
1

M. Naci Akkøk, Fall 2004 Page 1Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

Week 2 Week 2 –– Beyond relational databases: OO DBMSBeyond relational databases: OO DBMS

INF5100INF5100
Advanced Database SystemsAdvanced Database Systems

(Previously INF3180, also based upon earlier INF312, IN(Previously INF3180, also based upon earlier INF312, IN--MDS and UNIKI 330)MDS and UNIKI 330)

Reference:
These foils are based upon foils by

Ragnar Normann, Gerhard Skagestein and Vera Goebel

M. Naci Akkøk, Fall 2004 Page 2Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

INFORMATION MODELS INFORMATION MODELS –– GeneralGeneral

INFORMATION
SYSTEM

UNIVERSE OF
DISCOURSE

(UoD)

INFLUENCEREGISTER

USERS

DOMAIN

PERCEPTION
OF

”REALITY”

”REALITY”

=

2

M. Naci Akkøk, Fall 2004 Page 3Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

INFORMATION MODELS INFORMATION MODELS –– Purpose of a modelPurpose of a model

INFORMATION
SYSTEM

CONCEPTUAL
MODEL

DESCRIPTION
OF

”REALITY”

PRESCRIPTION
OF THE
SYSTEM

”REALITY”

PARADIGM
influenced by

i.e., how one choses to
”see” or ”model” reality

M. Naci Akkøk, Fall 2004 Page 4Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

INFORMATION MODELS INFORMATION MODELS –– Beyond the relational modelBeyond the relational model

• SINCE…
The newer requirements are becoming too heavy to
carry for the relational model,

• WE ALSO CHOOSE TO LOOK AT OTHER
MODELS/DATABASES LIKE:

• Object-Oriented (OO) Databases
• To exploit the OO paradigm and to match the

OO languages
• Extended relational (ER) or object-relational (OR)

databases
• To allow for a smooth passage to the OO

world by adding OO functionality to relational
databases

• XML and XML-databases
• For document databases, semi-structured

data storage/retrieval, data-integration

GIS,
CAD, CAM,

MULTI-MEDIA etc.

RELATIONAL
TECHNOLOGY

We’ll look
at these

This comes
later

3

M. Naci Akkøk, Fall 2004 Page 5Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

A PARTIAL HISTORY A PARTIAL HISTORY –– Data models and standardsData models and standards

1970 1980 1990 2000

Extended relational
databases

SQL-2 (92)
SQL-3 (99)

OMG V.1 (91)

SGML (83 - 86) HTML (89 - 92) XML (96 -)

SIMULA (62 -)

Object oriented
distributed systems

GML
General
Markup

Language

ODMG V1.0 (93) ODMG V3.0 (00)

- OQL
- OML

- OMA
- CORBA

CORBA 3.x (00)

Object/Data-
standards
fusion ?

SMALLTALK
C++

EIFFEL

Relational
Databases

Object-Oriented
Databases

Object-Relational
Databases

Semi-Structured
Databases

- IDL

- ODL

OUR
FOCUS
TODAY

M. Naci Akkøk, Fall 2004 Page 6Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THEY ARE
PERSISTENT!

A CENTRAL CONCEPT A CENTRAL CONCEPT –– PersistencePersistence

• From the perspective of the program:
Objects die at program termination.

• From the perspective of the database (also user and
the world external to the program):
Objects live after program termination – forever, until they
are explicitly removed.

THEY ARE
TRANSIENT!

Is it possible to
combine those two
perspectives?

4

M. Naci Akkøk, Fall 2004 Page 7Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

HOW TO ACHIEVE PERSISTENCEHOW TO ACHIEVE PERSISTENCE

• Explicitly transfer “objects” to and from
a permanent storage by read/write -
commands

• Database separated from the
program

• Make “objects” persistent by the
program
(SQL Create, bind object to database)

• Database integrated with the
program
(The Single Storage Illusion)

“virtual
permanent

storage”

hidden from
the program

read/write

M. Naci Akkøk, Fall 2004 Page 8Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

DATABASE INTEGRATED WITH THE PROGRAMDATABASE INTEGRATED WITH THE PROGRAM

• The usual programming language (Java, C++, Smalltalk)
should also be a Object Manipulation Language

• Transient and persistent objects should be handled the
same way
– simple programming

• All types of objects should be able to be persistent
(Type and persistence are orthogonal)

