

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing

Context-Free Grammars

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

October 29, 2014

Overview

Last Time

- \blacktriangleright Sequence Labeling
- \blacktriangleright Dynamic programming
- \blacktriangleright Viterbi algorithm

Today

- \blacktriangleright Syntactic structure
	- \blacktriangleright Context-free grammar
	- \blacktriangleright Treebanks
- \blacktriangleright Basic parsing strategies
	- \triangleright Bottom-up
	- \blacktriangleright Top-down

Dynamic Programming

- \triangleright Dynamic programming algorithms
	- \triangleright solve large problems by compounding answers from smaller sub-problems
	- \rightarrow record sub-problem solutions for repeated use
- \triangleright They are used for complex problems that
	- \triangleright can be described recursively
	- \rightarrow require the same calculations over and over again
- \blacktriangleright Examples:
	- \triangleright Dijkstra's shortest path
	- \blacktriangleright minimum edit distance
	- \blacktriangleright longest common subsequence
	- \blacktriangleright Viterbi

If To find the best state sequence, **maximize**:

 $P(s_1 \ldots s_n | o_1 \ldots o_n) = P(s_1 | s_0) P(o_1 | s_1) P(s_2 | s_1) P(o_2 | s_2) \ldots$

 \blacktriangleright The value we cache at each step:

$$
v_i(x) = \max_{k=1}^L [v_{i-1}(k) \cdot P(x|k) \cdot P(o_i|x)]
$$

- \blacktriangleright The variable $v_i(x)$ represents the maximum probability that the *i*-th state is *x*, given that we have seen O_1^i .
- \triangleright At each step, we record backpointers showing which previous state led to the maximum probability.

An Example of the Viterbi Algorithmn

The HMM models the process of generating the labelled sequence. We can use this model for a number of tasks:

- \blacktriangleright *P*(*S*, *O*) given *S* and *O*
- \blacktriangleright *P(O)* given *O*
- ^I *S* that maximizes *P*(*S*|*O*) given *O*
- \blacktriangleright *P*(s_x |*O*) given *O*
- \triangleright We can learn model parameters from a set of observations.

Computing Likelihoods

Task

Given an observation sequence *O*, determine the likelihood *P*(*O*), according to the HMM.

Compute the **sum over all possible state sequences**:

$$
P(O) = \sum_{S} P(O, S)
$$

For example, the ice cream sequence 3 1 3:

 $P(3 1 3) = P(3 1 3, \text{cold cold}) +$ *P*(3 1 3, cold cold hot) + $P(3\ 1\ 3, \text{hot hot cold}) + \ldots$

Again, we use **dynamic programming**—storing and reusing the results of partial computations in a **trellis** α.

Each cell in the trellis stores the probability of being in state *x* after seeing the first *i* observations:

$$
\alpha_i(x) = P(o_1 \dots o_i, s_i = x)
$$

=
$$
\sum_{k=1}^{L} \alpha_{i-1}(k) \cdot P(x|k) \cdot P(o_i|x)
$$

Note Σ , instead of the max in Viterbi.

An Example of the Forward Algorithmn

Today

Determining

- \blacktriangleright which string is most likely: \checkmark
	- ^I *How to recognize speech* vs. *How to wreck a nice beach*
- \blacktriangleright which tag sequence is most likely for *flies like flowers*: $\sqrt{ }$
	- **EXAMPLE VB NNS** vs. **VBZ P NNS**
- \triangleright which syntactic structure is most likely:

- \triangleright The models we have looked at so far:
	- ► *n*-gram models (Markov chains).
		- \blacktriangleright Purely linear (sequential) and surface oriented.
	- \triangleright sequence labeling: HMMs.
		- Adds one layer of abstraction: PoS as hidden variables.
		- \triangleright Still only sequential in nature.
- **Formal grammar** adds hierarchical structure.
	- \triangleright In NLP, being a sub-discipline of AI, we want our programs to *'understand'* natural language (on some level).
	- \triangleright Finding the grammatical structure of sentences is an important step towards 'understanding'.
	- ^I Shift focus from *sequences* to *syntactic structures*.

Constituency

- \triangleright Words tends to lump together into groups that behave like single units: we call them *constituents*.
- *Constituency tests* give evidence for constituent structure:
	- \triangleright interchangeable in similar syntactic environments.
	- \triangleright can be co-ordinated
	- \triangleright can be moved within a sentence as a unit
- (1) Kim read [a very interesting book about grammar] $_{NP}$. Kim read [it]_{NP}.
- (2) Kim [read a book] $_{VP}$, [gave it to Sandy] $_{VP}$, and [left] $_{VP}$.
- (3) You said I should read the book and $[read it]_{VP}$ I did.

Examples from *Linguistic Fundamentals for NLP: 100 Essentials from Morphology and Syntax.* Bender (2013)

Constituency

- \triangleright Constituents are theory-dependent, and are not absolute or language-independent.
- \triangleright Language word order is often described in terms of constituents, and word order may be more or less free within constituents or between them.
- ▶ A constituent usually has a *head* element, and is often named according to the type of its head:
	- A noun phrase (NP) has a nominal (noun-type) head:
		- (4) [a very interesting book about grammar $]_{NP}$
	- A verb phrase (VP) has a verbal head:
		- (5) [gives books to students $]_{VP}$

Grammatical functions

- \triangleright Terms such as subject and object describe the grammatical function of a constituent in a sentence.
- Agreement is generally feature of the relationship between grammatical features.

