INF4820: Algorithms for AI and NLP

Clustering

Milen Kouylekov & Stephan Oepen

Language Technology Group University of Oslo

Oct. 2, 2014

Yesterday

- ► Flat clustering
- ► *k*-Means

Today

- Bottom-up hierarchical clustering.
- ► How to measure the inter-cluster similarity ("linkage criterions").
- Top-down hierarchical clustering.

Hierarchical

- ► Creates a tree structure of hierarchically nested clusters.
- Topic of the this lecture.

Flat

- Often referred to as partitional clustering when assuming hard and disjoint clusters. (But can also be soft.)
- ► Tries to directly decompose the data into a set of clusters.

Flat clustering

- Given a set of objects $O = \{o_1, \ldots, o_n\}$, construct a set of clusters $C = \{c_1, \ldots, c_k\}$, where each object o_i is assigned to a cluster c_i .
- ► Parameters:
 - The cardinality k (the number of clusters).
 - The similarity function *s*.
- More formally, we want to define an assignment $\gamma: O \to C$ that optimizes some objective function $F_s(\gamma)$.
- ► In general terms, we want to optimize for:
 - High intra-cluster similarity
 - Low inter-cluster similarity

k-Means

Algorithm

Initialize: Compute centroids for k seeds.

Iterate:

- Assign each object to the cluster with the nearest centroid.
- Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

Properties

- In short, we iteratively reassign memberships and recompute centroids until the configuration stabilizes.
- ► WCSS is monotonically decreasing (or unchanged) for each iteration.
- ► Guaranteed to converge but not to find the global minimum.
- The time complexity is linear, O(kn).

Comments on k-Means

"Seeding"

- ► We initialize the algorithm by choosing random seeds that we use to compute the first set of centroids.
- Many possible heuristics for selecting the seeds:
 - ▶ pick k random objects from the collection;
 - pick k random points in the space;
 - pick k sets of m random points and compute centroids for each set;
 - ► compute an hierarchical clustering on a subset of the data to find k initial clusters; etc..
- ► The initial seeds can have a large impact on the resulting clustering (because we typically end up only finding a local minimum of the objective function).
- Outliers are troublemakers.

Initial Seed Choice

Initial Seed Choice

Initial Seed Choice

- Creates a tree structure of hierarchically nested clusters.
- Divisive (top-down): Let all objects be members of the same cluster; then successively split the group into smaller and maximally dissimilar clusters until all objects is its own singleton cluster.
- Agglomerative (bottom-up): Let each object define its own cluster; then successively merge most similar clusters until only one remains.

Agglomerative clustering

- Initially; regards each object as its own singleton cluster.
- Iteratively "agglomerates" (merges) the groups in a bottom-up fashion.
- Each merge defines a binary branch in the tree.
- Terminates; when only one cluster remains (the root).

parameters: $\{o_1, o_2, \dots, o_n\}$, sim $C = \{\{o_1\}, \{o_2\}, \dots, \{o_n\}\}$ T = []do for i = 1 to n - 1 $\{c_j, c_k\} \leftarrow \underset{\{c_j, c_k\} \subseteq C \land j \neq k}{\arg \max} \operatorname{sim}(c_j, c_k)$ $C \leftarrow C \setminus \{c_j, c_k\}$ $C \leftarrow C \cup \{c_j \cup c_k\}$ $T[i] \leftarrow \{c_j, c_k\}$

- ► At each stage, we merge the pair of clusters that are most similar, as defined by some measure of inter-cluster similarity; sim.
- \blacktriangleright Plugging in a different sim gives us a different sequence of merges T.

Dendrograms

- 0.0 A hierarchical clustering is often visualized as a 0.25 binary tree structure known as a *dendrogram*. 0.5 ► A merge is shown as a horizontal line. 0.75 ► The *y*-axis corresponds to the *similarity* of the н F 1.0 G D merged clusters.
- ► We here assume dot-products of normalized vectors (self-similarity = 1).