5

M. Naci Akkøk, Fall 2004 Page 9Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

SCHEMAS AND PROGRAMSSCHEMAS AND PROGRAMS

Database Management System

Schema
Preprocessor

Query
Processor

Application
Programming

Interface

Schema
text

Program
text

Compiler

Application
Program

Developer

Users

DDL
ODL

DML
OML

M. Naci Akkøk, Fall 2004 Page 10Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

SCHEMA AND MANIPULATION LANGUAGESSCHEMA AND MANIPULATION LANGUAGES

• Relational databases:
The schema language (DDL) and the manipulation language
(DML) are integrated in the same language (SQL)

• OO-databases:
The schema language (ODL, IDL) is a separate language

Why do OO-databases
have a separate ODL
language?

6

M. Naci Akkøk, Fall 2004 Page 11Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE IMPEDANCE MISMATCHTHE IMPEDANCE MISMATCH

The ”impedance mismatch”
problem shows up when the
DBMS and the application
program are working with
different types of operands
(elements/sets/containers)Database Management System

Schema
Preprocessor

Query
Processor

Application
Programming

Interface

Schema
text

Program
text

Compiler

Application
Program

M. Naci Akkøk, Fall 2004 Page 12Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

SOLVING THE IMPEDANCE MISMATCH PROBLEMSOLVING THE IMPEDANCE MISMATCH PROBLEM

• Let the API mimic a navigational view into the database
(the SQL-solution – ”cursors”)

• Give the database navigational capabilities

• Give the application programming languages container
capabilities

7

M. Naci Akkøk, Fall 2004 Page 13Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

OBJECTOBJECT--ORIENTED DATABASESORIENTED DATABASES

I contain objects,
not data!

We will talk about models
and concepts, but not so
much about how to model!

M. Naci Akkøk, Fall 2004 Page 14Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE BASIC PRICIPLE OF OBJECTTHE BASIC PRICIPLE OF OBJECT--ORIENTATIONORIENTATION

Model the mini-world (Universe of Discourse, UoD) as
a collection of cooperating, related units, called

objects

message

System

8

M. Naci Akkøk, Fall 2004 Page 15Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THIRTEEN OODBMS COMMANDMENTSTHIRTEEN OODBMS COMMANDMENTS

• Rules that make it an OO system:
• Thou shalt support complex objects
• Thou shalt support object identity
• Thou shalt encapsulate thine objects
• support types or classes
• Thine classes or types shalt inherit from their ancestors
• Thou shalt not bind prematurely
• Thou shalt be computationally complete
• Thou shalt be extensible

• Rules that make it a DBMS :
• Thou shalt remember thy data
• Thou shalt manage very large databases
• Thou shalt accept concurrent users
• Thou shalt recover from hardware and software failures
• Thou shalt have a simple way of querying data

Atkinson et al.:
The Object Oriented

Database System Manifesto
(1990)

M. Naci Akkøk, Fall 2004 Page 16Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

OO CONCEPTS (GENERAL)OO CONCEPTS (GENERAL)

• Abstraction and autonomy
• object: <value, {operators}>
• value: data structure
• encapsulation (information hiding)
• request of performance from other objects

• Classification
• common description (intension)
• collection of similar objects (extension)

• Taxonomy
• super-/sub-classes
• inheritance of properties
• polymorphism

What are the
most important
concepts from a
database point
of view?

9

M. Naci Akkøk, Fall 2004 Page 17Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

CHARACTERISTICS OF OBJECTSCHARACTERISTICS OF OBJECTS

• Objects have a permanent, immutable, not reusable identity
– the Object identifier (OID)

• Objects remember (they have a state)

• Objects have a behavior (they have methods)

Object-name

STATE, i.e.,
ATTRIBUTES
with values

METHODS

messages

interface

OID

M. Naci Akkøk, Fall 2004 Page 18Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

OBJECT IDENTITY OBJECT IDENTITY OBJECT IDENTIFIER OBJECT IDENTIFIER OIDOID

• Objects exist independently of their (current) values
• modifications of any kind result in “same” object
• no misleading references to objects
• “identity” ≠ “equality” (both needs to be expressible)

• Object identity cannot (reliably) be based on ordinary
values provided by application (value orientation)
... but on surrogates: object identifiers being

• (system-wide) unique
• unchanged during object lifetime
• not reused after object deletion
• generally system-managed

