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Last week

I Supervised vs unsupervised learning.
I Vectors space classification.
I How to represent classes and class membership.
I Rocchio + kNN.
I Linear vs non-linear decision boundaries.
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Today

I Refresh
I Vector Space
I Clasifiers
I Evaluation

I Unsupervised machine learning for class discovery: Clustering
I Flat vs. hierarchical clustering.
I k-Means Clustering
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Vector Space Model and Classification

I Describe objects as set of features that describe them.
I Objects are represented as points in space
I Each dimension of the space corresponds feature
I We calculate the their similarity by measuring the distance between
them in the space.

I We classify an object by:
I Creating a plane in the space that separates them (Rocchio Classifier)
I Proximity of other objects of the same class (KNN Classifier)
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Space (1)
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Space (2)
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Space (3)
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Vector vs Point vs Feature Vector

I Point - coordinates in each dimensions
I Vector - coordinates of 2 points (start and end)
I Feature Vector - The start is 0 on each dimension and the end is the
point defined by the values of the features.
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Rocchio classification

I Uses centroids to represent classes.

I Each class ci is represented by its centroid ~µi , computed as the average
of the normalized vectors ~xj of its members;

~µi = 1
|ci |

∑
~xj∈ci

~xj

I To classify a new object oj (represented by a feature vector ~xj);
– determine which centroid ~µi that ~xj is closest to,
– and assign it to the corresponding class ci .

I The centroids define the boundaries of the class regions.

9



The decision boundary of the Rocchio classifier

I Defines the boundary between
two classes by the set of points
equidistant from the centroids.

I In two dimensions, this set of
points corresponds to a line.

I In multiple dimensions: A line in
2D corresponds to a hyperplane in
a higher-dimensional space.
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kNN-classification

I k Nearest Neighbor classification.
I For k = 1: Assign each object to the class of its closest neighbor.
I For k > 1: Assign each object to the majority class among its k closest
neighbors.

I Rationale: given the contiguity hypothesis, we expect a test object oi to
have the same label as the training objects located in the local region
surrounding ~xi .

I The parameter k must be specified in advance, either manually or by
optimizing on held-out data.

I An example of a non-linear classifier.
I Unlike Rocchio, the kNN decision boundary is determined locally.

I The decision boundary defined by the Voronoi tessellation.
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Voronoi tessellation

I Assuming k = 1: For a given set of objects in the space, let each object
define a cell consisting of all points that are closer to that object than
to other objects.

I Results in a set of convex
polygons; so-called Voronoi cells.

I Decomposing a space into such
cells gives us the so-called
Voronoi tessellation.

I In the general case of k ≥ 1, the Voronoi cells are given by the regions
in the space for which the set of k nearest neighbors is the same.
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Text Classification

I Task: Classify texts in two domains: financial and political
I Features - count words in the texts:

I Feature1: bank
I Feature2: minster
I Feature3: president
I Feature4: exchange

I Examples:
I I work for the bank [1,0,0,0]
I The president met with the minister [0,1,1,0]
I The minister went in vacation [0,1,0,0]
I The stock exchange rise after bank news [1,0,0,1]
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Sentiment Analysis

I Task: Classify texts in two classes positive or negative.
I Features - presense of words in the texts:

I Feature1: good
I Feature2: bad
I Feature3: excellent
I Feature4: awful

I Examples from movie review dataset:
I This was good movie [1,0,0,0]
I Excellent actors in Matrix [0,0,1,0]
I Excellent actors in good movie [1,0,1,0]
I Awful film to watch [0,0,0,1]
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Named Entity Recognition

I Task: Classify Entities in categories. For example: Person - names of
people, Location - names of cities, countries etc. and Organization -
names of companies,institution etc.