- ► How do we define the similarity between clusters?.
- ► In agglomerative clustering, a measure of cluster similarity sim(c_i, c_j) is usually referred to as a *linkage criterion*:
 - ► Single-linkage
 - Complete-linkage
 - Centroid-linkage
 - Average-linkage
- ► Determines which pair of clusters to merge in each step.

Single-linkage

 Merge the two clusters with the minimum distance between any two members.

- ► Nearest-Neighbors.
- Can be computed efficiently by taking advantage of the fact that it's best-merge persistent:
 - Let the nearest neighbor of cluster c_k be in either c_i or c_j . If we merge $c_i \cup c_j = c_l$, the nearest neighbor of c_k will be in c_l .
 - The distance of the two closest members is a local property that is not affected by merging.
- Undesirable chaining effect: Tendency to produce 'stretched' and 'straggly' clusters.

Complete-linkage

- Merge the two clusters where the maximum distance between any two members is smallest.
- ► Farthest-Neighbors.

- Amounts to merging the two clusters whose merger has the smallest diameter.
- ► Preference for compact clusters with small diameters.
- Sensitive to outliers.
- Not best-merge persistent: Distance defined as the diameter of a merge is a non-local property that can change during merging.

Centroid-linkage

- ▶ Similarity of clusters c_i and c_i defined as the similarity of their cluster centroids $\vec{\mu}_i$ and $\vec{\mu}_i$.
- Equivalent to the average pairwise similarity between objects from different clusters:

- Not best-merge persistent.
- Not monotonic, subject to *inversions*: The combination similarity can increase during the clustering.

Monotinicity

- 0.0 A fundamental assumption in clustering: small clusters are more 0.25 coherent than large. 0.5 We usually assume that a clustering is monotonic; 0.75 Similarity is decreasing from iteration to 1.0 F н iteration.
- This assumption holds true for all our clustering criterions except for centroid-linkage.

Inversions — a problem with centroid-linkage

► The horizontal merge bar is lower than the bar of a previous merge.

Average-linkage (1:2)

- AKA group-average agglomerative clustering.
- Merge the clusters with the highest average pairwise similarities in their union.

- Aims to maximize coherency by considering all pairwise similarities between objects within the cluster to merge (excluding self-similarities).
- Compromise of complete- and single-linkage.
- Monotonic but not best-merge persistent.
- ► Commonly considered the best default clustering criterion.

Average-linkage (2:2)

 Can be computed very efficiently if we assume (i) the *dot-product* as the similarity measure for (ii) *normalized* feature vectors.

► Let
$$c_i \cup c_j = c_k$$
, and $sim(c_i, c_j) = W(c_i \cup c_j) = W(c_k)$, then $W(c_k) = \frac{1}{|c_k|(|c_k| - 1)} \sum_{\vec{x} \in c_k} \sum_{\vec{y} \neq \vec{x} \in c_k} \vec{x} \cdot \vec{y} = \frac{1}{|c_k|(|c_k| - 1)} \left(\left(\sum_{\vec{x} \in c_k} \vec{x} \right)^2 - |c_k| \right)$

• The sum of vector similarities is equal to the similarity of their sums.

Linkage criterions

Complete-link

Average-link

Cutting the tree

- 0.0 ► The tree actually represents several 0.25 partitions; ► one for each level. 0.5 ► If we want to turn the nested partitions into a 0.75 single flat partitioning... 1.0 we must cut the tree.
- ► A cutting criterion can be defined as a threshold on e.g. combination similarity, relative drop in the similarity, number of root nodes, etc.

Generates the nested partitions top-down:

- ► Start: all objects considered part of the same cluster (the root).
- Split the cluster using a flat clustering algorithm (e.g. by applying k-means for k = 2).
- Recursively split the clusters until only singleton clusters remain (or some specified number of levels is reached).
- ► Flat methods are generally very effective (e.g. *k*-means is *linear* in the number of objects).
- Divisive methods are thereby also generally more efficient than agglomerative, which are at least quadratic (single-link).
- Also able to initially consider the global distribution of the data, while the agglomerative methods must commit to early decisions based on local patterns.

