
INF4820: Algorithms for
Artificial Intelligence and

Natural Language Processing

Chart Parsing

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

October 30, 2014

University of Oslo : Department of Informatics

(Courtesy of the Speculative Grammarian, –the journal of satirical linguistics.)

Syntactic Structure and Ambiguity

Formally, a CFG is a quadruple: G = 〈C,Σ,P,S〉
I C is the set of categories (aka non-terminals),

I {S,NP,VP,V}

I Σ is the vocabulary (aka terminals),
I {Kim, snow, adores, in}

I P is a set of category rewrite rules (aka productions)
S→ NP VP NP→ Kim
VP→ V NP NP→ snow

V→ adores

I S ∈ C is the start symbol, a filter on complete results;

I for each rule α→ β1, β2, ..., βn ∈ P: α ∈ C and βi ∈ C ∪ Σ

Context-Free Grammars

The Grammar of Spanish'

&

$

%

S→ NP VP {VP (NP) }

VP→ V NP {V (NP) }

VP→ VP PP {PP (VP) }

PP→ P NP {P (NP) }

NP→ “nieve” { snow }

NP→ “Juan” { John }

NP→ “Oslo” {Oslo }

V→ “amó” {λbλa adore (a, b) }

P→ “en” {λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo�� ��Juan amó nieve en Oslo

Justice for Dr. Kouylekov

S: {adore (John, in (snow ,Oslo)}

NP: {John}

Juan

VP: {λa adore (a, in (snow,Oslo)}

V:{λbλa adore (a, b)}

amó

NP:{in (snow,Oslo)}

NP:{snow}

nieve

PP:{λc in (c,Oslo)}

P:{λdλc in (c, d)}

en

NP:{Oslo}

Oslo�
�

�

NP→ NP PP { PP (NP) }

Another Interpretation

I We are interested, not just in which trees apply to a
sentence, but also to which tree is most likely.

I Probabilistic context-free grammars (PCFGs) augment
CFGs by adding probabilities to each production, e.g.

I S→ NP VP 0.6
I S→ NP VP PP 0.4

I These are conditional probabilities — the probability of the
right hand side (RHS) given the left hand side (LHS)

I P(S→ NP VP) = P(NP VP|S)

I We can learn these probabilities from a treebank, again
using Maximum Likelihood Estimation.

Probabilitic Context-Free Grammars

S

advp

rb

Still

,

,

np

np

nnp

Time

pos

’s

nn

move

vp

vbz

is

vp

vbg

being

vbn

received

advp

rb

well

.

.

Still, Time’s move is being received well.

[WSJ 2350]

Estimating PCFGs (1/3)

(S

(ADVP (RB "Still"))

(|,| ",")

(NP

(NP (NNP "Time") (POS "’s"))

(NN "move"))

(VP

(VBZ "is")

(VP

(VBG "being")

(VP

(VBN "received")

(ADVP (RB "well")))))

(\. "."))

RB→ Still 1
AVP→ RB 2
|,| → , 1
NNP→ Time 1
POS→ ’s 1
NP→ NNP POS 1
NN→move 1
NP→ NP NN 1
VBZ→ is 1
VBG→ being 1
VBN→ received 1
RB→well 1
VP→ VBN ADVP 1
VP→ VBG VP 1
\. → . 1
S→ ADVP |,| NP VP \. 1
START→ S 1

Estimating PCFGs (2/3)

Once we have counts of all the rules, we turn them into
probabilities.

S→ ADVP |,| NP VP \. 50 S→ NP VP \. 400
S→ NP VP PP \. 350 S→ VP ! 100
S→ NP VP S \. 200 S→ NP VP 50

P(S→ ADVP |, | NP VP \.) ≈
C(S→ ADVP |, | NP VP \.)

C(S)

=
50

1150

= 0.0435

Estimating PCFGs (3/3)

Parsing with CFGs: Moving to a Procedural View

✬

✫

✩

✪

S→ NP VP

VP→ V | V NP | VP PP

NP→ NP PP

PP→ P NP

NP→ Kim | snow | Oslo

V→ adores

P→ in

All Complete Derivations

• are rooted in the start symbol S;

• label internal nodes with cate-

gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at

each local subtree of depth one.

S

NP

Kim

VP

VP

V

adores

NP

snow

PP

P

in

NP

Oslo

S

NP

Kim

VP

V

adores

NP

NP

snow

PP

P

in

NP

oslo

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (1)

Recursive Descend: A Naı̈ve Parsing Algorithm

Control Structure

• top-down: given a parsing goal α, use all grammar rules that rewrite α;

• successively instantiate (extend) the right-hand sides of each rule;

• for each βi in the RHS of each rule, recursively attempt to parse βi;

• termination: when α is a prefix of the input string, parsing succeeds.

(Intermediate) Results

• Each result records a (partial) tree and remaining input to be parsed;

• complete results consume the full input string and are rooted in S;

• whenever a RHS is fully instantiated, a new tree is built and returned;

• all results at each level are combined and successively accumulated.

