
Obligatory exercise 2b, INF4820, fall 2015

This is the second and final part of the obligatory exercise 2. You can obtain up to 10 points for 2b, and you need a mi-
nimum of 12 points for 2a + 2b in total. Please read through the entire problem set before you start coding (4 pages).
If you have any questions, post them on our Piazza discussion board (alternatively email inf4820-help@ifi.uio.no).
Also remember that you can get expert help at the lab sessions. Answers must be submitted via Devilry by the end
of the day (23:59) on Sunday, October 11th.

Important note on the relation to exercise 2a

The programming we need to do for this assignment naturally extends on what we did for the previous one. To ensure
that everyone is starting out from a working and sufficiently efficient implementation, we will provide a solution
for 2a that you’re free to use if you want. If you prefer to instead continue building on your own implementation
from 2a, then that is also absolutely fine. Note that our source code for 2a will not be distributed until Sunday 27/9,
however, since some students have a 3-day extension to the 2a deadline due to illness. You still get an additional
two weeks to work on the assignment after that though, so just consider the time before Sunday as an opportunity to
get an early start. Moreover, the questions in section 3 are all theoretical and do not require working code from 2a.

Files you’ll need

We will be re-using the data sets from exercise 2a; ‘brown2.txt’ and ‘words.txt’. In addition, you’ll need the file
‘classes.txt’, containing lists of predefined classes and their members. If you ’svn update’ your INF4820 repo
you will find this file added to a new directory ’2b’. The sample solution for 2a will also be added to this directory.

Reading in the corpus data

The provided source file ‘solution2a.lisp’ includes an implementation of the function ‘read-corpus-to-vs’
taking two arguments; a corpus file and a file specifying the words to model. The function returns a vector space
model, defined in terms of the Lisp structure ‘vs’. Feel free to modify it or use it as is. Make sure to use compiled
(rather than just interpreted) code when dealing with large data sets, as this makes the code run faster.

The following call will create a length-normalized vector space model for the words in the file ‘words.txt’:

CL-USER(35): (defparameter vspace
(length-normalize-vs
(read-corpus-to-vs "brown2.txt" "words.txt")))

#S(VS :MATRIX ...
:SIMILARITY-FN ...
:CLASSES NIL
:PROXIMITY-MATRIX NIL)

As you can see, the structure definition of ‘vs’ in ‘solution2a.lisp’ has been extended with a few more slots to
accommodate the extensions to the vector space model that we will be implementing here. Please take some time to
familiarize yourself with the code in the provided source file.



1 Computing a proximity matrix and extracting kNN relations

(a) In this exercise you’ll implement what is sometimes called a proximity matrix (or a similarity matrix) for our
vector space model. For a given set of vectors {~x1, . . . , ~xn} the proximity matrix M is conceptually a square n× n
matrix where each element Mij gives the proximity of ~xi and ~xj .

We’ll here assume that the similarity measure in our semantic space model is the dot-product, as implemented in
assignment 2a (and stored in the slot named ‘similarity-fn’ of our abstract data type ‘vs’). In other words we
want Mij to store the value of the dot-product computed for the (length normalized) feature vectors ~xi and ~xj .

The reason why we want to compute and store all the pairwise similarities is that this will make it easier to later
extract lists of nearest neighbors in the space (more on that below). But such proximity matrices are also often used
as input to clustering algorithms, such as many instances of agglomerative clustering that are based on repeatedly
looking up pairwise similarities in every iteration (we’ll return to this later in lecture 7).

An important observation here is that, since most similarity measures are symmetric, including the dot-product, the
proximity matrix will also be symmetric. In other words, since ~xi · ~xj = ~xj · ~xi, we also have that Mij =Mji. This
means that we would waste a lot of space/effort if we stored/computed each of these identical values separately. Try
to take this into account when you choose a data structure and when you implement your functions for accessing
and updating the matrix.

Implement a function ‘compute-proximities’ that takes a vector space structure (‘vs’) as its single argu-
ment and then computes a proximity matrix for all the feature vectors in the space. Unless you’re re-using ‘solu-
tion2a.lisp’, add an extra slot ‘proximity-matrix’ to the ‘vs’ structure to store the result.

For testing purposes it might be helpful to write a function ‘get-proximity’ expecting three arguments: a ‘vs’
structure and two words. It should then return the dot-product of the two feature vectors that corrspond to the given
words. (Of course, it should look up the value from the proximity matrix, not actually compute the function.)

CL-USER(55): (compute-proximities vspace)
#S(VS ...)
CL-USER(56): (get-proximity vspace "kennedy" "nixon")
0.5411588
CL-USER(57): (get-proximity vspace "nixon" "kennedy")
0.5411588

(NB: Your exact proximity values would likely be different from these!)

