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Motivation
In a distributed system, the performance of every single 
machine is important
− poor performance of one single node might be sufficient to “kill” the 

system (not better than the weakest)

Managing the server side machines are challenging
− a large number of concurrent clients
− shared, limited amount of resources

We will see examples where simple, small changes improve 
performance
− decreasing the required number of machines
− increase the number of concurrent clients
− improve resource utilization
− enable timely delivery of data
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Overview

Server examples

Resources, real-time, “continuous” media streams, …

(CPU) Scheduling

Next time, memory and storage

Server Examples
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(Video) Server Product Examples

1) Real server, VXtreme, Starlight, VDO, Netscape Media Server,
MS Media Server, Apple Darwin, …

user level server

standard
OS

all standard HW

RTP
RTSP

2) IBM Mediastreamer, 
Oracle Video Cartridge, 
N-Cube, …
user level layer

scalable, RT-aware OS,
RT OS, or

OS derivation

custom/special HW

ATM, analog
DSM CC, private

3) SGI/Kassena Media Base,
SUN Media Center, 
IBM Video Charger, …

user level server

RT
extensions

selected
standard HW

RTP
RTSP

standard
OS

MM
FS
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user
kernel

server

Real Server
User space implementation
− one control server
− several protocols
− several versions of data 

in same file
− adapts to resources

Several formats, e.g., 
− Real’s own
− MPEG-2 version with 

“stream thinning”
(dropped with REAL )

Does not support
− Quality-of-Service
− load leveling 
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VSD
with 
EDF

IBM Video Charger
May consist of one 
machine only, or …
… several IBM’s Advanced 
Interactive eXecutive
(AIX) machines
Servers
− control
− data

Lightly modified existing 
components
− OS AIX4/5L
− virtual shared disks (VSD)

(guaranteed disk I/Os)

Special components
− TigerShark MMFS

(buffers, data rate, 
prefetching, codec, ...)

− stream filters, control 
server, APIs, ...

control  

AI
X 

SP
2 

cr
os

sb
ar
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w
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h

specific
control server 

RTSP

RTPencryptfilter

TigerShark
MMFS

VSD     

UDP     

IP      

distributed computing 
environment RPC

video stream API 

mlib API

DESCRIBE
SETUP
PLAY
TEARDOWN
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n4x media hubs:
• Intel 860 Chip Set 
• Intel 1.5 GHz Xeon CPU
• Up to 2 GB Rambus Memory
• Five 64 bit 66Mhz PCI slots
• “Special” PCI slot (HIB board)
• nHIO hypercube I/O

request

nCUBE
Original research from Cal Tech/Intel (‘83)
Bought by C-COR in Jan. 05 (~90M$)

One server scales from 1 to 256 machines, 
2n, n ∈ [0, 8], using a hypercube architecture

Why a hypercube?
− video streaming is a switching problem
− hypercube is a high performance scalable switch
− no content replication and true linear scalability
− integrated adaptive routing provides resilience

Highlights
− one copy of a data element
− scales from 5,000 to 500,000 clients
− exceeds 60,000 simultaneous streams
− 6,600 simultaneous streams at 2 - 4 Mbps each

(26 streams per machine if n = 8)

Special components
− boards with integrated components
− TRANSIT operating system
− n4 HAVOC (1999)

• Hypercube And Vector Operations Controller
• ASIC-based hypercube technology 

− n4x nHIO (2002)
• nCUBE Hypercube I/O controller (8X performance/price) memory PCI bus

configurable
interface

8 hypercube 
connectors

vector processorSCSI ports
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Content striped across
all disks in the n4x server

Video Video 
StreamStream

Disks connected to All MediaHubs
− Each title striped across all MediaHUBs
− Streaming Hub reads content

from all disks in the video server

Automatic load balancing
− Immune to content usage pattern
− Same load if same or different title
− Each stream’s load spread over all nodes

RAID Sets distributed across MediaHubs
− Immune to a MediaHUB failure
− Increasing reliability

Only 1 copy of each title ever needed
− Lots of room for expanded content,

network-based PVR, or HDTV content

nCUBE: Naturally load-balanced
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Small Comparison

server in both kernel 
and user space

user space server 
and loadable kernel 

modules

user space server

cluster machines 
using wired cube

cluster machines 
using switch

single OS image

shared disk access,
no replication

shared disk access,
no replication 

(except for load leveling and fault tolerance)

each machine its 
own storage, or NFS

special HWselected HWstandard HW

nCUBEVideo ChargerReal
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(Video) Server Structures

