INF4820: Algorithms for AI and NLP

Clustering

Milen Kouylekov & Stephan Oepen

Language Technology Group University of Oslo

Oct. 2, 2014

Yesterday

- \blacktriangleright Flat clustering
- \blacktriangleright *k*-Means

Today

- \blacktriangleright Bottom-up hierarchical clustering.
- \blacktriangleright How to measure the inter-cluster similarity ("linkage criterions").
- \blacktriangleright Top-down hierarchical clustering.

Hierarchical

- \triangleright Creates a tree structure of hierarchically nested clusters.
- \blacktriangleright Topic of the this lecture.

Flat

- \triangleright Often referred to as partitional clustering when assuming hard and disjoint clusters. (But can also be soft.)
- \triangleright Tries to directly decompose the data into a set of clusters.

Flat clustering

- Given a set of objects $O = \{o_1, \ldots, o_n\}$, construct a set of clusters $C = \{c_1, \ldots, c_k\}$, where each object o_i is assigned to a cluster c_i .
- \blacktriangleright Parameters:
	- \triangleright The cardinality *k* (the number of clusters).
	- ▶ The similarity function *s*.
- \triangleright More formally, we want to define an assignment γ : $O \to C$ that optimizes some objective function *Fs*(*γ*).
- \blacktriangleright In general terms, we want to optimize for:
	- \blacktriangleright High intra-cluster similarity
	- \blacktriangleright Low inter-cluster similarity

k-Means

Algorithm

Initialize: Compute centroids for *k* seeds.

Iterate:

- Assign each object to the cluster with the nearest centroid.
- Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

Properties

- \triangleright In short, we iteratively reassign memberships and recompute centroids until the configuration stabilizes.
- \triangleright WCSS is monotonically decreasing (or unchanged) for each iteration.
- \triangleright Guaranteed to converge but not to find the global minimum.
- \blacktriangleright The time complexity is linear, $O(kn)$.

Comments on *k*-Means

"Seeding"

- \triangleright We initialize the algorithm by choosing random seeds that we use to compute the first set of centroids.
- \blacktriangleright Many possible heuristics for selecting the seeds:
	- \rightarrow pick *k* random objects from the collection;
	- \triangleright pick k random points in the space;
	- \rightarrow pick *k* sets of *m* random points and compute centroids for each set;
	- \triangleright compute an hierarchical clustering on a subset of the data to find k initial clusters; etc..
- \triangleright The initial seeds can have a large impact on the resulting clustering (because we typically end up only finding a local minimum of the objective function).
- \triangleright Outliers are troublemakers.

Initial Seed Choice

Initial Seed Choice

Initial Seed Choice

- \triangleright Creates a tree structure of hierarchically nested clusters.
- \triangleright Divisive (top-down): Let all objects be members of the same cluster; then successively split the group into smaller and maximally dissimilar clusters until all objects is its own singleton cluster.
- \triangleright Agglomerative (bottom-up): Let each object define its own cluster; then successively merge most similar clusters until only one remains.

Agglomerative clustering

- \triangleright Initially; regards each object as its own singleton cluster.
- \blacktriangleright Iteratively "agglomerates" (merges) the groups in a bottom-up fashion.
- \blacktriangleright Each merge defines a binary branch in the tree.
- \triangleright Terminates; when only one cluster remains (the root).

parameters: {*o*1*, o*2*, . . . , on*}*,* sim

```
C = \{\{o_1\}, \{o_2\}, \ldots, \{o_n\}\}\T = \Boxdo for i = 1 to n - 1{c_j, c_k} \leftarrow \text{arg max} \quad \text{sim}(c_j, c_k){c_i, c_k}C C ∧ j \neq kC \leftarrow C \setminus \{c_i, c_k\}C ← C \cup \{c_i \cup c_k\}T[i] \leftarrow \{c_i, c_k\}
```
- \triangleright At each stage, we merge the pair of clusters that are most similar, as defined by some measure of inter-cluster similarity; sim.
- \blacktriangleright Plugging in a different sim gives us a different sequence of merges T.

