INF4820: Algorithms for AI and NLP

Clustering

Milen Kouylekov & Stephan Oepen

Language Technology Group University of Oslo

Oct. 1, 2014

- \blacktriangleright Supervised vs unsupervised learning.
- \blacktriangleright Vectors space classification.
- \blacktriangleright How to represent classes and class membership.
- \triangleright Rocchio + kNN .
- \blacktriangleright Linear vs non-linear decision boundaries.

Today

- \blacktriangleright Refresh
	- ▶ Vector Space
	- \triangleright Clasifiers
	- \blacktriangleright Evaluation
- \triangleright Unsupervised machine learning for class discovery: Clustering
- \blacktriangleright Flat vs. hierarchical clustering.
- \blacktriangleright *k*-Means Clustering

- \triangleright Describe objects as set of features that describe them.
- \triangleright Objects are represented as points in space
- \blacktriangleright Each dimension of the space corresponds feature
- \triangleright We calculate the their similarity by measuring the distance between them in the space.
- \triangleright We classify an object by:
	- \triangleright Creating a plane in the space that separates them (Rocchio Classifier)
	- \triangleright Proximity of other objects of the same class (KNN Classifier)

$x - x - x$ $X - X - X$ X

Space (2)

Space (3)

- \triangleright Point coordinates in each dimensions
- \triangleright Vector coordinates of 2 points (start and end)
- \triangleright Feature Vector The start is 0 on each dimension and the end is the point defined by the values of the features.

Rocchio classification

- \triangleright Uses centroids to represent classes.
- \blacktriangleright Each class c_i is represented by its centroid $\vec{\mu}_i$, computed as the average of the normalized vectors \vec{x}_i of its members;

$$
\vec{\mu}_i = \frac{1}{|c_i|}\sum_{\vec{x}_j \in c_i} \vec{x}_j
$$

- \triangleright To classify a new object o_i (represented by a feature vector $\vec{x_i}$);
	- $-$ determine which centroid $\vec{\mu}_i$ that $\vec{x_j}$ is closest to,
	- $-$ and assign it to the corresponding class $\,c_i.$
- \triangleright The centroids define the boundaries of the class regions.

The decision boundary of the Rocchio classifier

- \blacktriangleright Defines the boundary between two classes by the set of points equidistant from the centroids.
- \blacktriangleright In two dimensions, this set of points corresponds to a line.
- \blacktriangleright In multiple dimensions: A line in 2D corresponds to a *hyperplane* in a higher-dimensional space.

*k*NN-classification

- \blacktriangleright *k* Nearest Neighbor classification.
- \triangleright For $k = 1$: Assign each object to the class of its closest neighbor.
- \triangleright For $k > 1$: Assign each object to the majority class among its k closest neighbors.
- \triangleright Rationale: given the contiguity hypothesis, we expect a test object o_i to have the same label as the training objects located in the local region surrounding $\vec{x_i}$.
- \blacktriangleright The parameter *k* must be specified in advance, either manually or by optimizing on held-out data.
- \triangleright An example of a non-linear classifier.
- \triangleright Unlike Rocchio, the kNN decision boundary is determined locally.
	- \triangleright The decision boundary defined by the Voronoi tessellation.

Voronoi tessellation

-
- \blacktriangleright Assuming $k = 1$: For a given set of objects in the space, let each object define a cell consisting of all points that are closer to that object than to other objects.
- \triangleright Results in a set of convex polygons; so-called Voronoi cells.
- \triangleright Decomposing a space into such cells gives us the so-called Voronoi tessellation.

In the general case of $k \geq 1$, the Voronoi cells are given by the regions in the space for which the set of *k* nearest neighbors is the same.

Text Classification

- \triangleright Task: Classify texts in two domains: financial and political
- \triangleright Features count words in the texts:
	- \blacktriangleright **Feature1**: bank
	- ► Feature²: minster
	- ▶ Feature3: president
	- **Feature4**: exchange
- \blacktriangleright Examples:
	- \blacktriangleright I work for the bank $[1,0,0,0]$
	- \blacktriangleright The president met with the minister [0,1,1,0]
	- \blacktriangleright The minister went in vacation $[0,1,0,0]$
	- \blacktriangleright The stock exchange rise after bank news [1,0,0,1]

Sentiment Analysis

- \triangleright Task: Classify texts in two classes positive or negative.
- \blacktriangleright Features presense of words in the texts:
	- ► Feature1: good
	- ► **Feature2**: bad
	- ► **Feature3**: excellent
	- ► **Feature4**: awful
- \blacktriangleright Examples from movie review dataset:
	- \blacktriangleright This was good movie $[1,0,0,0]$
	- Excellent actors in Matrix $[0,0,1,0]$
	- Excellent actors in good movie $[1,0,1,0]$
	- Awful film to watch $[0,0,0,1]$