I Features - words that interact with the entities:
I Feature1: invade
I Feature2: elect
I Feature3: bankrupt
I Feature4: buy

I Examples:
I Yahoo bought Overture. - “Yahoo” - [0,0,0,1]
I The barbarians invaded Rome - “Rome” - [1,0,0,0]
I John went bankrupt after he was not elected - “John” - [0,1,1,0]
I The Unicredit bank went bankrupt after it bought NEK - “Unicredit”
[0,0,1,1]
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Textual Entailment

I Task: Recognize a relation that holds between two texts we call Text
and Hypothesis:

I Example Entailment:
T: Yahoo bought Overture
H: Yahoo acquired Overture

I Example Contradiction:
T: Yahoo bought Overture
H: Yahoo did not acquired Overture

I Example Unknown:
T: Yahoo bought Overture
H: Yahoo talked with Overture about collaboration
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Textual Entailment

I Task: Recognize a relation that holds between two texts we call Text
and Hypothesis:

I Features: -
I Feature1: Word Overlap between T and H
I Feature2: Presence of Negation words (not, never, etc)
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Coreference Resolution

I Task: Recognize the referent of a pronoun (it, he she they) from a list
of previously recognized names of people.

I Example
John walked to school. He saw a dog.

I Example
John met with Petter. He recieved a book.

I Example
John met with Merry. She recieved a book.

I Features: Sentence Analysis: Gender Subject etc
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When to add features
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Testing a classifier

I We’ve seen how vector space classification amounts to computing the
boundaries in the space that separate the class regions;
the decision boundaries.

I To evaluate the boundary, we measure the number of correct
classification predictions on unseeen test items.

I Many ways to do this. . .

I We want to test how well a model generalizes on a held-out test set.
I (Or, if we have little data, by n-fold cross-validation.)
I Labeled test data is sometimes refered to as the gold standard.
I Why can’t we test on the training data?
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Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:
gold = positive gold = negative

prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)
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Example: Evaluating classifier decisions

accuracy = TP+TN
N

= 1+6
10 = 0.7

precision = TP
TP+FP

= 1
1+1 = 0.5

recall = TP
TP+FN

= 1
1+2 = 0.33

F -score =
2recision×recall
precision+recall = 0.4
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Evaluation measures

I accuracy = TP+TN
N = TP+TN

TP+TN+FP+FN
I The ratio of correct predictions.
I Not suitable for unbalanced numbers of positive / negative examples.

I precision = TP
TP+FP

I The number of detected class members that were correct.

I recall = TP
TP+FN

I The number of actual class members that were detected.
I Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

I F -score = 2×precision×recall
precision+recall

I Balanced measure of precision and recall (harmonic mean).
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Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.

24



Over-Fitting
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Two categorization tasks in machine learning

Classification
I Supervised learning, requiring labeled training data.
I Given some training set of examples with class labels, train a classifier
to predict the class labels of new objects.

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No pre-defined classes: we only specify the similarity measure.
I General objective:

I Partition the data into subsets, so that the similarity among members of
the same group is high (homogeneity) while the similarity between the
groups themselves is low (heterogeneity).
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Example applications of cluster analysis

I Visualization and exploratory data analysis.
I Many applications within IR. Examples:

I Speed up search: First retrieve the most relevant cluster, then retrieve
documents from within the cluster.

I Presenting the search results: Instead of ranked lists, organize the results
as clusters (see e.g. clusty.com).

I Dimensionality reduction / class-based features.
I News aggregation / topic directories.
I Social network analysis; identify sub-communities and user segments.
I Image segmentation, product recommendations, demographic analysis,
. . .
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Types of clustering methods

Different methods can be divided according to the memberships they
create and the procedure by which the clusters are formed:

Procedure



Flat

Hierarchical
{
Agglomerative
Divisive

Hybrid

Memberships


Hard
Soft
Disjunctive
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Types of clustering methods (cont’d)

Hierarchical
I Creates a tree structure of hierarchically nested clusters.
I Topic of the next lecture.