Information Retrieval

Group search results together by topic

- Expand Search Query
- Who invented the light bulb?
- ► Word Similarity Clusters: invent, discover, patent, inventor innovator

- ► Grouping news from different sources
- ► Useful for journalists, political analysts, private companies
- ► And not only news: Social Media: Twitter, Blogs

- ► Analyze user interests
- ► Propose interesting information/advertisement
- ► Spy on users
- ► NSA
- Weird conspiracy theory

User Profiling

► Facebook

User Profiling

► Google

Google	free social analysis solider fields - french lessons About 22,000,000 results (0.37 seconds)	Your Ad Appears Here When potential customers search on Google.
Everything Vdoos Vore Pages toon teland Any time Past 2 days More search tools Search Ress	Learn French I war Rosen Jobin 2 war Southernet Leasons Evening French Lessons Starl June 14th. Only N 4 Show may of a Virzulana Share Upper, Dalha 2, Go Dalha French Lessons Starl June 14th. Only N 4 Show may of a Virzulana Share Upper, Dalha 2, Go Dalha French Lessons Leason French and Joburt Learn. Spreak Teach (*) Learn French with the Rosen Learn French and Joburt Learn. Spreak Teach (*) Learn French with French lenguage learns, Qualited Tuters, En German - Ved Congador: Dalh Yench - For Beginness French Lessons - Learn French and Joburt Learn. Spreak Teach (*) Learn French with the Robert French Inguage learns, Qualited Tuters, En French Lessons - Learn French office (*) Learn French with the Robert French Lenguage learns, Qualited Tuters, En Show more results from french Andul com , when the Congetor - Dalf Yench Lenguage learns, Context, Context, Context, Context, Congetor, Congetor .	Search on Google. The Franch & Surf Academy Control of the Surface Academy International Control of the Surface Academy International Control of the Surface Academy International Control of the Surface Academy Control of the Surface Academy Surface Academy Control of the Surface Academy International Control of the International Control of the Internation International Control of International Control International International Control International Control Internation International Control International Internation International Control Internation International Internation Internation Internation International Internation International Internation International Internation Internation Internation International Internation Internation Inte

- ► Lisp is Great!
- Vector Space Modeling
 - Represent objects as vector of features
 - Calculate similarity between vectors

Classification

- Supervised learning, requiring labeled training data.
- Given some training set of examples with class labels, train a classifier to predict the class labels of new objects.

Clustering

- Unsupervised learning from unlabeled data.
- Automatically group similar objects together.
- ► No pre-defined classes: we only specify the similarity measure.
- ► General objective:
 - Partition the data into subsets, so that the similarity among members of the same group is high (homogeneity) while the similarity between the groups themselves is low (heterogeneity).

- Structured classification
 - ► sequences
 - labelled sequences
 - ► trees

 Question 1: What is the cosine similarity of the vectors: A: [4,0,0,1,12,0,8,0]
 B: [0,1,2,0,0,1,0,3]

- ► Question 2: Which Classifier runs faster on new data: A: Rocchio
 - B: kNN

► Question 3: The classifier produced the following classification result :

	Classifier	Tag
Example1	В	А
Example2	В	В
Example3	А	А
Example4	А	В
Example5	А	А
Example6	А	А

► Calculate the precision, recall and F-Measure of class A

• Question 4: What is the main problem of the kMeans algorithm

- Question 1: What is the cosine similarity of the vectors: A: [4,0,0,1,12,0,8,0]
 B: [0,1,2,0,0,1,0,3]
- ► Answer: 0

- Question 2: Which Classifier runs faster on new data:
 A: Rocchio
 B: kNN
- ► Answer: Depends
- ► In general case Rocchio

Quiz (3)

► Question 3: The classifier produced the following classification result :

	Classifier	Tag
Example1	В	А
Example2	В	В
Example3	А	А
Example4	А	В
Example5	A	А
Example6	A	А

- ► Calculate the precision, recall and F-Measure of class A
- ▶ Answer: Precision 3/4 = 0.75 Recall 3/4 = 0.75

- ► Question 4: What is the main problem of the kMeans algorithm
- ► Answer: Sometimes it does not find the optimal solution