(b) Write a function ‘find-knn’ that extracts a ranked list of the nearest neighbors for a given word in the space.
The function should take an optional argument specifying how many neighbors to return (defaulting to 5). Use the
stored values in the proximity-matrix to extract the ranked list. Example calls (your results might differ):

CL-USER(70): (find-knn space "egypt")
("italy" "america" "europe" "germany" "government")

CL-USER(71): (find-knn space "salt" 1)
("pepper")

2 Implementing a Rocchio classifier

(a) In this exercise we’ll implement a Rocchio classifier. The first thing we need to do is read in information about
which words are associated with which classes. Have a look at the file ‘classes.txt’. This file contains lists specifying
the class membership of the different words in our model. The first element in each list specifies the class name,
given as a Lisp keyword, e.g. ‘:foodstuff’. The second element is a list specifying the words associated with
the given class, e.g. ‘(potato food bread fish ...)’. Some of the words are unlabeled, however, and
these are listed as ‘:unknown’. The unknown words are the words we want to classify. The other words define our
training data. Note: The words found in the file ‘classes.txt’ are the same as those in the file ‘words.txt’. This means
that all the relevant feature vectors, both for the training items and the test items, are already available in our model.



Write a function ‘read-classes’ that reads the lists from the file ‘classes.txt’ and stores the information about
class-membership in the slot ‘classes’ in our ‘vs’ structure. Exactly how to store and organize that information
is up to you. (But you’ll want to make it easy to retrieve information about the members of each class, and perhaps
also make it possible to add more information about classes later, such as the corresponding centroid representation.
You probably also want to take care to convert all the words to lowercase strings.) Remember that the function
‘read’ is very handy for reading s-exps (like lists).

(b) The Rocchio classifier represents classes by their centroids ~µ. For a given class ci, the centroid vector ~µi is
simply the average of the vectors of the class members,

~µi =
1

|ci|
∑
~xj∈ci

~xj

where |ci| denotes the cardinality of the class (i.e., the number of class members as observed in the training data).
The class centroids are often not normalized for length, but in order to avoid bias effects for classes with different
sizes (classes with many members will typically have less sparse centroids and a larger norm), we will here define
our centroids to have unit length. By this we mean that their Euclidean length should be one; ‖~µi‖ = 1. Luckily we
implemented functionality for normalizing vectors in assignment 2a.

Write a function ‘compute-class-centroids’, expecting only a ‘vs’ structure as its argument. The function
should compute the length normalized centroids for each class. Store the centroids somewhere within the vector
space structure (for example adding it to the already existing ‘classes’ slot).

(c) We now have all the pieces we need in order to implement a Rocchio classifier and predict labels for all the
‘:unknown’ words. Write a function ‘rocchio-classify’ that for each unlabeled word in our model assigns
it the label of the class with the nearest centroid (using the dot-product as our similarity function).

As an example, the output of ‘rocchio-classify’ could look something like this:

CL-USER(73): (read-classes vspace "classes.txt")
NIL

CL-USER(74): (compute-class-centroids vspace)
NIL

CL-USER(75): (rocchio-classify vspace)
(("fruit" :FOODSTUFF 0.36678165) ("california" :PERSON_NAME 0.29967937)
("peter" :PERSON_NAME 0.3088614) ("egypt" :PLACE_NAME 0.30741462)
("department" :INSTITUTION 0.54971284) ("hiroshima" :PLACE_NAME 0.23045596)
("robert" :PERSON_NAME 0.59566414) ("butter" :FOODSTUFF 0.384543)
("pepper" :FOODSTUFF 0.36385757) ("asia" :PLACE_NAME 0.3986899)
("roosevelt" :TITLE 0.2597395) ("moscow" :PLACE_NAME 0.48412856)
("senator" :TITLE 0.3563019) ("university" :INSTITUTION 0.5805098)
("sheriff" :TITLE 0.22804888))

Among other things, this would mean that we found the centroid of the class ‘:place name’ to be the one closest
to the feature vector representing ‘egypt’, and that the dot-product of these two vectors is approximately 0.31.
(Your results might differ.)

(d) So far we haven’t said anything about the particular data type used for implementing the centroid vectors. We
have silently assumed that the data type is the same as what we’ve used for the feature vectors of individual words.
In a few sentences, discuss whether or not you believe this is a wise choice.



3 Classification theory

(a) Give an outline of the main differences between Rocchio classification and kNN classification. Limit your
discussion to no more than half a page.

(b) In just a couple of sentences, compare and contrast Rocchio classification and k-means clustering. What sets
these algorithms apart, and in what ways can they be considered similar? (We’re interested in rather general and
basic traits here.)

(c) One missing piece in the implementation above is evaluation. In a few sentences, outline what would need to
be done in order to evaluate our classifier here. Include some comments on the different strategies we could use for
computing our evaluation scores.

Good luck and happy coding!


	Computing a proximity matrix and extracting kNN relations
	Implementing a Rocchio classifier
	Classification theory

