

Sandy was given a book by Kim.

Grammars: A Tool to Aid Understanding

The Grammar of Spanish'

&

$

%

S→ NP VP {VP (NP) }

VP→ V NP {V (NP) }

VP→ VP PP {PP (VP) }

PP→ P NP {P (NP) }

NP→ “nieve” { snow }

NP→ “Juan” { John }

NP→ “Oslo” {Oslo }

V→ “amó” {λbλa adore (a, b) }

P→ “en” {λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

A Grossly Simplified Example

S: {in (adore (John , snow) , Oslo)}

NP: {John}

Juan

VP: {λa in (adore (a, snow) , Oslo)}

VP: {λa adore (a, snow)}

V:{λbλa adore (a, b)}

amó

NP:{snow}

nieve

PP:{λc in (c,Oslo)}

P:{λdλc in (c, d)}

en

NP:{Oslo}

Oslo�
�

�

VP→ V NP { V (NP) }

Meaning Composition (Still Grossly Simplified)

S: {adore (John, in (snow ,Oslo)}

NP: {John}

Juan

VP: {λa adore (a, in (snow,Oslo)}

V:{λbλa adore (a, b)}

amó

NP:{in (snow,Oslo)}

NP:{snow}

nieve

PP:{λc in (c,Oslo)}

P:{λdλc in (c, d)}

en

NP:{Oslo}

Oslo�
�

�

NP→ NP PP { PP (NP) }

Another Interpretation

I Formal system for modeling constituent structure.

I Defined in terms of a lexicon and a set of rules
I Formal models of ‘language’ in a broad sense

I natural languages, programming languages,
communication protocols, . . .

I Can be expressed in the ‘meta-syntax’ of the Backus-Naur
Form (BNF) formalism.

I When looking up concepts and syntax in the Common Lisp
HyperSpec, you have been reading (extended) BNF.

I Powerful enough to express sophisticated relations among
words, yet in a computationally tractable way.

Context Free Grammars (CFGs)

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
I C is the set of categories (aka non-terminals),

I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S→ NP VP NP→ Kim
VP→ V NP NP→ snow

V→ adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α→ β1, β2, ..., βn ∈ P: α ∈ C and βi ∈ C ∪ Σ

CFGs (Formally, this Time)

Top-down view of generative grammars:
I For a grammar G, the language LG is defined as the set of

strings that can be derived from S.

I To derive wn
1 from S, we use the rules in P to recursively

rewrite S into the sequence wn
1 where each wi ∈ Σ

I The grammar is seen as generating strings.

I Grammatical strings are defined as strings that can be
generated by the grammar.

I The ‘context-freeness’ of CFGs refers to the fact that we
rewrite non-terminals without regard to the overall context
in which they occur.

Generative Grammar

Generally
I A treebank is a corpus paired with ‘gold-standard’

(syntactic) analyses
I Can be created by manual annotation or selection among

outputs from automated processing (plus correction).

Penn Treebank (Marcus et al., 1993)
I About one million tokens of Wall Street Journal text
I Hand-corrected PoS annotation using 45 word classes
I Manual annotation with (somewhat) coarse constituent

structure

Treebanks

S

advp

rb

Still

,

,

np-sbj-1

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

np

-none-

*-1

advp-mnr

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

One Example from the Penn Treebank

S

advp

rb

Still

,

,

np

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

advp

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

Elimination of Traces and Functions

I We are interested, not just in which trees apply to a
sentence, but also to which tree is most likely.

I Probabilistic context-free grammars (PCFGs) augment
CFGs by adding probabilities to each production, e.g.

I S→ NP VP 0.6
I S→ NP VP PP 0.4

I These are conditional probabilities — the probability of the
right hand side (RHS) given the left hand side (LHS)

I P(S→ NP VP) = P(NP VP|S)

I We can learn these probabilities from a treebank, again
using Maximum Likelihood Estimation.

Probabilitic Context-Free Grammars

S

advp

rb

Still

,

,

np

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

advp

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

Estimating PCFGs (1/3)

(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1
VP→ VBN ADVP 1
VP→ VBG VP 1
\. → . 1
S→ ADVP |,| NP VP \. 1
START→ S 1

Estimating PCFGs (2/3)

Once we have counts of all the rules, we turn them into
probabilities.

S→ ADVP |,| NP VP \. 50 S→ NP VP \. 400
S→ NP VP PP \. 350 S→ VP ! 100
S→ NP VP S \. 200 S→ NP VP 50

P(S→ ADVP |, | NP VP \.) ≈
C(S→ ADVP |, | NP VP \.)

C(S)

=
50

1150

= 0.0435

Estimating PCFGs (3/3)