Dendrograms

- 0.0 \triangleright A hierarchical clustering is often visualized as a 0.25 binary tree structure known as a dendrogram. 0.5 \triangleright A merge is shown as a horizontal line. 0.75 \blacktriangleright The *y*-axis corresponds to the similarity of the H D 1.0 G F B merged clusters.
- \triangleright We here assume dot-products of normalized vectors (self-similarity $= 1$).

- \blacktriangleright How do we define the similarity between clusters?.
- \blacktriangleright In agglomerative clustering, a measure of cluster similarity $\text{sim}(c_i, c_j)$ is usually referred to as a linkage criterion:
	- \triangleright Single-linkage
	- \triangleright Complete-linkage
	- \triangleright Centroid-linkage
	- \blacktriangleright Average-linkage
- \triangleright Determines which pair of clusters to merge in each step.

Single-linkage

 \blacktriangleright Merge the two clusters with the minimum distance between any two members.

- \blacktriangleright Nearest-Neighbors.
- \triangleright Can be computed efficiently by taking advantage of the fact that it's best-merge persistent:
	- \blacktriangleright Let the nearest neighbor of cluster c_k be in either c_i or $c_j.$ If we merge $c_i \cup c_j = c_l$, the nearest neighbor of c_k will be in c_l .
	- \triangleright The distance of the two closest members is a local property that is not affected by merging.
- ▶ Undesirable chaining effect: Tendency to produce 'stretched' and 'straggly' clusters.

Complete-linkage

- \blacktriangleright Merge the two clusters where the maximum distance between any two members is smallest.
- \blacktriangleright Farthest-Neighbors.

- \triangleright Amounts to merging the two clusters whose merger has the smallest diameter.
- \blacktriangleright Preference for compact clusters with small diameters.
- \blacktriangleright Sensitive to outliers.
- \triangleright Not best-merge persistent: Distance defined as the diameter of a merge is a non-local property that can change during merging.

Centroid-linkage

- \triangleright Similarity of clusters c_i and c_j defined as the similarity of their c luster centroids $\vec{\mu}_i$ and $\vec{\mu}_j$.
- \blacktriangleright Equivalent to the average pairwise similarity between objects from different clusters:

- \triangleright Not best-merge persistent.
- \triangleright Not monotonic, subject to *inversions*: The combination similarity can increase during the clustering.

Monotinicity

- 0.0 \triangleright A fundamental assumption in clustering: small clusters are more 0.25 coherent than large. 0.5 \triangleright We usually assume that a clustering is monotonic; 0.75 \blacktriangleright Similarity is decreasing from iteration to 1.0 H iteration.
- \triangleright This assumpion holds true for all our clustering criterions except for centroid-linkage.

Inversions — a problem with centroid-linkage

 \triangleright The horizontal merge bar is lower than the bar of a previous merge.

Average-linkage $(1:2)$

- \triangleright AKA group-average agglomerative clustering.
- \blacktriangleright Merge the clusters with the highest average pairwise similarities in their union.

- \triangleright Aims to maximize coherency by considering all pairwise similarities between objects within the cluster to merge (excluding self-similarities).
- \triangleright Compromise of complete- and single-linkage.
- \blacktriangleright Monotonic but not best-merge persistent.
- Commonly considered the best default clustering criterion.

Average-linkage (2:2)

 \triangleright Can be computed very efficiently if we assume (i) the *dot-product* as the similarity measure for (ii) normalized feature vectors.

$$
\text{Let } c_i \cup c_j = c_k \text{, and } \operatorname{sim}(c_i, c_j) = W(c_i \cup c_j) = W(c_k) \text{, then } W(c_k) =
$$
\n
$$
\frac{1}{|c_k|(|c_k|-1)} \sum_{\vec{x} \in c_k} \sum_{\vec{y} \neq \vec{x} \in c_k} \vec{x} \cdot \vec{y} = \frac{1}{|c_k|(|c_k|-1)} \left(\left(\sum_{\vec{x} \in c_k} \vec{x} \right)^2 - |c_k| \right)
$$

 \triangleright The sum of vector similarities is equal to the similarity of their sums.