- \triangleright Task: Classify Entities in categories. For example: Person names of people, Location - names of cities, countries etc. and Organization names of companies,institution etc.
- \triangleright Features words that interact with the entities:
	- ► **Feature1**: invade
	- ► **Feature2**: elect
	- ► **Feature3**: bankrupt
	- **Feature4**: buy
- \blacktriangleright Examples:
	- ▶ Yahoo bought Overture. "Yahoo" [0,0,0,1]
	- ► The barbarians invaded **Rome** "Rome" [1,0,0,0]
	- \triangleright **John** went bankrupt after he was not elected "John" $[0,1,1,0]$
	- ▶ The Unicredit bank went bankrupt after it bought NEK "Unicredit" $[0,0,1,1]$

Textual Entailment

- ► Task: Recognize a relation that holds between two texts we call **Text** and **Hypothesis**:
	- ► Example **Entailment:**
		- **T:** Yahoo bought Overture
		- **H:** Yahoo acquired Overture
	- **Example Contradiction:**
		- **T:** Yahoo bought Overture
		- **H:** Yahoo did not acquired Overture
	- ^I Example **Unknown**:
		- **T:** Yahoo bought Overture
		- **H:** Yahoo talked with Overture about collaboration

- ► Task: Recognize a relation that holds between two texts we call Text and **Hypothesis**:
- \blacktriangleright Features: \blacktriangleleft
	- ▶ Feature1: Word Overlap between T and H
	- **Feature2**: Presence of Negation words (not, never, etc)

- \triangleright Task: Recognize the referent of a pronoun (it, he she they) from a list of previously recognized names of people.
	- \blacktriangleright Example

John walked to school. **He** saw a dog.

- \blacktriangleright Example **John** met with **Petter**. **He** recieved a book.
- \triangleright Example

John met with **Merry**. **She** recieved a book.

► Features: Sentence Analysis: Gender Subject etc

When to add features

19

Testing a classifier

- \triangleright We've seen how vector space classification amounts to computing the boundaries in the space that separate the class regions; the decision boundaries.
- \triangleright To evaluate the boundary, we measure the number of correct classification predictions on unseeen test items.
	- \blacktriangleright Many ways to do this...
- \triangleright We want to test how well a model generalizes on a held-out test set.
- \triangleright (Or, if we have little data, by *n*-fold cross-validation.)
- \triangleright Labeled test data is sometimes refered to as the gold standard.
- \triangleright Why can't we test on the training data?

Example: Evaluating classifier decisions

Example: Evaluating classifier decisions

 $accuracy = \frac{TP + TN}{N}$ *N* $=\frac{1+6}{10}=0.7$

 $precision = \frac{TP}{TP_{++}}$ *TP*+*FP* $=\frac{1}{1+1} = 0.5$

 $recall = \frac{TP}{TP+1}$ *TP*+*FN* $=\frac{1}{1+2} = 0.33$

 F -*score* $=$ $\frac{2\text{recision} \times \text{recall}}{\text{precision} + \text{recall}} = 0.4$

Evaluation measures

- \blacktriangleright $accuracy = \frac{TP + TN}{N} = \frac{TP + TN}{TP + TN + FP}$ *TP*+*TN*+*FP*+*FN*
	- \blacktriangleright The ratio of correct predictions.
	- \triangleright Not suitable for unbalanced numbers of positive / negative examples.
- \blacktriangleright *precision* = $\frac{TP}{TP+1}$ *TP*+*FP*
	- \triangleright The number of detected class members that were correct.
- \blacktriangleright *recall* = $\frac{TP}{TP+1}$ *TP*+*FN*
	- \triangleright The number of actual class members that were detected.
	- \triangleright Trade-off: Positive predictions for all examples would give 100% recall but (typically) terrible precision.
- \blacktriangleright $F\text{-}score = \frac{2 \times precision \times recall}{precision + recall}$ *precision*+*recall*
	- \triangleright Balanced measure of precision and recall (harmonic mean).

Macro-averaging

- \triangleright Sum precision and recall for each class, and then compute global averages of these.
- \triangleright The **MACIO** average will be highly influenced by the $\frac{1}{n}$ classes.

Micro-averaging

- \triangleright Sum TPs, FPs, and FNs for all points/objects across all classes, and then compute global precision and recall.
- ► The _{micro} average will be highly influenced by the **large** classes.

Over-Fitting

Classification

- \triangleright Supervised learning, requiring labeled training data.
- \triangleright Given some training set of examples with class labels, train a classifier to predict the class labels of new objects.

Clustering

- \triangleright Unsupervised learning from unlabeled data.
- \blacktriangleright Automatically group similar objects together.
- \triangleright No pre-defined classes: we only specify the similarity measure.
- \blacktriangleright General objective:
	- \triangleright Partition the data into subsets, so that the similarity among members of the same group is high (homogeneity) while the similarity between the groups themselves is low (heterogeneity).

Example applications of cluster analysis

- \triangleright Visualization and exploratory data analysis.
- \blacktriangleright Many applications within IR. Examples:
	- \triangleright Speed up search: First retrieve the most relevant cluster, then retrieve documents from within the cluster.
	- \triangleright Presenting the search results: Instead of ranked lists, organize the results as clusters (see e.g. clusty.com).
- \triangleright Dimensionality reduction / class-based features.
- \blacktriangleright News aggregation / topic directories.
- \triangleright Social network analysis; identify sub-communities and user segments.
- \blacktriangleright Image segmentation, product recommendations, demographic analysis, . . .