The *decision* of the Nobel committee member*s* surprise*s* most of us.

- \triangleright Why would a purely linear model have problems predicting this phenomenon?
- \triangleright Verb agreement reflects the grammatical structure of the sentence, not just the sequential order of words.

Syntactic Ambiguity

(Courtesy of the *Speculative Grammarian*, *–the journal of satirical linguistics*.)

Formal grammars describe a language, giving us a way to:

 \blacktriangleright judge or predict well-formedness

Kim was happy because **_______** passed the exam. Kim was happy because **Filter** final grade was an A.

 \triangleright make explicit structural ambiguities

Have her report on my desk by Friday!

I like to eat sushi with { chopsticks | tuna }.

 \triangleright derive abstract representations of meaning

Kim gave Sandy a book. Kim gave a book to Sandy. Sandy was given a book by Kim.

A Grossly Simplified Example

The Grammar of Spanish

Meaning Composition (Still Grossly Simplified)

Another Interpretation

Context Free Grammars (CFGs)

- \triangleright Formal system for modeling constituent structure.
- \triangleright Defined in terms of a lexicon and a set of rules
- ► Formal models of 'language' in a broad sense
	- \triangleright natural languages, programming languages, communication protocols, . . .
- \triangleright Can be expressed in the 'meta-syntax' of the Backus-Naur Form (BNF) formalism.
	- \triangleright When looking up concepts and syntax in the Common Lisp HyperSpec, you have been reading (extended) BNF.
- \triangleright Powerful enough to express sophisticated relations among words, yet in a computationally tractable way.

Formally, a CFG is a quadruple: $G = \langle C, \Sigma, P, S \rangle$

- ^I *C* is the set of categories (aka *non-terminals*),
	- \triangleright {S, NP, VP, V}
- \blacktriangleright Σ is the vocabulary (aka *terminals*),
	- \blacktriangleright {Kim, snow, adores, in}
- ^I *P* is a set of category rewrite rules (aka *productions*)

- \triangleright *S* \in *C* is the *start symbol*, a filter on complete results;
- \triangleright for each rule *α* → $β_1$, $β_2$, ..., $β_n ∈ P: α ∈ C$ and $β_i ∈ C ∪ Σ$

Top-down view of generative grammars:

- For a grammar *G*, the language \mathcal{L}_G is defined as the set of strings that can be derived from *S*.
- \blacktriangleright To derive w_1^n $\frac{n}{1}$ from *S*, we use the rules in *P* to recursively rewrite *S* into the sequence w_1^n where each $w_i \in \Sigma$
- ▶ The grammar is seen as **generating** strings.
- ^I *Grammatical* strings are defined as strings that can be generated by the grammar.
- \blacktriangleright The 'context-freeness' of CFGs refers to the fact that we rewrite non-terminals without regard to the overall context in which they occur.

Treebanks

Generally

- ▶ A *treebank* is a corpus paired with 'gold-standard' (syntactic) analyses
- \triangleright Can be created by manual annotation or selection among outputs from automated processing (plus correction).

Penn Treebank (Marcus et al., 1993)

- \triangleright About one million tokens of Wall Street Journal text
- \blacktriangleright Hand-corrected PoS annotation using 45 word classes
- \blacktriangleright Manual annotation with (somewhat) coarse constituent structure

One Example from the Penn Treebank

Elimination of Traces and Functions

- \triangleright We are interested, not just in which trees apply to a sentence, but also to which tree is **most likely**.
- \triangleright Probabilistic context-free grammars (PCFGs) augment CFGs by adding probabilities to each production, e.g.
	- \cdot S \rightarrow NP VP 0.6
	- \triangleright S \rightarrow NP VP PP 0.4
- \triangleright These are conditional probabilities the probability of the right hand side (RHS) given the left hand side (LHS)

 $P(S \rightarrow NP VP) = P(NP VP|S)$

 \triangleright We can learn these probabilities from a treebank, again using Maximum Likelihood Estimation.

Estimating PCFGs (1/**3)**

Estimating PCFGs (2/**3)**


```
(S
(ADVP (RB "Still"))
(|,| ",")
(NP
    (NP (NNP "Time") (POS "'s"))
    (NN "move"))
  (VP
    (VBZ "is")
    (VP
        (VBG "being")
        (VP
           (VBN "received")
          (ADVP (RB "well")))))
( \langle . \, " \, . \, " \, . \, ] \, )
```
 $RB \rightarrow Still$
 $AVP \rightarrow RB$ 1 $AVP \rightarrow RB$ $|,|\rightarrow,$ 1 $NNP \rightarrow Time$ $POS \rightarrow 's$ 1 $NP \rightarrow NNP POS$ 1 $NN \rightarrow move$ $NP \rightarrow NP NN$ $VBZ \rightarrow is$ 1 $VBG \rightarrow$ being $VBN \rightarrow received$ 1 $RB \rightarrow well$ 1 $VP \rightarrow VBN$ ADVP $VP \rightarrow VBG VP$ $\lambda \rightarrow .$ 1 $S \rightarrow ADVP \mid$, NP VP \. 1 $START \rightarrow S$

Once we have counts of all the rules, we turn them into probabilities.

$$
P(S \to ADVP \mid, \mid NP VP \mid.) \approx \frac{C(S \to ADVP \mid, \mid NP VP \mid.)}{C(S)}
$$

=
$$
\frac{50}{1150}
$$

= 0.0435