“generic” object operators:
• object comparison
• object retrieval
• ...

based on OID

10

M. Naci Akkøk, Fall 2004 Page 19Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

OBJECT OBJECT -- LITERALLITERAL

Name of
structured literal type
structured literal element
enumeration atomic literal type
enumeration literal
basic atomic literal type

Name of
atomic object type
object attribute

struct Seat {
Passenger passenger;

enum Class {first, business, tourist} class;

string seat;

}

class Passenger {
attribute string name;

attribute Person nextOfKind;

}

23F

tourist

23F

tourist

JensenJensen

Seat Passenger Person

passenger

class

seat

name

nextOfKind

structured literal object valueliteral object

from Dag Belsnes

M. Naci Akkøk, Fall 2004 Page 20Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

NONNON--ATOMIC OBJECTATOMIC OBJECT

Collections

• Set<T> Unordered set of different objects of type T
• Bag<T> Unordered collection of objects of type T,

duplicates allowed.
• List<T> Ordered collection of objects of type T.
• Array<T> Ordered, indexed collection of objects of type T.
• Dictionary<T> Set of object pairs of type T

(struct Association {Object key, Object value; } ;)

NOTE: An iterator can be created to traverse a collection.

Structured (predefined)
• Date, Time, Timestamp, Interval

11

M. Naci Akkøk, Fall 2004 Page 21Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

NONNON--ATOMIC LITERALSATOMIC LITERALS

• Collections
• as for objects:

set<t>, bag<t>, list<t>, array<t>, dictionary<t>

• Structured
• predefined: date, time, timestamp, interval
• user defined: struct { … }

struct Address

{ string street;

unsignedshort number;

unsignedshort postNo;

string postArea;

}

M. Naci Akkøk, Fall 2004 Page 22Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

CONSTRUCTION OF COMPLEX OBJECTSCONSTRUCTION OF COMPLEX OBJECTS

Degrees of freedom:

• Which
constructors?

• Which base types?

• References,
subobjects,
explicit
relationships

OBJECT ref

basicsCOMPLEX VALUE
CONSTRUCTORS

Lists
Sets

Arrays
Tuples

….

Object
construction

Value
construction

from Vera Goebel

12

M. Naci Akkøk, Fall 2004 Page 23Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

SUBSUB--OBJECTS VERSUS REFERENCES TO OBJECTSOBJECTS VERSUS REFERENCES TO OBJECTS

e.g. path in design of
VLSI cell

e.g. disk drive
in PC

Not sharable
subobjects
(physical)

e.g. chapter
in book

e.g. module in
software system

Sharable
subobjects
(logical)

Dependent
subobjects
(no own existence)

Independent
subobjects
(own existence)

from Vera Goebel

M. Naci Akkøk, Fall 2004 Page 24Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

CONSTRUCTION OF COMPLEX VALUES AND OBJECTSCONSTRUCTION OF COMPLEX VALUES AND OBJECTS

from Vera Goebel

V1 = tuple of (name: ”Solskjær”, salary: 4000)
V2 = tuple of (name: ”Berg”, salary: 2000)
V3 = tuple of (name: ”Dæhli”, salary: 1000)

V4 = tuple of (name: ”Hermansen”,
address: tuple of (zipcode: N-0157,

city: ”Oslo”,
street: ”Tollbudgata”,
phone: set of (22 93 54 32, 977 54 36)),

salary: 2000)

V5 = tuple of (depname: ”finance” employees: set of (V1, V2, V3)

V5 = tuple of (depname: ”finance” employees: set of (O1, O2, O3)
O4 = < •, V6, •>

V5 = tuple of (depname: ”finance” employees: set of (ref O1, ref O2, ref O3)
O4 = < •, V7, •>

O1 = < •, V1, •>
O2 = < •, V2, •>
O3 = < •, V3, •>

13

M. Naci Akkøk, Fall 2004 Page 25Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

OPERATORS FOR COMPLEX OBJECTSOPERATORS FOR COMPLEX OBJECTS

from Vera Goebel

For composite objects:
• one-level operators
affect topmost level only, NOT subobjects

• multilevel (”transitive”) operators
potentially affect ALL direct and indirect subobjects
(”propagation effect”)