Linkage criterions

Cutting the tree

- 0.0 \blacktriangleright The tree actually represents several 0.25 partitions; \triangleright one for each level. 0.5 \blacktriangleright If we want to turn the nested partitions into a 0.75 single flat partitioning. . . 1.0 \blacktriangleright we must cut the tree.
- \triangleright A cutting criterion can be defined as a threshold on e.g. combination similarity, relative drop in the similarity, number of root nodes, etc.

Generates the nested partitions top-down:

- \triangleright Start: all objects considered part of the same cluster (the root).
- \triangleright Split the cluster using a flat clustering algorithm (e.g. by applying k-means for $k = 2$).
- \triangleright Recursively split the clusters until only singleton clusters remain (or some specified number of levels is reached).
- \blacktriangleright Flat methods are generally very effective (e.g. k -means is *linear* in the number of objects).
- \triangleright Divisive methods are thereby also generally more efficient than agglomerative, which are at least quadratic (single-link).
- \triangleright Also able to initially consider the global distribution of the data, while the agglomerative methods must commit to early decisions based on local patterns.

Information Retrieval

Group search results together by topic

- ► Expand Search Query
- \triangleright Who invented the light bulb?
- ▶ Word Similarity Clusters: invent, discover, patent, inventor innovator

- \triangleright Grouping news from different sources
- \triangleright Useful for journalists, political analysts, private companies
- And not only news: Social Media: Twitter, Blogs

- \blacktriangleright Analyze user interests
- \blacktriangleright Propose interesting information/advertisement
- \blacktriangleright Spy on users
- \triangleright NSA
- \blacktriangleright Weird conspiracy theory

User Profiling

 \blacktriangleright Facebook

User Profiling

\triangleright Google

- \blacktriangleright Lisp is Great!
- ▶ Vector Space Modeling
	- \triangleright Represent objects as vector of features
	- \triangleright Calculate similarity between vectors

Classification

- \triangleright Supervised learning, requiring labeled training data.
- \triangleright Given some training set of examples with class labels, train a classifier to predict the class labels of new objects.

Clustering

- \triangleright Unsupervised learning from unlabeled data.
- \blacktriangleright Automatically group similar objects together.
- \triangleright No pre-defined classes: we only specify the similarity measure.
- \blacktriangleright General objective:
	- \triangleright Partition the data into subsets, so that the similarity among members of the same group is high (homogeneity) while the similarity between the groups themselves is low (heterogeneity).

- \triangleright Structured classification
	- \blacktriangleright sequences
	- \blacktriangleright labelled sequences
	- \blacktriangleright trees

▶ Question 1: What is the cosine similarity of the vectors: A: [4,0,0,1,12,0,8,0] B: [0,1,2,0,0,1,0,3]

- ▶ Question 2: Which Classifier runs faster on new data: A: Rocchio
	- B: kNN

- **Question 3**: The classifier produced the following classification result : Classifier $|$ Tag $Example1 \mid B \mid A$ $Example2$ B B B
	- $Example 4 \mid A \mid B$ $Example 5$ A A $Example 6$ A A

 $Example3$ A A

► Calculate the precision, recall and F-Measure of class A

▶ Question 4: What is the main problem of the kMeans algorithm

- ▶ Question 1: What is the cosine similarity of the vectors: A: [4,0,0,1,12,0,8,0] B: [0,1,2,0,0,1,0,3]
- **Answer**: 0

- ▶ Question 2: Which Classifier runs faster on new data: A: Rocchio
	- B: kNN
- **Answer: Depends**
- \blacktriangleright In general case Rocchio

Question 3: The classifier produced the following classification result :

- ► Calculate the precision, recall and F-Measure of class A
- **Answer:** Precision $3/4 = 0.75$ Recall $3/4 = 0.75$

- ▶ Question 4: What is the main problem of the kMeans algorithm
- **Answer:** Sometimes it does not find the optimal solution