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Agenda

Yesterday
I Flat clustering
I k-Means

Today
I Bottom-up hierarchical clustering.

I How to measure the inter-cluster similarity (“linkage criterions”).

I Top-down hierarchical clustering.
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Types of clustering methods (cont’d)

Hierarchical
I Creates a tree structure of hierarchically nested clusters.
I Topic of the this lecture.

Flat
I Often referred to as partitional clustering when assuming hard and
disjoint clusters. (But can also be soft.)

I Tries to directly decompose the data into a set of clusters.
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Flat clustering

I Given a set of objects O = {o1, . . . , on}, construct a set of clusters
C = {c1, . . . , ck}, where each object oi is assigned to a cluster ci .

I Parameters:
I The cardinality k (the number of clusters).
I The similarity function s.

I More formally, we want to define an assignment γ : O → C that
optimizes some objective function Fs(γ).

I In general terms, we want to optimize for:
I High intra-cluster similarity
I Low inter-cluster similarity
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k-Means

Algorithm
Initialize: Compute centroids for k seeds.
Iterate:

– Assign each object to the cluster with the nearest centroid.
– Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

Properties
I In short, we iteratively reassign memberships and recompute centroids
until the configuration stabilizes.

I WCSS is monotonically decreasing (or unchanged) for each iteration.
I Guaranteed to converge but not to find the global minimum.
I The time complexity is linear, O(kn).
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kMeans Example
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kMeans Example
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kMeans Example
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kMeans Example
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Comments on k-Means

“Seeding”
I We initialize the algorithm by choosing random seeds that we use to
compute the first set of centroids.

I Many possible heuristics for selecting the seeds:
I pick k random objects from the collection;
I pick k random points in the space;
I pick k sets of m random points and compute centroids for each set;
I compute an hierarchical clustering on a subset of the data to find k initial
clusters; etc..

I The initial seeds can have a large impact on the resulting clustering
(because we typically end up only finding a local minimum of the
objective function).

I Outliers are troublemakers.
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Initial Seed Choice
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Initial Seed Choice
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Initial Seed Choice
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Hierarchical clustering

I Creates a tree structure of hierarchically nested clusters.

I Divisive (top-down): Let all objects be members of the same cluster;
then successively split the group into smaller and maximally dissimilar
clusters until all objects is its own singleton cluster.

I Agglomerative (bottom-up): Let each object define its own cluster;
then successively merge most similar clusters until only one remains.
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Agglomerative clustering

I Initially; regards each object as its
own singleton cluster.

I Iteratively “agglomerates”
(merges) the groups in a
bottom-up fashion.

I Each merge defines a binary
branch in the tree.

I Terminates; when only one cluster
remains (the root).

parameters: {o1, o2, . . . , on}, sim

C = {{o1}, {o2}, . . . , {on}}
T = []
do for i = 1 to n − 1
{cj , ck} ← arg max

{cj ,ck}⊆C ∧ j,k
sim(cj , ck)

C ← C\{cj , ck}
C ← C ∪ {cj ∪ ck}
T [i]← {cj , ck}

I At each stage, we merge the pair of clusters that are most similar, as
defined by some measure of inter-cluster similarity; sim.

I Plugging in a different sim gives us a different sequence of merges T.
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Dendrograms

I A hierarchical clustering
is often visualized as a
binary tree structure
known as a dendrogram.

I A merge is shown as a
horizontal line.

I The y-axis corresponds
to the similarity of the
merged clusters.

I We here assume dot-products of normalized vectors
(self-similarity = 1).
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Definitions of inter-cluster similarity

I How do we define the similarity between clusters?.
I In agglomerative clustering, a measure of cluster similarity sim(ci , cj) is
usually referred to as a linkage criterion:

I Single-linkage
I Complete-linkage
I Centroid-linkage
I Average-linkage

I Determines which pair of clusters to merge in each step.
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Single-linkage

I Merge the two clusters with the
minimum distance between any
two members.

I Nearest-Neighbors.

I Can be computed efficiently by taking advantage of the fact that it’s
best-merge persistent:

I Let the nearest neighbor of cluster ck be in either ci or cj . If we merge
ci ∪ cj = cl , the nearest neighbor of ck will be in cl .

I The distance of the two closest members is a local property that is not
affected by merging.

I Undesirable chaining effect: Tendency to produce ‘stretched’ and
‘straggly’ clusters.
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Complete-linkage

I Merge the two clusters where the
maximum distance between any
two members is smallest.

I Farthest-Neighbors.

I Amounts to merging the two clusters whose merger has the smallest
diameter.

I Preference for compact clusters with small diameters.

I Sensitive to outliers.

I Not best-merge persistent: Distance defined as the diameter of a merge
is a non-local property that can change during merging.
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Centroid-linkage

I Similarity of clusters ci and cj
defined as the similarity of their
cluster centroids ~µi and ~µj .

I Equivalent to the average
pairwise similarity between
objects from different clusters:

sim(ci , cj) = ~µi · ~µj = 1
|ci ||cj |

∑
~x∈ci

∑
~y∈cj

~x · ~y

I Not best-merge persistent.
I Not monotonic, subject to inversions: The combination similarity can
increase during the clustering.
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Monotinicity

I A fundamental
assumption in clustering:
small clusters are more
coherent than large.