INF5071,  Autumn 2007,  Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Server Components & Switches

storage device

network attachment

memory management

file system

storage management

controller

switch

switch

switch

switch

switch

[Tetzlaff & Flynn 94]
IP, …

RPC in application, …

NFS, …

AFS, CODA, …

distributed OS, …

Disk arrays (RAID), …

IBM TigerShark switch

IBM TigerShark

switched network

switch

HP, DEC, Novell, …

HP, DEC, Novell, ….

switched network

switch
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Server Topology – I 

Single server
− easy to implement
− scales poorly

Partitioned server
− users divided into groups
− content : assumes equal groups
− location : store all data on all servers
− load imbalance

Network

Network

Network
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Server Topology – II
Externally switched servers
− use network to make server pool
− manages load imbalance

(control server directs requests)
− still data replication problems
− (control server doesn’t need to be a 

physical box - distributed process)

Fully switched server
− server pool
− storage device pool
− additional hardware costs
− e.g., Oracle, Intel, IBM

Network

data

data

data

control

Network

data

data
control

I/O
switch
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Pull model:
− client sends several requests 
− deliver only small part of data
− fine-grained client control
− favors high interactivity
− suited for editing, searching, etc. 

Push model
− client sends one request
− streaming delivery
− favors capacity planning
− suited for retrieval, download, 

playback, etc. 

server client

server client

Data Retrieval
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Typical Trends In the Internet Today

Push systems
(pull in video editing/database systems)

Traditional (specialized) file systems – not databases –
for data storage

No in-band control 
(control and data information in separate streams)

External directory services for data location
(control server + data pump)

Request redirection for access control

Single stand-alone servers (fully) switched servers
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Resources and Real-Time
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Resources
Resource:
“A resource is a system entity required by a task for manipulating data”
[Steimetz & Narhstedt 95]

Characteristics:
− active: provides a service, 

e.g., CPU, disk or network adapter
− passive: system capabilities required by active resources, 

e.g., memory 

− exclusive: only one process at a time can use it, 
e.g., CPU

− shared: can be used by several concurrent processed, 
e.g., memory
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Deadlines and Real-Time
Deadline:
“A deadline represents the latest acceptable time for the presentation of the 
processing result”

Hard deadlines:
− must never be violated system failure

Soft deadlines:
− in some cases, the deadline might be missed

• not too frequently
• not by much time

− result still may have some (but decreasing) value

Real-time process:
“A process which delivers the results of the processing in a given time-span”

Real-time system:
“A system in which the correctness of a computation depends not only on 
obtaining the result, but also upon providing the result on time”
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Admission and Reservation
To prevent overload, admission may be performed:
− schedulability test: 

• “are there enough resources available for a new stream?”
• “can we find a schedule for the new task without disturbing the existing workload?”
• a task is allowed if the utilization remains < 1

yes – allow new task, allocate/reserve resources
no – reject

Resource reservation is analogous to booking (asking for resources)
− pessimistic

• avoid resource conflicts making worst-case reservations
• potentially under-utilized resources
• guaranteed QoS

− optimistic
• reserve according to average load
• high utilization
• overload may occur

− “perfect”
• must have detailed knowledge about resource requirements of all processes
• too expensive to make/takes much time
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Real-Time and Operating Systems
The operating system manages local resources 
(CPU, memory, disk, network card, busses, ...)

In a real-time scenario, support is needed for
− real-time processing
− high-rate, timely I/O

This means support for proper …
− scheduling –

high priorities for time-restrictive tasks
− timer support –

clock with fine granularity and event scheduling with high accuracy
− kernel preemption  –

avoid long periods where low priority processes cannot be interrupted
− efficient memory management –

prevent code for real-time programs from being paged out (replacement)
− fast switching –

both interrupts and context switching should be fast 
− ... 

Timeliness
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Start presenting data (e.g., video playout) at t1

Consumed bytes (offset) 
− variable rate
− constant rate

Must start retrieving 
data earlier
− Data must arrive before

consumption time
− Data must be sent

before arrival time
− Data must be read from 

disk before sending time

Timeliness

t1

time

data
 off

set

consume function

arrive function

send function
read function
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Need buffers to hold data between the functions, 
e.g., client B(t) = A(t) – C(t), i.e., ∀ t : A(t) ≥ C(t)

Latest start of data arrival 
is given by 
min[B(t,t0,t1) ; ∀ t B(t,t0,t1) ≥ 0],
i.e., the buffer must at all 
times t have more data to 
consume

Timeliness

time

data
 off

set

t1

consume function

arrive function

t 0
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file system communication 
system

application

“Continuous Media” and “continuous streams” are ILLUSIONS
− retrieve data in blocks from disk

− transfer blocks from file 
system to application

− send packets to communication system

− split packets into appropriate MTUs

− ... (intermediate nodes)
− ... (client)

different optimal sizes

− pseudo-parallel processes 
(run in time slices)

need for scheduling
(to have timing and 
appropriate resource allocation)