Object := <OID, value, {operators}>

Value operators Generic object operators

Processing of entire objects
(transitively; depending on actual structure)

retrieve/delete/copy object (parts)
modify values

Processing of individual object levels
(nontransitively; structure irrelevant)

retrieve/delete/copy object

Structure related operators (insert/remove subobjects; navigation in object structures

(also) included: value-based selection of desired objects

M. Naci Akkøk, Fall 2004 Page 26Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

NOTIONS OF EQUALITYNOTIONS OF EQUALITY

• Shallow equality
• References are equal (same OID)

• Deep equality
• the objects are of atomic type and have the same value,
- or -
• the objects are of reference type, and the deep equals

operator is true for the two referenced objects,
- or -
• the objects are of structured type, and the deep equals

operator is true for all the corresponding subparts of the
two objects

14

M. Naci Akkøk, Fall 2004 Page 27Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

CLASSIFICATIONCLASSIFICATION

• Identification and description of a concept as a type

• A type has an external specification
and one or more implementations

• The specification defines the external aspect, visible to the
user of the type:

• operations that can be invoked on the instances
• properties (or state variables), whose values can be

accessed
• exceptions that can be raised by the operations

M. Naci Akkøk, Fall 2004 Page 28Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

INTESION and EXTENSIONINTESION and EXTENSION

Person

classification

intension

extension

Person

Per:Person

Gro:Person
Anne:Person

UML

theGuy:Person

Why am I
here?

15

M. Naci Akkøk, Fall 2004 Page 29Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

SPECIFICATIONSSPECIFICATIONS

• Interface definition
Specification of the abstract behavior of an object type

• Class definition (abstract class)
Specification of the abstract behavior and abstract state of
an object type

• Literal definition
specification of the abstract state of a literal type

ClassInterface

Abstract behavior
(operations)

Literal

Abstract state
(properties)

Cattell et al.: The
Object Data Standard:
ODMG 3.0, Figure 2-1

M. Naci Akkøk, Fall 2004 Page 30Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

INTERFACE DEFINITION EXAMPLEINTERFACE DEFINITION EXAMPLE

interface Object

{

Enum Lock_Type{read, write, upgrade};

Void lock(in Lock_Type mode) raises
(LockNotGranted);

Boolean try_lock(in Lock_Type mode);

boolean same_as(in Object anObject);

Object copy();

void delete();

}

• If there is an attribute in the interface definition, this just
says that it should be possible to read/write that attribute –
it does not belong to the state

All user-defined
objects inherit
automatically this
Object interface

16

M. Naci Akkøk, Fall 2004 Page 31Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

CLASS DEFINITION EXAMPLECLASS DEFINITION EXAMPLE

class Person {
(extent persons key ssn) {
exception NoSuchPerson { } ;
attribute string name;
readonly attribute string ssn;
attribute Address address;
relationship <Person> spouse inverse Person::spouse;
relationship list<Person> children inverse Person::parents;
relationship set>Person>parents inverse Person::children;
void marriage (in string ssn) raises(NoSuchPerson);
unsigned short descendants(out set<Person> inheritors);

}

Objects will automatically be
members of this collection –
very useful for queries!

M. Naci Akkøk, Fall 2004 Page 32Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

LITERAL DEFINITION EXAMPLELITERAL DEFINITION EXAMPLE

struct Address
{

string street;
unsigned short number;
unsigned short postNo;
string postArea;

}

17

M. Naci Akkøk, Fall 2004 Page 33Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

TYPE/CLASS HIERARCHIES, INHERITANCETYPE/CLASS HIERARCHIES, INHERITANCE

• Object types not always independent of each other
• TAXONOMY: generalization/specification

⇒ subtypes/supertypes, is_a-relationship
• Considerable variation in details:

• interface hierarchy (with regard to operators)
• implementation hierarchy (with regard to operators,

representation)
• extension hierarchy (with regard to membership of instances)

• Instances of subtypes inherit properties from supertypes

Advantages of the inheritance principle:
o code reusability (when operators are inherited)
o representation of additional semantics
o design discipline (stepwise refinement)

M. Naci Akkøk, Fall 2004 Page 34Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

VARIATIONS IN THE INTERPRETATION OF SUBTYPESVARIATIONS IN THE INTERPRETATION OF SUBTYPES

B is_a A

• Taxonomy
• where an A-object is required, a B-object may be used
• implementation of B uses implementation of A
• sets (extensions) of instances: {B} ⊆ {A}

• Inheritance of
• value types
• external interfaces (signatures of operator set)
• code
• simple polymorfism (cncrete operation inherits

definition)

18

M. Naci Akkøk, Fall 2004 Page 35Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

SIMPLE OR MULTIPLE INHERTIANCE?SIMPLE OR MULTIPLE INHERTIANCE?