Different methods can be divided according to the memberships they create and the procedure by which the clusters are formed:

Hierarchical

- \triangleright Creates a tree structure of hierarchically nested clusters.
- \blacktriangleright Topic of the next lecture.

Flat

- \triangleright Often referred to as partitional clustering when assuming hard and disjoint clusters. (But can also be soft.)
- \triangleright Tries to directly decompose the data into a set of clusters.

Flat clustering

- Given a set of objects $O = \{o_1, \ldots, o_n\}$, construct a set of clusters $C = \{c_1, \ldots, c_k\}$, where each object o_i is assigned to a cluster c_i .
- \blacktriangleright Parameters:
	- \triangleright The cardinality *k* (the number of clusters).
	- ▶ The similarity function *s*.
- \triangleright More formally, we want to define an assignment γ : $O \to C$ that optimizes some objective function *Fs*(*γ*).
- \blacktriangleright In general terms, we want to optimize for:
	- \blacktriangleright High intra-cluster similarity
	- \blacktriangleright Low inter-cluster similarity

Optimization problems are search problems:

- \blacktriangleright There's a finite number of possible partitionings of O .
- ► Naive solution: enumerate all possible assignments $\Gamma = \{\gamma_1, \ldots, \gamma_m\}$ and choose the best one,

$$
\hat{\gamma} = \argmin_{\gamma \in \Gamma} F_s(\gamma)
$$

- \triangleright Problem: Exponentially many possible partitions.
- \triangleright Approximate the solution by iteratively improving on an initial (possibly random) partition until some stopping criterion is met.

k-Means

- \triangleright Unsupervised variant of the Rocchio classifier.
- \blacktriangleright Goal: Partition the *n* observed objects into *k* clusters *C* so that each point \vec{x}_j belongs to the cluster c_i with the nearest centroid $\vec{\mu}_i.$
- ▶ Typically assumes Euclidean distance as the similarity function *s*.
- \triangleright The optimization problem: For each cluster, minimize the within-cluster sum of squares, $F_s = \text{WCSS}$.

$$
\text{WCSS} = \sum_{c_i \in C} \sum_{\vec{x}_j \in c_i} ||\vec{x}_j - \vec{\mu}_i||^2
$$

 \blacktriangleright Equivalent to minimizing the average squared distance between objects and their cluster centroids (since *n* is fixed), —a measure of how well each centroid represents the members assigned to the cluster.

k-Means (cont'd)

Algorithm

Initialize: Compute centroids for *k* seeds.

Iterate:

- Assign each object to the cluster with the nearest centroid.
- Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

Properties

- \triangleright In short, we iteratively reassign memberships and recompute centroids until the configuration stabilizes.
- \triangleright WCSS is monotonically decreasing (or unchanged) for each iteration.
- \triangleright Guaranteed to converge but not to find the global minimum.
- \blacktriangleright The time complexity is linear, $O(kn)$.

Comments on *k*-Means

"Seeding"

- \triangleright We initialize the algorithm by choosing random seeds that we use to compute the first set of centroids.
- \blacktriangleright Many possible heuristics for selecting the seeds:
	- \rightarrow pick *k* random objects from the collection;
	- \triangleright pick k random points in the space;
	- \rightarrow pick *k* sets of *m* random points and compute centroids for each set;
	- \triangleright compute an hierarchical clustering on a subset of the data to find k initial clusters; etc..
- \triangleright The initial seeds can have a large impact on the resulting clustering (because we typically end up only finding a local minimum of the objective function).
- \triangleright Outliers are troublemakers.

Comments on *k*-Means

Possible termination criterions

- \blacktriangleright Fixed number of iterations
- \triangleright Clusters or centroids are unchanged between iterations.
- \triangleright Threshold on the decrease of the objective function (absolute or relative to previous iteration)

Some Close Relatives of *k*-Means

- ^I *k*-Medoids: Like *k*-means but uses medoids instead of centroids to represent the cluster centers.
- \triangleright Fuzzy *c*-Means (FCM): Like *k*-means but assigns soft memberships in [0, 1], where membership is a function of the centroid distance.
	- \triangleright The computations of both WCSS and centroids are weighted by the membership function.

Pros

- \triangleright Conceptually simple, and easy to implement.
- \triangleright Efficient. Typically linear in the number of objects.

Cons

- \triangleright The dependence on the random seeds makes the clustering non-deterministic.
- \triangleright The number of clusters k must be pre-specified. Often no principled means of a priori specifying *k*.
- \triangleright The clustering quality often considered inferior to that of the less efficient hierarchical methods.
- \triangleright Not as informative as the more stuctured clusterings produced by hierarchical methods.

- \blacktriangleright Hierarchical clustering:
- \blacktriangleright Agglomerative clustering
	- \triangleright Bottom-up hierarchical clustering
- \triangleright Divisive clustering
	- \triangleright Top-down hierarchical clustering
- \blacktriangleright How to measure the inter-cluster similarity ("linkage criterions").