Timeliness: Streaming Data  

(CPU) Scheduling
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Scheduling 
A task is a schedulable entity 
(a process/thread executing a job, e.g., 
a packet through the communication 
system or a disk request through the file system) 

In a multi-tasking system, several 
tasks may wish to use a resource 
simultaneously

A scheduler decides which task 
that may use the resource, 
i.e., determines order 
by which requests are serviced, 
using a scheduling algorithm

Each active (CPU, disk, NIC) resources needs a scheduler
(passive resources are also “scheduled”, but in a slightly different way)

resource

requests

scheduler
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Scheduling 
Scheduling algorithm classification:
− dynamic

• make scheduling decisions at run-time
• flexible to adapt
• considers only actual task requests and execution time parameters
• large run-time overhead finding a schedule

− static
• make scheduling decisions at off-line (also called pre-run-time)
• generates a dispatching table for run-time dispatcher at compile time
• needs complete knowledge of task before compiling
• small run-time overhead

− preemptive 
• currently executing tasks may be interrupted (preempted) by higher priority processes
• the preempted process continues later at the same state
• potential frequent contexts switching
• (almost!?) useless for disk and network cards

− non-preemptive
• running tasks will be allowed to finish its time-slot (higher priority processes must wait)
• reasonable for short tasks like sending a packet (used by disk and network cards)
• less frequent switches
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Scheduling 
Preemption:
− tasks waits for processing
− scheduler assigns priorities
− task with highest priority will be 

scheduled first
− preempt current execution if a higher priority 

(more urgent) task arrives

− real-time and best effort priorities
(real-time processes have higher priority 
- if exists, they will run)

− to kinds of preemption:
• preemption points

predictable overhead
simplified scheduler accounting

• immediate preemption
needed for hard real-time systems
needs special timers and 
fast interrupt and context switch handling

resource

requests

scheduler preemption
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Scheduling 
Scheduling is difficult and takes time – RT vs NRT example: 

process 1 process 2 process 3 process 4 process N RT process…

RT process

request

round-robin

process 1 process 2 process 3 process 4 process N…

RT process

request
priority,
non-preemtive

delay

RT process

delay

process 1 process 2 process 3 process 4 process N…

request
priority,
preemtive p 1 p 1 process 2 process 3 process 4 process N…

RT process

RT process p 1 process 2 process 3 process 4 process N…

only delay switching and interrupts
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Scheduling in Linux
Preemptive kernel
Threads and processes used to be equal, 
but Linux uses (in 2.6) thread scheduling

SHED_FIFO
− may run forever, no timeslices
− may use it’s own scheduling algorithm

SHED_RR
− each priority in RR
− timeslices of 10 ms (quantums)

SHED_OTHER
− ordinary user processes
− uses “nice”-values: 1≤ priority≤40 
− timeslices of 10 ms (quantums)

Threads with highest goodness are selected first:
− realtime (FIFO and RR):

goodness = 1000 + priority
− timesharing (OTHER): 

goodness = (quantum > 0 ? quantum + priority : 0)

Quantums are reset when no ready 
process has quantums left (end of epoch):
quantum = (quantum/2) + priority

127

126

... 

2

1

127

126

... 

2

1

default (20) 19

18

... 

-19

-20

SHED_FIFO

SHED_RR

SHED_OTHER

nice
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Scheduling in Linux
The 2.6.23 kernel used the new 
Completely Fair Scheduler (CFS)
− address unfairness in desktop and server workloads

− uses ns granularity, does not rely on jiffies or HZ details

− uses an extensible hierarchical scheduling classes

• SCHED_FAIR / SCHED_NORMAL – the CFS desktop scheduler –
replace SCHED_OTHER

no run-queues, a tree-based timeline of future tasks

• sched_rt replace SCHED_RT and SCHED_FIFO
uses 100 run-queues  

http://kerneltrap.org/node/8059
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Real-Time Scheduling 
Resource reservation
− QoS can be guaranteed
− relies on knowledge of tasks
− no fairness
− origin: time sharing operating systems
− e.g., earliest deadline first (EDF) and rate monotonic (RM)

(AQUA, HeiTS, RT Upcalls, ...)

