
INF4820: Algorithms for

Artificial Intelligence and

Natural Language Processing

Treebank Parsing

Stephan Oepen & Milen Kouylekov

Language Technology Group (LTG)

November 12, 2014

University of Oslo : Department of Informatics

A Key Insight: Local Ambiguity

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

✬

✫

✩

✪

⑥
2

⑥
3

⑥
4

⑥
5

⑥
6

⑥
7

boys with hats from France

1 2 3

4 5

6 7

8

9

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (1)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do

chart [i,i+1]← {α |α→ input i ∈ P};
for (1 ≤ l < |input |) do

for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do

if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then

chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

✎
✍

☞
✌Kim adored snow in Oslo

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (2)

Chart Parsing: Key Ideas

• The parse chart is a two-dimensional matrix of edges (aka chart items);

• an edge is a (possibly partial) rule instantiation over a substring of input;

• the chart indexes edges by start and end string position (aka vertices);

• dot in rule RHS indicates degree of completion: α→ β1 . . . βi−1 • βi . . . βn;

• active edges (aka incomplete items) — partial RHS: [1,2,VP→ V •NP];

• passive edges (aka complete items) — full RHS: [1, 3,VP→ V NP•];

✬

✫

✩

✪

The Fundamental Rule

[i, j, α→ β1...βi−1 • βi...βn] + [j, k, βi → γ+•]

7→ [i, k, α→ β1...βi • βi+1...βn]

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (3)

An Example of a (Near­)Complete Chart

1 2 3 4 5

0
NP→NP •PP
S→NP •VP
NP→ kim •

S→NP VP •

1 VP→V •NP
V→adores •

VP→VP •PP
VP→V NP •

VP→VP •PP
VP→VP PP •
VP→V NP •

2 NP→NP •PP
NP→ snow •

NP→NP •PP
NP→NP PP •

3 PP→P •NP
P→ in • PP→P NP •

4 NP→NP •PP
NP→oslo •

✗
✖

✔
✕0 Kim 1 adores 2 snow 3 in 4 Oslo 5

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (4)

Combinatorics: Keeping Track of Remaining Work

The Abstract Goal

• Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naı̈ve Strategy

• Keep iterating through the complete chart, combining all possible pairs,

until no additional edges can be derived (i.e. the fixpoint is reached);

• frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy

• Combine each pair exactly once, viz. when both elements are available;

• maintain agenda of new edges, yet to be checked against chart edges;

• new edges go into agenda first, add to chart upon retrieval from agenda.

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (4)

Backpointers: Recording the Derivation History

0 1 2 3

0
2: S→ •NP VP

1: NP→ •NP PP
0: NP→ • kim

10: S→8 •VP
9: NP→8 •PP
8: NP→ kim •

17: S→8 15 •

1
5: VP→ •VP PP
4: VP→ •V NP
3: V→ • adores

12: VP→11 •NP
11: V→adores •

16: VP→15 •PP
15: VP→11 13 •

2 7: NP→ •NP PP
6: NP→ • snow

14: NP→13 •PP
13: NP→ snow •

3

• Use edges to record derivation trees: backpointers to daughters;

• a single edge can represent multiple derivations: backpointer sets.

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (5)

Ambiguity Packing in the Chart

General Idea

• Maintain only one edge for each α from i to j (the ‘representative’);

• record alternate sequences of daughters for α in the representative.

Implementation

• Group passive edges into equivalence classes by identity of α, i, and j;

• search chart for existing equivalent edge (h, say) for each new edge e;

• when h (the ‘host’ edge) exists, pack e into h to record equivalence;

• e not added to the chart, no derivations with or further processing of e;

→ unpacking multiply out all alternative daughters for all result edges.

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (6)

An Example (Hypothetical) Parse Forest

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (6)

Unpacking: Cross­Multiplying Local Ambiguity

1 →
〈

2 3
〉

|
〈

4 3
〉

2 →
〈

5 6
〉

|
〈

5 7
〉

4 →
〈

8 6
〉

|
〈

8 7
〉

|
〈

9 6
〉

|
〈

9 7
〉

6 →
〈

10
〉

|
〈

11
〉

✤

✣

✜

✢
How many complete trees in total?

inf4820 — -nov- (oe@ifi.uio.no)

Treebank Parsing (7)

Initialization

◮ for each word in input string
◮ add passive lexical edge 〈word•〉 to chart
◮ for each α→ word ∈ P

◮ add passive 〈α→ word •〉 edge to agenda

Main Loop

◮ while edge← pop-agenda()
◮ if equivalent edge in chart, pack; otherwise add edge and
◮ if edge is passive

◮ for each active edge a to the left, fundamental-rule(a, edge)
◮ predict new edges from P, and add to the agenda

◮ else
◮ for each passive edge p to the right, fundamental-rule(edge, p)

Termination

◮ return all edges with category S that span the full input

Generalized Chart Parsing

◮ Recall the Viterbi algorithm for HMMs

vi(x) =
L

max
k=1

[vi−1(k) · P(x|k) · P(oi|x)]

◮ For our trees, we no longer have a linear order, but we still
build up cached Viterbi values successively:

v(e) = max















P(β1, . . . βn|α) ×
∏

i

v(βi)















◮ Similar to HMM decoding, we also need to keep track of
the set of daughters that led to the maximum probability.