• Rules for inheritance
• simple inheritance (type hierarchy)
• multiple inheritance (type lattice)

• The ODMG object model:
• interfaces and classes may inherit from multiple

interfaces (denoted by :)
• classes can inherit only from a single class

(denoted by extends)

A pragmatic decision!

Example:
class TeacherAssistant extends Employee:StudentIF {…}

M. Naci Akkøk, Fall 2004 Page 36Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

BUILTBUILT--IN INTERFACES OF THE OBJECT MODELIN INTERFACES OF THE OBJECT MODEL

Object

Iterator Collection Date Time-
stamp Time Interval

Set List Bag Array Dictionary

Elmasri & Navathe Figure 12.2 (page 394)
For an overview of the definition of the interfaces,

see Elmasri & Navathe Figure 12.1a & 12.1b

structured objects
Bidirectional

Iterator

19

M. Naci Akkøk, Fall 2004 Page 37Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

PROPERTIES OF OBJECTSPROPERTIES OF OBJECTS

• State-properties
• Attributes
• Relationships

• Operator-properties
• Operations
• … with exceptions

M. Naci Akkøk, Fall 2004 Page 38Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE STATETHE STATE

The state of an object is the union of the current values of its
• attributes - literals, “collections” and OIDs
• relationships

Object-name

STATESTATE, i.e.,
ATTRIBUTES
with values

METHODS

messages

interface

OID

20

M. Naci Akkøk, Fall 2004 Page 39Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

MODELING STATE PROPERTIESMODELING STATE PROPERTIES

• Attributes
Defines the abstract state of the instances of the class
class Person {

attribute short age;
attribute string name
attribute enum gender {male, female};
attribute Address home_address;
attribute set<Phone_no> phones;
attribute Department dept;

}

• Relationships

Defines relationships between two types
class Professor {

…
relationship set<Course> teaches

inverse Course::is_taught_by;
}
class Course {

…
relationship Professor is_taught_by

inverse Professor::teaches;
}

Why do we have
relationships?

Please stop giggling.

M. Naci Akkøk, Fall 2004 Page 40Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

MODELING BEHAVIOR: OPERATIONSMODELING BEHAVIOR: OPERATIONS

• Operation signatures – the interface of an operation
• Name of operator
• List of parameters
• Type of result
• Exceptions that may be raised

• Overloading
• Operator name may be reused under the condition that

the parameter list is different

21

M. Naci Akkøk, Fall 2004 Page 41Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

OPERATORSOPERATORS

• System defined (predefined)
• Type-specific

• (at least) for atomic values
• overloading possible

• Generic
• for composite values only
• uniform applicability for all values built by a given

constructor

• User-defined
• building upon predefined or other user-defined operators
• appropriate mechanism needed

M. Naci Akkøk, Fall 2004 Page 42Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

ENCAPSULATIONENCAPSULATION

• The state is not directly accessible from outside –
it can only be inspected or changed by calling methods
(i.e. sending messages)

• The implementation of the operator bodies is hidden –
only the signatures are visible from outside

Object-name

STATESTATE, i.e.,
ATTRIBUTES
with values

METHODS

messages

interface

OID

22

M. Naci Akkøk, Fall 2004 Page 43Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

DEGREES OF ENCAPSULATIONDEGREES OF ENCAPSULATION

a) complete encapsulation
(all accesses exclusively
by calling defined
operations)

b) write-encapsulation
(”direct” read-access
allowed)

c) partial encapsulation
arbitrary ”direct”
access to public data
allowed)

from Vera Goebel

M. Naci Akkøk, Fall 2004 Page 44Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

POLYMORPHISMPOLYMORPHISM

• Overloading: Use of same name for different operators (in
different types)

• Overriding: Reimplementation of operator bodies on lower
level of type hierarchy

• Requires ”late” binding
… of an operator name to an associated implementation (… to a type)

• Operators: generic ↔ overloaded ↔ individual

print_geometric_object (o: g_obj)
(implemented for circles, rectangels, triangles etc)

for all x in M do print_geometric_object(x);