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (1)

The Recursive Descent Parser
✬

✫

✩

✪

(defun parse (input goal)

(if (equal (first input) goal)

(let ((edge (make-edge :category (first input))))

(list (make-parse :edge edge :input (rest input))))

(loop

for rule in (rules-deriving goal)

append (extend-parse (rule-lhs rule) nil (rule-rhs rule) input))))

✬

✫

✩

✪

(defun extend-parse (goal analyzed unanalyzed input)

(if (null unanalyzed)

(let ((tree (cons goal analyzed)))

(list (make-parse :tree tree :input input)))

(loop

for parse in (parse input (first unanalyzed))

append (extend-parse

goal (append analyzed (list (parse-tree parse)))

(rest unanalyzed)

(parse-input parse)))))

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (2)

Quantifying the Complexity of the Parsing Task

1 2 3 4 5 6 7 8

Number of Prepositional Phrases (n)

0

250000

500000

750000

1000000

1250000

1500000

Recursive Function Calls

• • • • • •
•

•

•

Kim adores snow (in Oslo)n

n trees calls

0 1 46

1 2 170

2 5 593

3 14 2,093

4 42 7,539

5 132 27,627

6 429 102,570

7 1430 384,566

8 4862 1,452,776
...

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (3)

Top­Down vs. Bottom­Up Parsing

Top-Down (Goal-Oriented)

• Left recursion (e.g. a rule like ‘VP→ VP PP’) causes infinite recursion;

• search is uninformed by the (observable) input: can hypothesize many

unmotivated sub-trees, assuming terminals (words) that are not present;

→ assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

• unary (left-recursive) rules (e.g. ‘NP→ NP’) would still be problematic;

• lack of parsing goal: compute all possible derivations for, say, the input

adores snow ; however, it is ultimately rejected since it is not sentential;

• availability of partial analyses desirable for, at least, some applications.

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (3)

A Key Insight: Local Ambiguity

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

✬

✫

✩

✪2 3 4 5 6 7

boys with hats from France

1 2 3

4 5

6 7

8

9

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (4)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do

chart [i,i+1]← {α |α→ input i ∈ P};
for (1 ≤ l < |input |) do

for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do

if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then

chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

✬

✫

✩

✪

[0,2]← [0,1] + [1,2]
· · ·

[0,5]← [0,1] + [1,5]
[0,5]← [0,2] + [2,5]
[0,5]← [0,3] + [3,5]
[0,5]← [0,4] + [4,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

Limitations of the CKY Algorithm

Built-In Assumptions

• Chomsky Normal Form grammars: α→ β1β2 or α→ γ (βi ∈ C, γ ∈ Σ);

• breadth-first (aka exhaustive): always compute all values for each cell;

• rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

• Liberate order of computation: no assumptions about earlier results;

• active edges encode partial rule instantiations, ‘waiting’ for additional

(adjacent and passive) constituents to complete: [1, 2,VP→ V •NP];

• parser can fill in chart cells in any order and guarantee completeness.

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as

equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

Generalized Chart Parsing

• The parse chart is a two-dimensional matrix of edges (aka chart items);

• an edge is a (possibly partial) rule instantiation over a substring of input;

• the chart indexes edges by start and end string position (aka vertices);

• dot in rule RHS indicates degree of completion: α→ β1 . . . βi−1 • βi . . . βn;

• active edges (aka incomplete items) — partial RHS: [1,2,VP→ V •NP];

• passive edges (aka complete items) — full RHS: [1, 3,VP→ V NP•];

✬

✫

✩

✪

The Fundamental Rule

[i, j, α→ β1...βi−1 • βi...βn] + [j, k, βi → γ+•]

7→ [i, k, α→ β1...βi • βi+1...βn]

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (5)

An Example of a (Near­)Complete Chart

1 2 3 4 5

0
NP→NP •PP
S→NP •VP
NP→ kim •

S→NP VP •

1 VP→V •NP
V→adores •

VP→VP •PP
VP→V NP •

VP→VP •PP
VP→VP PP •
VP→V PP •

2 NP→NP •PP
NP→ snow •

NP→NP •PP
NP→NP PP •

3 PP→P •NP
P→ in • PP→P NP •

4 NP→NP •PP
NP→oslo •

✗
✖

✔
✕0 Kim 1 adores 2 snow 3 in 4 Oslo 5

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (6)

(Even) More Active Edges

0 1 2 3

0
S→ •NP VP

NP→ •NP PP
NP→ • kim

S→NP •VP
NP→NP •PP

NP→ kim •
S→NP VP •

1
VP→ •VP PP
VP→ •V NP
V→ • adores

VP→V •NP
V→adores •

VP→VP •PP
VP→V NP •

2 NP→ •NP PP
NP→ • snow

NP→NP •PP
NP→ snow •

3

• Include all grammar rules as epsilon edges in each chart [i,i] cell.

• after initialization, apply fundamental rule until fixpoint is reached.

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (7)

Combinatorics: Keeping Track of Remaining Work

The Abstract Goal

• Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naı̈ve Strategy

• Keep iterating through the complete chart, combining all possible pairs,

until no additional edges can be derived (i.e. the fixpoint is reached);

• frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy

• Combine each pair exactly once, viz. when both elements are available;

• maintain agenda of new edges, yet to be checked against chart edges;

• new edges go into agenda first, add to chart upon retrieval from agenda.

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (7)

In Conclusion—What Happened this Week

Syntactic Structure

• Languages (formal or natural) exhibit complex, hierarchical structures;

• grammars encode rules of the language: dominance and sequencing;

• context-free grammar ‘generates’ a language: strings and derivations;

• ambiguity in natural language grows exponentially: a search problem;

• bounding (or ‘packing’) of local ambiguity madantory for tractability;

• chart parsing uses dynamic programming: free order of computation.

Coming up Next

• Viterbi adaptation to parse forest; PTB parsing; parser evaluation; quiz.

inf4820 — -oct- (oe@ifi.uio.no)

Chart Parsing for Context-Free Grammars (7)