◮ Implementation: cache the highest-scoring edge within e,
recording the maximum probability of its sub-tree, and the
daughter sequence that led to it.

Viterbi Decoding over the Parse Forest

◮ Organize edges in an agenda, and process them sequentially.

◮ A passive edge is complete, an active edge is still looking
for daughters.

◮ Processing records the edge in the chart, and then may add
other edges to the agenda, either through the fundamental
rule, or through (active) edge prediction, or both.

◮ The edge data structure records:
◮ category (LHS)
◮ seen elements of rule RHS as daughter edges
◮ unseen (unanalyzed) elements of rule RHS
◮ input span covered (as start and end chart vertices)
◮ probability of the sub-tree, reflecting rule probabilities
◮ highest-scoring (cached) edge after Viterbi processing

◮ The agenda ordering and prediction strategy influence the
search order (which can be varied fully freely).

Chart Parsing Summary

There are a number of aspects to consider in judging parser
performance:

◮ Coverage the percentage of inputs for which we we
found an analysis.

◮ Overgeneration the percentage of ungrammatical inputs
(incorrectly) assigned an analysis.

◮ Efficiency time and memory used by the parser.

◮ Accuracy Sentence accuracy measures the percentage of
input sentences which received the right tree.

Since full trees can be quite complex, this is a very strict

metric, and so most statistical parsers report accuracy
according to the granular ParsEval metric.

Parser Evaluation

◮ The ParsEval metric (Black, et al., 1991) measures
constituent overlap.

◮ The original formulation only considered the shape of the
(unlabeled) bracketing.

◮ The modern ‘standard’ uses a tool called evalb, which
reports precision, recall and F1 score for labeled brackets,
as well as the number of crossing brackets.

ParsEval

Gold Standard

(NP (DT a)
(ADVP (RB pretty)

(JJ big))
(NOM (NN dog)

(POS ’s)
(NN house)))

0,6 np 1,2 rb 3,4 nn
0,1 dt 2,3 jj 4,5 pos
1,3 advp 3,6 nom 5,6 nn

System Output

(NP (DT a)
(JJ pretty)
(NOM (JJ big)

(NOM (NN dog)
(POS ’s)
(NN house))))

0,6 np 2,6 nom 3,4 nn
0,1 dt 2,3 jj 4,5 pos
1,2 jj 3,6 nom 5,6 nn

Recall: Correct
Gold

=
7
9 Precision: Correct

System
=

7
9 F1 score: 7

9

Crossing Brackets: 1

ParsEval

Rules of the Game

◮ Up to four bonus points towards completion of Obligatory Exercise (3).

◮ Get one post-it; at the top, write down your first and last name.

◮ Further, write down your UiO account name (e.g. oe, in my case).

◮ Write each answer on a line of its own, prefix by question number.

◮ Do not consult with your neighbors; they will likely mess things up.

After the Quiz

◮ Post your answers at the front of your table, we will collect all notes.

◮ Discuss your answers with your neighbor(s); explain why you are right.

Finally: I Might Need Some Bonus Points

Recall the recursive formulation of the Viterbi Algorithm:

vi(x) =
L

max
k=1

[vi−1(k) · P(x|k) · P(oi|x)]

(1) What is different in the Forward Algorithm;

and what HMM-related task does it compute?

Question (1): HMM Viterbi vs. Forward

Assume a ‘toy’ grammar of English:

S→ NP
NP→ Det NOM

NOM→ NOM NOM

Det→ the
NOM→ kitchen | gold | towel | rack

(2) How many different syntactic analyses, if any, does the

grammar assign to the following strings?

(a) the kitchen towel rack
(b) the kitchen gold towel rack

Question (2): Natural Language Ambiguity

32

689 75

4

1

(3) How many complete trees are represented in this forest?

Question (3): Packed Parse Forests

S

NP

✟
✟
✟

❍
❍

❍

Det

the

NOM

✟
✟✟

❍
❍❍

NOM

kitchen

NOM

✟
✟

❍
❍

NOM

towel

NOM

rack

S

NP

✟
✟
✟
✟

❍
❍

❍
❍

Det

the

NOM

✟
✟✟

❍
❍❍

NOM

✟
✟

❍
❍

NOM

kitchen

NOM

towel

NOM

rack

(4) What are the ParsEval precision and recall scores for this

pair of trees (gold on the left; system on the right)?

Question (4): Parser Evaluation

In the second half of the class, we set out to determine:

◮ which string is most likely: X
◮ How to recognise speech vs. How to wreck a nice beach

◮ which tag sequence is most likely for flies like flowers: X
◮ NNS VB NNS vs. VBZ P NNS

◮ which syntactic analysis is most likely:X
S

✟
✟✟

❍
❍❍

NP

I

VP

✟
✟✟

❍
❍❍

VBD

ate

NP

✟
✟

❍
❍

N

sushi

PP
✏✏ PP
with tuna

S

✟
✟
✟

❍
❍

❍

NP

I

VP

✟
✟
✟✟

❍
❍

❍❍

VBD

ate

NP

N

sushi

PP
✏✏ PP
with tuna

In conclusion

