
Algorithms for AI and NLP (Fall 2015), Problem Set (3a)

High-Level Goals

• Understand fully the computation of probabilities in Hidden Markov Models (HMMs);

• Design a data structure and associated functions to train an HMM from tagged training data;

• Implement the Viterbi decoding algorithm; train, test, and evaluate a near-realistic PoS tagger.

Background

This is part one (of two) of the third (and final) obligatory exercise in INF4820. You can obtain up to ten points
for this problem set (3a), and you need a minimum of twelve points (or 60,% of the total available) for (3a) and
(3b) in total. Please make sure you read through the entire problem set before you start coding (four pages). If
you have any questions, please email inf4820-help@ifi.uio.no and make sure to take advantage of the
laboratory sessions.

Answers must be submitted via Devilry by the end of the day (i.e. before 23:59 h) on Sunday, November 1. Please
provide your code and answers (in the form of Lisp comments) in a single ‘.lisp’ file.

Necessary Files

We will be using labeled data from the Penn Treebank (PTB) to train and evaluate our tagger. Furthermore, we
provide a ‘toy’ data file comprising the Eisner ice cream example from Jurafsky & Martin (2008), as well as an
auxiliary Lisp function to help you evaluate tagger outputs.

To obtain our data files and code for this problem set, please obtain updates from the SVN repository for the
course, e.g. (assuming you opted for the recommended directory location previously):�
�

�
�

cd ~/inf4820
svn update

Inside the new sub-directory ‘3a/’ you should see four new files—‘eisner.tt’, ‘wsj.tt’, ‘test.tt’, and
‘evaluate.lisp—which contain two sets of training data (one small, one large), a smaller amount of test
data, and the Lisp evaluation code. Note that ‘wsj.tt’ and ‘test.tt’ are parts of the PTB, for which UiO
holds a license for unlimited research use at the university. Please do not re-distribute these files.

All files ending in ‘.tt’ contain part-of-speech tagged ‘sentences’ (or sequences of observations of ice cream
consumption in the case of ‘eisner.tt’). Each sentence consists of a sequence of lines, where each line
provides one 〈oi, qi〉 pair, i.e. an observation and its label. On each line, the observation and label are separated
by one tab character (which can be referenced by name in Common Lisp as #\tab). Sentences are separated by
one blank line.

1 Theory: Hidden Markov Models

(a) Assume the following part-of-speech tagged training ‘corpus’ of just one sentence:�
�

�
�

still , time s move is being received well , once again .
RB , NNP POS NN VBZ VBG VBN RB , RB RB .



Ignoring smoothing and making the standard simplifying assumptions for a naïve bi-gram HMM (including
the assumption that the training corpus provides the full inventory of distinct tags and complete vocabulary),
calculate the following:

(i) For each tag t, the probability of t following the tag RB, i.e. P (t|RB)

(ii) The emission probabilities P (move|NNP), P (move|NN), and P (well|RB).

(b) In a few sentences, discuss the concept of smoothing and explain why it is important. How do the above
transition probabilities change when you apply Laplace smoothing? What is the probability of the tag
bi-gram 〈NN, POS〉, i.e. a common noun followed by the possessive marker?

(c) In a few sentences, summarize the key points of the Viterbi algorithm. What is the interpretation of each
cell in the trellis? What is the complexity of the algorithm, i.e. the number of computations performed in
relation to (i) the length of the input sequence and (b) the size of the tag set?

2 Representing our Tagger

(a) To represent HMMs in our code, we will again implement an abstract data type using defstruct. Define
a structure hmm that has at least:

– states: a structure containing legitimate states (tags) for our model;

– n: the number of legitimate tags (i.e. the number of elements in states);

– transitions: a structure to hold transition probabilities; and

– emissions: a structure to hold emission probabilities.

Choosing suitable data structures for transitions and emissions should be your main focus here.
The transitions component will be indexed by a pairs of states; we will assign numeric identifiers
to states for efficient storage and manipulation. Include a commentary sentence motivating your choice of
data structure(s) for the transition matrix.

The emissions component is indexed by a state and an observation (word). Why might we not want to
assign numeric identifiers to words? In this light, comment on your choice of data structure(s) for storing
emission probabilities.

(b) To hide the internals of our HMM implementation, write access functions transition-probability()
and emission-probability(). Both take an hmm object as their first argument, plus either two state
ids (transition-probability()) or a state id and a word string (emission-probability())
as additional arguments, and return the value stored in transitions or emissions, as appropriate.
Also write a state2id() function that takes an hmm and a state label (i.e. string) as arguments, and
returns an integer id. For states not yet known to the model, this function should allocate a new id, adding
the state to the states structure and incrementing n.