I We usually assume that a
clustering is monotonic;

I Similarity is decreasing
from iteration to
iteration.

I This assumpion holds true for all our clustering criterions except for
centroid-linkage.
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Inversions — a problem with centroid-linkage

I Centroid-linkage is
non-monotonic.

I We risk seeing so-called
inversions:

I similarity can increase
during the sequence of
clustering steps.

I Would show as crossing
lines in the dendrogram.

I The horizontal merge bar is lower than the bar of a previous merge.
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Average-linkage (1:2)

I AKA group-average
agglomerative clustering.

I Merge the clusters with the
highest average pairwise
similarities in their union.

I Aims to maximize coherency by considering all pairwise similarities
between objects within the cluster to merge (excluding self-similarities).

I Compromise of complete- and single-linkage.

I Monotonic but not best-merge persistent.

I Commonly considered the best default clustering criterion.
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Average-linkage (2:2)

I Can be computed very efficiently
if we assume (i) the dot-product
as the similarity measure for (ii)
normalized feature vectors.

I Let ci ∪ cj = ck , and sim(ci , cj) = W (ci ∪ cj) = W (ck), then W (ck) =

1
|ck |(|ck | − 1)

∑
~x∈ck

∑
~y,~x∈ck

~x · ~y = 1
|ck | (|ck | − 1)


 ∑

~x∈ck

~x

2

− |ck |



I The sum of vector similarities is equal to the similarity of their sums.
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Linkage criterions

Single-link Complete-link

Centroid-link Average-link
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Cutting the tree

I The tree actually
represents several
partitions;

I one for each level.

I If we want to turn the
nested partitions into a
single flat partitioning. . .

I we must cut the tree.

I A cutting criterion can be defined as a threshold on e.g. combination
similarity, relative drop in the similarity, number of root nodes, etc.
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Divisive hierarchical clustering

Generates the nested partitions top-down:
I Start: all objects considered part of the same cluster (the root).
I Split the cluster using a flat clustering algorithm
(e.g. by applying k-means for k = 2).

I Recursively split the clusters until only singleton clusters remain (or
some specified number of levels is reached).

I Flat methods are generally very effective (e.g. k-means is linear in the
number of objects).

I Divisive methods are thereby also generally more efficient than
agglomerative, which are at least quadratic (single-link).

I Also able to initially consider the global distribution of the data, while
the agglomerative methods must commit to early decisions based on
local patterns.
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Information Retrieval

I Group search results together by topic
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Information Retrieval (2)

I Expand Search Query
I Who invented the light bulb?
I Word Similarity Clusters: invent, discover, patent, inventor innovator
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News Aggregation

I Grouping news from different sources
I Useful for journalists, political analysts, private companies
I And not only news: Social Media: Twitter, Blogs

30



User Profiling

I Analyze user interests
I Propose interesting information/advertisement
I Spy on users
I NSA
I Weird conspiracy theory
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User Profiling

I Facebook
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User Profiling

I Google
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What we have learned so far

I Lisp is Great!
I Vector Space Modeling

I Represent objects as vector of features
I Calculate similarity between vectors
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Two categorization tasks in machine learning

Classification
I Supervised learning, requiring labeled training data.
I Given some training set of examples with class labels, train a classifier
to predict the class labels of new objects.

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No pre-defined classes: we only specify the similarity measure.
I General objective:

I Partition the data into subsets, so that the similarity among members of
the same group is high (homogeneity) while the similarity between the
groups themselves is low (heterogeneity).
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What is next

I Structured classification
I sequences
I labelled sequences
I trees
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Quiz (1)

I Question 1: What is the cosine similarity of the vectors:
A: [4,0,0,1,12,0,8,0]
B: [0,1,2,0,0,1,0,3]
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Quiz (2)

I Question 2: Which Classifier runs faster on new data:
A: Rocchio
B: kNN
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Quiz (3)

I Question 3: The classifier produced the following classification result :
Classifier Tag

Example1 B A
Example2 B B
Example3 A A
Example4 A B
Example5 A A
Example6 A A

I Calculate the precision,recall and F-Measure of class A
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Quiz (4)

I Question 4: What is the main problem of the kMeans algorithm
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Quiz (1)

I Question 1: What is the cosine similarity of the vectors:
A: [4,0,0,1,12,0,8,0]
B: [0,1,2,0,0,1,0,3]

I Answer: 0
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Quiz (2)

I Question 2: Which Classifier runs faster on new data:
A: Rocchio
B: kNN

I Answer: Depends
I In general case Rocchio

42



Quiz (3)

I Question 3: The classifier produced the following classification result :
Classifier Tag

Example1 B A
Example2 B B
Example3 A A
Example4 A B
Example5 A A
Example6 A A

I Calculate the precision, recall and F-Measure of class A
I Answer: Precision 3/4 = 0.75 Recall 3/4 = 0.75
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Quiz (4)

I Question 4: What is the main problem of the kMeans algorithm
I Answer: Sometimes it does not find the optimal solution
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