Proportional share resource allocation
− no guarantees
− requirements are specified by a relative share
− allocation in proportion to competing shares
− size of a share depends on system state and time
− origin: packet switched networks
− e.g., Scheduler for Multimedia And Real-Time (SMART)

(Lottery, Stride, Move-to-Rear List, ...) 
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Earliest Deadline First (EDF)

Preemptive scheduling based on dynamic task priorities

Task with closest deadline has highest priority (dynamic)
stream priorities vary with time

Dispatcher selects the highest priority task

Assumptions:
− requests for all tasks with deadlines are periodic
− the deadline of a task is equal to the end on its period (starting of next)
− independent tasks (no precedence)
− run-time for each task is known and constant
− context switches can be ignored
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Earliest Deadline First (EDF)

Example:

Task A

Task B
time

Dispatching

deadlines

priority A > priority B

priority A < priority B
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Rate Monotonic (RM) Scheduling
Classic algorithm for hard real-time systems with one CPU 
[Liu & Layland ‘73]

Pre-emptive scheduling based on static task priorities

Optimal: no other algorithms with static task priorities can 
schedule tasks that cannot be scheduled by RM

Assumptions:
− requests for all tasks with deadlines are periodic
− the deadline of a task is equal to the end on its period (starting of next)
− independent tasks (no precedence)
− run-time for each task is known and constant
− context switches can be ignored
− any non-periodic task has no deadline
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Process priority based on task periods
− task with shortest period gets 

highest static priority
− task with longest period gets 

lowest static priority
− dispatcher always selects task requests with highest priority

Example:

Rate Monotonic (RM) Scheduling

pr
io

rit
y

period length

shortest period, 
highest priority

longest period, 
lowest priority

Task 1

p1

Dispatching

Task 2

p2 P1 < P2 
P1 highest priority

Pi = period for task i
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EDF Versus RM
It might be impossible to prevent deadline misses in a strict, fixed priority system: 

Task A

Task B

Fixed priorities,
A has priority, no dropping

Fixed priorities,
B has priority, no dropping

Fixed priorities,
A has priority, dropping

Fixed priorities,
B has priority, dropping

time

deadline miss

deadline miss

deadline miss

deadline miss

Earliest deadline first

deadlines

waste of time

waste of time

waste of time

Rate monotonic (as the first)
deadline miss

RM may give some
deadline violations
which is avoided by EDF
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SMART (Scheduler for Multimedia And Real–Time applications)

Designed for multimedia and real-time applications

Principles

− priority – high priority tasks should not suffer degradation due to 
presence of low priority tasks

− proportional sharing – allocate resources proportionally and distribute 
unused resources (work conserving)

− tradeoff immediate fairness – real-time and less competitive processes 
(short-lived, interactive, I/O-bound, ...) get instantaneous higher shares

− graceful transitions – adapt smoothly to resource demand changes

− notification – notify applications of resource changes
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Tasks have…
− urgency – an immediate real-time constraint, short deadline

(determine when a task will get resources)
− importance – a priority measure 

• expressed by a tuple: 
[ priority p , biased virtual finishing time bvft ]

• p is static: supplied by user or assigned a default value

• bvft is dynamic:
virtual finishing time: virtual application time for finishing if given the 
requested resources
bias: bonus for interactive tasks

Best effort schedule based on urgency and importance 
find most important tasks – compare tuple:
T1 > T2 ⇔ (p1 > p2) ∨ (p1 = p2 ∧ bvft1 > bvft2)
sort each group after urgency (EDF based sorting)
iteratively select task from candidate set as long as schedule is feasible

SMART (Scheduler for Multimedia And Real–Time applications)



21

INF5071,  Autumn 2007,  Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Evaluation of a Real-Time Scheduling
Tests performed
− by IBM (1993)
− executing tasks with and without EDF
− on an 57 MHz, 32 MB RAM, AIX Power 1

Video playback program:
− one real-time process

• read compressed data
• decompress data
• present video frames via X server to user

− process requires 15 timeslots of 28 ms each per second
42 % of the CPU time
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Evaluation of a Real-Time Scheduling 

task number
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several deadline
violations by the
non-real-time
scheduler

the real-time 
scheduler reaches 
all its deadlines

3 load processes
(competing with the video playback)
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Evaluation of a Real-Time Scheduling
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(competing with the video playback)

NB! The EDF 
scheduler kept 
its deadlines

4 other 
processes

16 other 
processes

Only video process
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Evaluation of a Real-Time Scheduling
Tests again performed
− by IBM (1993)
− on an 57 MHz, 32 MB RAM, AIX Power 1

“Stupid” end system program:
− 3 real-time processes only requesting CPU cycles
− each process requires 15 timeslots of 21 ms each per second

31.5 % of the CPU time each
94.5 % of the CPU time required for real-time tasks
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Evaluation of a Real-Time Scheduling
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Evaluation of a Real-Time Scheduling
16 load process
(competing with the real-time processes)
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Summary
Resources need to be properly scheduled

CPU is an important resource
Many ways to schedule depending on workload

Hierarchical, multi-queue priority schedulers have 
existed a long time already, and newer ones usually 
try to improvement upon of this idea

Next week, memory and persistent storage
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