3 Reading the Training Data

(a) Write a function read-corpus() that takes two arguments, a file name corresponding to a labelled
training corpus, and an integer, specifying the size of the state set (not counting the initial and final states of
the HMM). The function should read the corpus, one line at a time, break each line into its observation and
label parts (both represented as Lisp strings), and count state bi-gram and labelled observation frequencies.
At this stage, store the counts in the transition and emission structures. In the next step, we will
turn these counts into probabilities.



Since we wish to model start and terminate transitions, your read-corpus() function needs to pay
attention to the empty lines that indicate sentence breaks, and include counts of (〈s〉, t) and (t, 〈/s〉) bi-
grams to model these.

? (setf eisner (read-corpus "~/inf4820/3a/eisner.tt" 2))

→ #S(HMM :STATES ("<s>" "H" "C" "</s>") :N 4 :TRANSITIONS ??? :EMISSIONS ???)

It will be important to have the correct counts, hence test your implementation of read-corpus() and
access functions on our sample file ‘eisner.tt’ carefully. Here is what we would expect at this point:

? (transition-probability eisner (state2id eisner "<s>") (state2id eisner "H"))

→ 77

? (transition-probability eisner (state2id eisner "C") (state2id eisner "H"))

→ 26

? (transition-probability eisner (state2id eisner "C") (state2id eisner "</s>"))

→ 44

? (emission-probability eisner (state2id eisner "C") "3")

→ 20

(b) Once you have all the (correct) counts, what remains to be done is to alter the values in the transitions
and emissions components to be relative frequencies, which are estimates of the probabilities P (si|si−1)
and P (oi|si). Write a function train-hmm() that, given an HMM recording frequency counts, destruc-
tively modifies the transitions and emissions components. For each transition and emission probability,
train-hmm() should retrieve the corresponding counts, compute the probability, and change the rele-
vant entry in the transitions and emissions data structures. Test to make sure your probabilities
look correct, for example:

? (setf eisner (train-hmm (read-corpus "~/inf4820/3a/eisner.tt" 2)))

? (transition-probability eisner (state2id eisner "C") (state2id eisner "H"))

→ 13/68

? (emission-probability eisner (state2id eisner "C") "3")

→ 5/34

4 Tagging with Viterbi

(a) Implement the Viterbi algorithm as a function viterbi() that takes two arguments, an HMM and an
input sequence, and returns the most probable sequence of state labels. You may find Chapters 5 and 6 in
Jurafsky & Martin (2008) a useful reference, in addition to your lecture notes.

Internally, the function should make use of two two-dimensional matrices: the so-called Viterbi trellis to
record, for each state s and each time point (i.e. input position) t, the maximum probability of being in state
s at time t; and the backpointer matrix that records the best path to each state. Ensure your implementation
can handle unseen data. Since we are not implementing a dedicated smoothing technique, a simple option
is to return a small default value for unseen data (e.g. 1/1000000). Again using the Eisner corpus, test to
see that your function does the right thing:

? (viterbi eisner ’("1" "1" "3" "3" "3" "3" "1" "1" "1" "1"))

→ ("H" "H" "H" "H" "H" "H" "C" "C" "C" "C")

(b) Now that it looks like your code works, we are ready to test on a real data set used commonly for PoS
tagging research for English. As we move to much larger data volumes, make sure to compile all your
code. Create an hmm using the ‘wsj.tt’ file and test your viterbi() function on a single sentence:

? (setf wsj (train-hmm (read-corpus "~/inf4820/3a/wsj.tt" 45)))

? (viterbi wsj ’("No" "," "it" "was" "n’t" "Black" "Monday" "."))

→ ("UH" "," "PRP" "VBD" "RB" "NNP" "NNP" ".")



The file ‘evaluate.lisp’ contains a function evaluate-hmm() that takes an HMM and the name of
a file containing tagged test data, and calls the viterbi() function on the observation sequences in the
test data. Use it to test your implementation:

? (evaluate-hmm wsj "~/inf4820/3a/test.tt")

→ 0.95744324

What accuracy does it return? If your accuracy is below 95%, this may indicate remaining problems in your
implementation. In our examples this far, we have used regular probabilities here to make debugging easier,
but any practical system would use log-probabilities, i.e. perform numeric computations in logarithmic
space. In a couple of sentences explain why log-probabilities are preferable, and implement the few changes
required to your implementation to take advantage of logarithmic space (in case you had not done so all
along).

Happy coding!
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