Flat
I Often referred to as partitional clustering when assuming hard and
disjoint clusters. (But can also be soft.)

I Tries to directly decompose the data into a set of clusters.
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Flat clustering

I Given a set of objects O = {o1, . . . , on}, construct a set of clusters
C = {c1, . . . , ck}, where each object oi is assigned to a cluster ci .

I Parameters:
I The cardinality k (the number of clusters).
I The similarity function s.

I More formally, we want to define an assignment γ : O → C that
optimizes some objective function Fs(γ).

I In general terms, we want to optimize for:
I High intra-cluster similarity
I Low inter-cluster similarity
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Flat clustering (cont’d)

Optimization problems are search problems:
I There’s a finite number of possible partitionings of O.

I Naive solution: enumerate all possible assignments Γ = {γ1, . . . , γm}
and choose the best one,

γ̂ = arg min
γ∈Γ

Fs(γ)

I Problem: Exponentially many possible partitions.

I Approximate the solution by iteratively improving on an initial (possibly
random) partition until some stopping criterion is met.
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k-Means

I Unsupervised variant of the Rocchio classifier.
I Goal: Partition the n observed objects into k clusters C so that each
point ~xj belongs to the cluster ci with the nearest centroid ~µi .

I Typically assumes Euclidean distance as the similarity function s.
I The optimization problem: For each cluster, minimize the within-cluster
sum of squares, Fs = WCSS:

WCSS =
∑

ci∈C

∑
~xj∈ci

‖~xj − ~µi‖2

I Equivalent to minimizing the average squared distance between objects
and their cluster centroids (since n is fixed), —a measure of how well
each centroid represents the members assigned to the cluster.
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k-Means (cont’d)

Algorithm
Initialize: Compute centroids for k seeds.
Iterate:

– Assign each object to the cluster with the nearest centroid.
– Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

Properties
I In short, we iteratively reassign memberships and recompute centroids
until the configuration stabilizes.

I WCSS is monotonically decreasing (or unchanged) for each iteration.
I Guaranteed to converge but not to find the global minimum.
I The time complexity is linear, O(kn).
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kMeans Example
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kMeans Example
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kMeans Example
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kMeans Example
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Comments on k-Means

“Seeding”
I We initialize the algorithm by choosing random seeds that we use to
compute the first set of centroids.

I Many possible heuristics for selecting the seeds:
I pick k random objects from the collection;
I pick k random points in the space;
I pick k sets of m random points and compute centroids for each set;
I compute an hierarchical clustering on a subset of the data to find k initial
clusters; etc..

I The initial seeds can have a large impact on the resulting clustering
(because we typically end up only finding a local minimum of the
objective function).

I Outliers are troublemakers.
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Comments on k-Means

Possible termination criterions
I Fixed number of iterations

I Clusters or centroids are unchanged between iterations.

I Threshold on the decrease of the objective function (absolute or relative
to previous iteration)

Some Close Relatives of k-Means
I k-Medoids: Like k-means but uses medoids instead of centroids to
represent the cluster centers.

I Fuzzy c-Means (FCM): Like k-means but assigns soft memberships in
[0, 1], where membership is a function of the centroid distance.

I The computations of both WCSS and centroids are weighted by the
membership function.
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Flat Clustering: The good and the bad

Pros
I Conceptually simple, and easy to implement.
I Efficient. Typically linear in the number of objects.

Cons
I The dependence on the random seeds makes the clustering
non-deterministic.

I The number of clusters k must be pre-specified. Often no principled
means of a priori specifying k.

I The clustering quality often considered inferior to that of the less
efficient hierarchical methods.

I Not as informative as the more stuctured clusterings produced by
hierarchical methods.
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Next

I Hierarchical clustering:
I Agglomerative clustering

I Bottom-up hierarchical clustering

I Divisive clustering
I Top-down hierarchical clustering

I How to measure the inter-cluster similarity (“linkage criterions”).
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