University of Oslo . Department of Informatics

INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

Chart Parsing

Stephan Oepen & Milen Kouylekov
Language Technology Group (LTG)

October 30, 2014

(Courtesy of the Speculative Grammarian, —the journal of satirical linguistics.)

Context-Free Grammars

Formally, a CFG is a quadruple: G =(C, %, P, S)
» Cis the set of categories (aka non-terminals),
» {S,NP, VP, V}

> X is the vocabulary (aka terminals),
» {Kim, snow, adores, in}

v

P is a set of category rewrite rules (aka productions)

S — NP VP NP — Kim
VP — V NP NP — snow
V — adores

> S € Cis the start symbol, a filter on complete results;

v

foreachrulea — f1,B2,...,pn € P:a€Cand ;€ CUL

Justice for Dr. Kouylekov

The Grammar of Spanish

G—>NPVP {VP(NP)}\ S
VP — VNP {V(NP)} /\

VP — VP PP {PP(VP)} N‘P VP

PP —» P NP {P(NP)} | Juan VP PP

NP — “nieve” {snow } PN PN
A% NP P NP

NP — “Juan” {John } ‘ ‘ ‘ ‘

NP — “Oslo” {Oslo) amé nieve en Oslo

V — “amé” {AbAa adore(a,b)}

\P — “en” {AdAc in(c,d)}/

[]uan amoé nieve en Oslo]

Another Interpretation

S: {adore (John, in (snow , Oslo)}

TN

NP: {John} VP: {Aaadore (g, in (snow, Oslo)}

J ”‘”” /\

V:{AbAa adore (a,b)} NP:{in (snow,Oslo)}

\
amo
NP:{snow} PP:{Ac in(c, Oslo)}
\

nieve
P:{AdAc in(c,d)} NP:{Oslo}

en Oslo

[NP—>NPPP {PP(NP)}j

Probabilitic Context-Free Grammars

» We are interested, not just in which trees apply to a
sentence, but also to which tree is most likely.
» Probabilistic context-free grammars (PCFGs) augment
CFGs by adding probabilities to each production, e.g.
» S— NP VP 0.6
» S— NP VPPP 0.4
> These are conditional probabilities — the probability of the
right hand side (RHS) given the left hand side (LHS)
> P(S — NP VP) = P(NP VP|S)
» We can learn these probabilities from a treebank, again
using Maximum Likelihood Estimation.

Estimating PCFGs (1/3)

S [WSJ 2350]
N
ADVP ///NP/ VP
| /NN \
RB , NP NN VBZ VP
/\ YA I
Still NNP POS move is VBG VBN ADVP
|
Time s being received RB

Still, Time’s move is being received well. ‘ well

Estimating PCFGs (2/3)

RB — Still 1

AVP — RB 2

(s | —, 1
(ADVP (RB "Still")) NNP — Time 1
a,rmm POS —’s 1
(NP NP — NNP POS 1
(NP (NNP "Time") (POS "’s™)) NN — move 1
(NN "move™)) NP — NP NN 1
(VP VBZ — is 1
(VBZ "is") VBG — being 1
(vp VBN — received 1
(VBG "being") RB — well 1

(vp VP —- VBN ADVP 1

(VBN "received") VP — VBG VP 1

(ADVP (RB "well"))))) \ - 1

A. ") S— ADVP||NPVP\. 1
START — S 1

Estimating PCFGs (3/3)

Once we have counts of all the rules, we turn them into

probabilities.
S— ADVP||NPVP\. 50 S—>NPVP\. 400
S— NP VPPP\. 350 S—> VP! 100
S—NPVPS\. 200 S — NP VP 50

C(S — ADVP|,| NP VP \.)
C(S)

X

P(S — ADVP|,| NP VP \.)

50
1150

0.0435

Parsing with CFGs: Moving to a Procedural View

S
(S - NP VP) Py
VP — V| VNP |VPPP NP vP
NP — NP PP | T
Im VP PP
PP — P NP o~
NP — Kim | snow | Oslo V. NP P NP
V — adores | I
\P N D adores snow in QOslo
S
All Complete Derivations P
e are rooted in the start symbol S; NE /VP\
e label internal nodes with cate- Kim NP
gories € (', leafs with words € 3; | P
, , adores NP PP
e instantiate a grammar rule € P at N
each local subtree of depth one. snow P NP
in oslo

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (1)

Recursive Descend: A Naive Parsing Algorithm

Control Structure
e top-down: given a parsing goal «, use all grammar rules that rewrite «;
e successively instantiate (extend) the right-nand sides of each rule;

e for each 5; in the RHS of each rule, recursively attempt to parse j;;

e termination: when « is a prefix of the input string, parsing succeeds.

(Intermediate) Results
e Each result records a (partial) tree and remaining input to be parsed;
e complete results consume the full input string and are rooted in S;

e whenever a RHS is fully instantiated, a new tree is built and returned;

e all results at each level are combined and successively accumulated.