- versus -

for all x in M do case x is circle: print_circle(x);
x is rectangle: print_rectangle(x);
x is triangle: print_triangle(x);
otherwise (exception handling);

23

M. Naci Akkøk, Fall 2004 Page 45Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

(INTEGRITY) CONSTRAINTS ON OBJECTS(INTEGRITY) CONSTRAINTS ON OBJECTS

• Mostly implemented in methods (per type/class)

• Inherited along type/class hierarchy

• Explicit relationships / consistency constraints

• Key constraints

M. Naci Akkøk, Fall 2004 Page 46Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE META LEVELTHE META LEVEL

Object Database
Management System

Compiler/
Schema
processor

Schema
text

User
Programs

Developers

Users

ODL

What are the meta-
classes/interfaces, and how
are the semantics ?

24

M. Naci Akkøk, Fall 2004 Page 47Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE META LEVELTHE META LEVEL

RepositoryObject

MetaObject

DefiningScope Operation Exception Property Constant

OperandScope

Type

CollectionInterface Attribute Relationship

DictionaryClass
jf. Cattell et. al:

The Object Data Standard
ODMG 3.0 , page 42-53

M. Naci Akkøk, Fall 2004 Page 48Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

ONCE MORE: HOW TO MAKE OBJECTS PERSISTENTONCE MORE: HOW TO MAKE OBJECTS PERSISTENT

• Seamless integration of DBS and programming language
two types of objects: transient and persistent objects

• Persistence specified explicitly by
(1) Naming
- or -
(2) Reachability

• Via entry points into the database
(1) persistent collections
- or -
(2) root of network of connected objects (by references)

25

M. Naci Akkøk, Fall 2004 Page 49Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE ODMG OBJECT MODELTHE ODMG OBJECT MODEL

• ODMG = Object Data Management Group
• Basic building blocks:

• Object, each object has a unique identifier (OID)
• Literal, no OID, represents a value

(possible with a complex structure)
• Objects and literals are classified by their types
• An object has a set of state-properties

• The attributes of the object
• The relationships between the object and other objects

• The state of an object is the value of its state-properties
• An object has a set of operation-properties.

These operations can be executed by the object and make
up the behavior of the object

M. Naci Akkøk, Fall 2004 Page 50Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE CHOICES MADE IN THE ODMG OBJECT MODEL #1THE CHOICES MADE IN THE ODMG OBJECT MODEL #1

Types, instances, interfaces, and implementations:
• Objects are instances of types
• A type defines the behavior and state of its instances
• Behavior is specified as a set of operations
• An object can be an immediate instance of only one type
• The type of an object is determined statically at the time

the object is created; objects do not dynamically acquire
and lose types

• Types are organized into a subtype-supertype graph
• A type may have multiple supertypes
• Supertypes are explicitly specified; subtype-supertype

relationships between types are not deduced from signature
compatibility of the types

26

M. Naci Akkøk, Fall 2004 Page 51Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

THE CHOICES MADE IN THE ODMG OBJECT MODEL #2THE CHOICES MADE IN THE ODMG OBJECT MODEL #2

Operations:
• Operations have signatures that specify the operation name,

arguments, and return values
• Operations are defined on a single type – the type of thier

distinguished first argument – rather than on two types
• Operations may take either literals or objects as their

arguments. Semantics of argument passing is pass by
reference

• Operations are invoked
• Operations may have side effects
• Operations are implemented by methods in the

implementation portion of the type definition

M. Naci Akkøk, Fall 2004 Page 52Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

PROPERTIES OF THE OO DATA MODEL (OODM)PROPERTIES OF THE OO DATA MODEL (OODM)

• Object identity
• Complex (composite) objects
• Types / classes
• User-definable types
• Language completeness
• Encapsulation
• Type/class hierarchies
• Overloading / overriding / late binding (polymorphisms)

… ALL ORTHOGONAL!

27

M. Naci Akkøk, Fall 2004 Page 53Department of Informatics, University of Oslo, Norway
INF5100 – Advanced Database Systems

NOT PART OF THE OODM DEFINITION (ON PURPOSE)NOT PART OF THE OODM DEFINITION (ON PURPOSE)

Also needed/provided in “new” DBS:

• Object versions
• Specific realization (implementation) of concepts
• Distribution (client/server architectures)
• Specific processing aspects, e.g., new transaction

mechanisms
• Rule-based mechanisms (active / deductive features)

... and much more

