
1

Server Resources:Server Resources:
Server Examples, Resources and CPU SchedulingServer Examples, Resources and CPU Scheduling

7. September 2007

INF5071 – Performance in Distributed Systems

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Motivation
In a distributed system, the performance of every single
machine is important
− poor performance of one single node might be sufficient to “kill” the

system (not better than the weakest)

Managing the server side machines are challenging
− a large number of concurrent clients
− shared, limited amount of resources

We will see examples where simple, small changes improve
performance
− decreasing the required number of machines
− increase the number of concurrent clients
− improve resource utilization
− enable timely delivery of data

2

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Overview

Server examples

Resources, real-time, “continuous” media streams, …

(CPU) Scheduling

Next time, memory and storage

Server Examples

3

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

(Video) Server Product Examples

1) Real server, VXtreme, Starlight, VDO, Netscape Media Server,
MS Media Server, Apple Darwin, …

user level server

standard
OS

all standard HW

RTP
RTSP

2) IBM Mediastreamer,
Oracle Video Cartridge,
N-Cube, …
user level layer

scalable, RT-aware OS,
RT OS, or

OS derivation

custom/special HW

ATM, analog
DSM CC, private

3) SGI/Kassena Media Base,
SUN Media Center,
IBM Video Charger, …

user level server

RT
extensions

selected
standard HW

RTP
RTSP

standard
OS

MM
FS

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

user
kernel

server

Real Server
User space implementation
− one control server
− several protocols
− several versions of data

in same file
− adapts to resources

Several formats, e.g.,
− Real’s own
− MPEG-2 version with

“stream thinning”
(dropped with REAL)

Does not support
− Quality-of-Service
− load leveling

tr
ac

k
1

tr
ac

k
2

in
de

x

request

IP

UDP

RTP/
RTCP

Real’s
protocol

TCP

1 23

ba
ck

pr
es

su
re

fe
ed

ba
ck

4

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

VSD
with
EDF

IBM Video Charger
May consist of one
machine only, or …
… several IBM’s Advanced
Interactive eXecutive
(AIX) machines
Servers
− control
− data

Lightly modified existing
components
− OS AIX4/5L
− virtual shared disks (VSD)

(guaranteed disk I/Os)

Special components
− TigerShark MMFS

(buffers, data rate,
prefetching, codec, ...)

− stream filters, control
server, APIs, ...

control

AI
X

SP
2

cr
os

sb
ar

 s
w

itc
h

specific
control server

RTSP

RTPencryptfilter

TigerShark
MMFS

VSD

UDP

IP

distributed computing
environment RPC

video stream API

mlib API

DESCRIBE
SETUP
PLAY
TEARDOWN

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

n4x media hubs:
• Intel 860 Chip Set
• Intel 1.5 GHz Xeon CPU
• Up to 2 GB Rambus Memory
• Five 64 bit 66Mhz PCI slots
• “Special” PCI slot (HIB board)
• nHIO hypercube I/O

request

nCUBE
Original research from Cal Tech/Intel (‘83)
Bought by C-COR in Jan. 05 (~90M$)

One server scales from 1 to 256 machines,
2n, n ∈ [0, 8], using a hypercube architecture

Why a hypercube?
− video streaming is a switching problem
− hypercube is a high performance scalable switch
− no content replication and true linear scalability
− integrated adaptive routing provides resilience

Highlights
− one copy of a data element
− scales from 5,000 to 500,000 clients
− exceeds 60,000 simultaneous streams
− 6,600 simultaneous streams at 2 - 4 Mbps each

(26 streams per machine if n = 8)

Special components
− boards with integrated components
− TRANSIT operating system
− n4 HAVOC (1999)

• Hypercube And Vector Operations Controller
• ASIC-based hypercube technology

− n4x nHIO (2002)
• nCUBE Hypercube I/O controller (8X performance/price) memory PCI bus

configurable
interface

8 hypercube
connectors

vector processorSCSI ports

5

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Content striped across
all disks in the n4x server

Video Video
StreamStream

Disks connected to All MediaHubs
− Each title striped across all MediaHUBs
− Streaming Hub reads content

from all disks in the video server

Automatic load balancing
− Immune to content usage pattern
− Same load if same or different title
− Each stream’s load spread over all nodes

RAID Sets distributed across MediaHubs
− Immune to a MediaHUB failure
− Increasing reliability

Only 1 copy of each title ever needed
− Lots of room for expanded content,

network-based PVR, or HDTV content

nCUBE: Naturally load-balanced

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Small Comparison

server in both kernel
and user space

user space server
and loadable kernel

modules

user space server

cluster machines
using wired cube

cluster machines
using switch

single OS image

shared disk access,
no replication

shared disk access,
no replication

(except for load leveling and fault tolerance)

each machine its
own storage, or NFS

special HWselected HWstandard HW

nCUBEVideo ChargerReal

6

(Video) Server Structures

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Server Components & Switches

storage device

network attachment

memory management

file system

storage management

controller

switch

switch

switch

switch

switch

[Tetzlaff & Flynn 94]
IP, …

RPC in application, …

NFS, …

AFS, CODA, …

distributed OS, …

Disk arrays (RAID), …

IBM TigerShark switch

IBM TigerShark

switched network

switch

HP, DEC, Novell, …

HP, DEC, Novell, ….