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (1)

/f(defun parse (input goal))
(if (equal (first input) goal)
(let ((edge (make-edge :category (first input))))
(1list (make-parse :edge edge :input (rest input))))

(loop
for rule in (rules-deriving goal)
_ append (extend-parse (rule-lhs rule) nil (rule-rhs rule) input))))//
/f(defun extend-parse (goal analyzed unanalyzed input))

(if (null unanalyzed)
(let ((tree (cons goal analyzed)))
(list (make-parse :tree tree :input input)))
(loop
for parse in (parse input (first unanalyzed))
append (extend-parse
goal (append analyzed (list (parse-tree parse)))
(rest unanalyzed)

_ (parse-input parse))))))

Quantifying the Complexity of the Parsing Task

Recursive Function Calls Kim adores snow (in Oslo)"
1500000
n | trees calls
1250000 - 0 1 46
1000000 1 2 170
2 5 593
750000 - 3 14 2,093
4 42 7,939
>000007 5 132 27,627
250000 6 429 102,570
7 1430 384,566
0b——p— =71, 8 4862 1,452,776
Number of Prepositional Phrases (n) : '

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (3)

Top-Down vs. Bottom-Up Parsing

Top-Down (Goal-Oriented)

e Left recursion (e.g. a rule like ‘VP — VP PP’) causes infinite recursion;

e search is uninformed by the (observable) input: can hypothesize many
unmotivated sub-trees, assuming terminals (words) that are not present;

— assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

e unary (left-recursive) rules (e.g. ‘NP — NP’) would still be problematic;

e lack of parsing goal: compute all possible derivations for, say, the input
adores snow; however, it is ultimately rejected since it is not sentential;

e availability of partial analyses desirable for, at least, some applications.

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (3)

A Key Insight: Local Ambiguity

e For many substrings, more than one way of deriving the same category;

NPs:ll H HH H B PP HEBE B=0+-BHH;

e parse forest— a single item represents multiple trees [Billot & Lang, 89].

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (4)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 <4 < |input|) do
chart; ;.1 < {a|a — input; € P};
for (1 <1 < |input|) do
for (0 < < |input| —) do
for (1 <j<l)do
if (0 — B1 B2 € PN By €charty;) N\ B2 € chart, ;1) then
chart; ;i1 < charty ;.. U {a};

C 02«01 +[12 o[nel Tsl s
0,5] « [0,1] +[1,5 1 VYR VP
0,5] + [0,2] + [2,5] 2 NP NP
0,5) « [0,3] + [3.5]

0.5 < [04]+ 45 ° i L

\ 4 NP

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

Limitations of the CKY Algorithm

Built-In Assumptions
e Chomsky Normal Form grammars: o — 515, or a — v (8; € C, v € Y);

e breadth-first (aka exhaustive): always compute all values for each cell;

e rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing
e Liberate order of computation: no assumptions about earlier results;

e active edges encode partial rule instantiations, ‘waiting’ for additional
(adjacent and passive) constituents to complete: [1,2, VP — V e NP]J;

e parser can fill in chart cells in any order and guarantee completeness.

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

Chart Parsing — Specialized Dynamic Programming

Basic Notions
e Use chart to record partial analyses, indexing them by string positions;

e count inter-word vertices; CKY: chart row is start, column end vertex;

e treat multiple ways of deriving the same category for some substring as
equivalent; pursue only once when combining with other constituents.

Key Benefits
e Dynamic programming (memoization): avoid recomputation of results;

e efficient indexing of constituents: no search by start or end positions;

e compute parse forest with exponential ‘extension’ in polynomial time.

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

Generalized Chart Parsing

e The parse chart is a two-dimensional matrix of edges (aka chart items);
e an edge is a (possibly partial) rule instantiation over a substring of input;
e the chart indexes edges by start and end string position (aka vertices);

e dot in rule RHS indicates degree of completion: o — 31 ... 5,1 e 5; ... 5,;
e active edges (aka incomplete items)—partial RHS: [1,2, VP — V ¢ NP];
e passive edges (aka complete items)—full RHS: [1,3,VP — V NPe|;

4 The Fundamental Rule A

1, J, o = B Bic1 e Bi Bl + 14, Ky Bi = 7T e
— 1, k, a = B1...8 @ Bigi...5)]

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

An Example of a (Near-)Complete Chart

NP — NP o PP

NP ke S—NPVPe
NP — kim e

Vosadoress | VPV NPe VP VP PP

V —adorese | VP —VNPe (P VPP

NP — NP o PP NP —s NP o PP

NP — snow s NP — NP PP e

PP — P eNP

P_sine PP—PNPe

NP — NP o PP

NP — oslo e

(o Kim | adores 5 snow 5 in 4, Oslo 5]

Chart Parsing for Context-Free Grammars (6)

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

S— eNPVP | S—+NPeVP
N NEPP | NE S NE e PP S—+NPVPe
NP — ekim | NP —kime
\</PP_—>> '.\QPNPPP VP 5VeNP | VP VPePP
V— eadores | V—adorese VP —-VNPe
NP — eNPPP | NP —NPePP

NP — e snow

NP — snow e

e Include all grammar rules as epsilon edges in each charty; ; cell.

e after initialization, apply fundamental rule until fixpoint is reached.

Combinatorics: Keeping Track of Remaining Work

The Abstract Goal
e Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naive Strategy

e Keep iterating through the complete chart, combining all possible pairs,
until no additional edges can be derived (i.e. the fixpoint is reached);

e frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy
e Combine each pair exactly once, viz. when both elements are available;

e maintain agenda of new edges, yet to be checked against chart edges;

e new edges go into agenda first, add to chart upon retrieval from agenda.

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (7)

In Conclusion—What Happened this Week

Syntactic Structure
e Languages (formal or natural) exhibit complex, hierarchical structures;
e grammars encode rules of the language: dominance and sequencing;
e context-free grammar ‘generates’ a language: strings and derivations;
e ambiguity in natural language grows exponentially: a search problem;

e bounding (or ‘packing’) of local ambiguity madantory for tractability;

e chart parsing uses dynamic programming: free order of computation.

Coming up Next

e Viterbi adaptation to parse forest; PTB parsing; parser evaluation; quiz.

INF4820 — 30-0CT-14 (0e@ifi.uio.no)

Chart Parsing for Context-Free Grammars (7)