switched network

switch

7

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Server Topology – I

Single server
− easy to implement
− scales poorly

Partitioned server
− users divided into groups
− content : assumes equal groups
− location : store all data on all servers
− load imbalance

Network

Network

Network

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Server Topology – II
Externally switched servers
− use network to make server pool
− manages load imbalance

(control server directs requests)
− still data replication problems
− (control server doesn’t need to be a

physical box - distributed process)

Fully switched server
− server pool
− storage device pool
− additional hardware costs
− e.g., Oracle, Intel, IBM

Network

data

data

data

control

Network

data

data
control

I/O
switch

8

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Pull model:
− client sends several requests
− deliver only small part of data
− fine-grained client control
− favors high interactivity
− suited for editing, searching, etc.

Push model
− client sends one request
− streaming delivery
− favors capacity planning
− suited for retrieval, download,

playback, etc.

server client

server client

Data Retrieval

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Typical Trends In the Internet Today

Push systems
(pull in video editing/database systems)

Traditional (specialized) file systems – not databases –
for data storage

No in-band control
(control and data information in separate streams)

External directory services for data location
(control server + data pump)

Request redirection for access control

Single stand-alone servers (fully) switched servers

9

Resources and Real-Time

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Resources
Resource:
“A resource is a system entity required by a task for manipulating data”
[Steimetz & Narhstedt 95]

Characteristics:
− active: provides a service,

e.g., CPU, disk or network adapter
− passive: system capabilities required by active resources,

e.g., memory

− exclusive: only one process at a time can use it,
e.g., CPU

− shared: can be used by several concurrent processed,
e.g., memory

10

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Deadlines and Real-Time
Deadline:
“A deadline represents the latest acceptable time for the presentation of the
processing result”

Hard deadlines:
− must never be violated system failure

Soft deadlines:
− in some cases, the deadline might be missed

• not too frequently
• not by much time

− result still may have some (but decreasing) value

Real-time process:
“A process which delivers the results of the processing in a given time-span”

Real-time system:
“A system in which the correctness of a computation depends not only on
obtaining the result, but also upon providing the result on time”

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Admission and Reservation
To prevent overload, admission may be performed:
− schedulability test:

• “are there enough resources available for a new stream?”
• “can we find a schedule for the new task without disturbing the existing workload?”
• a task is allowed if the utilization remains < 1

yes – allow new task, allocate/reserve resources
no – reject

Resource reservation is analogous to booking (asking for resources)
− pessimistic

• avoid resource conflicts making worst-case reservations
• potentially under-utilized resources
• guaranteed QoS

− optimistic
• reserve according to average load
• high utilization
• overload may occur

− “perfect”
• must have detailed knowledge about resource requirements of all processes
• too expensive to make/takes much time

11

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Real-Time and Operating Systems
The operating system manages local resources
(CPU, memory, disk, network card, busses, ...)

In a real-time scenario, support is needed for
− real-time processing
− high-rate, timely I/O

This means support for proper …
− scheduling –

high priorities for time-restrictive tasks
− timer support –

clock with fine granularity and event scheduling with high accuracy
− kernel preemption –

avoid long periods where low priority processes cannot be interrupted
− efficient memory management –

prevent code for real-time programs from being paged out (replacement)
− fast switching –

both interrupts and context switching should be fast
− ...

Timeliness

12

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Start presenting data (e.g., video playout) at t1

Consumed bytes (offset)
− variable rate
− constant rate

Must start retrieving
data earlier
− Data must arrive before

consumption time
− Data must be sent

before arrival time
− Data must be read from

disk before sending time

Timeliness

t1

time

data
 off

set

consume function

arrive function

send function
read function

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Need buffers to hold data between the functions,
e.g., client B(t) = A(t) – C(t), i.e., ∀ t : A(t) ≥ C(t)

Latest start of data arrival
is given by
min[B(t,t0,t1) ; ∀ t B(t,t0,t1) ≥ 0],
i.e., the buffer must at all
times t have more data to
consume

Timeliness

time

data
 off

set

t1

consume function

arrive function

t 0

13

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

file system communication
system

application

“Continuous Media” and “continuous streams” are ILLUSIONS
− retrieve data in blocks from disk

− transfer blocks from file
system to application

− send packets to communication system

− split packets into appropriate MTUs

− ... (intermediate nodes)
− ... (client)

different optimal sizes

− pseudo-parallel processes
(run in time slices)

need for scheduling
(to have timing and
appropriate resource allocation)

Timeliness: Streaming Data

(CPU) Scheduling

14

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Scheduling
A task is a schedulable entity
(a process/thread executing a job, e.g.,
a packet through the communication
system or a disk request through the file system)

In a multi-tasking system, several
tasks may wish to use a resource
simultaneously

A scheduler decides which task
that may use the resource,
i.e., determines order
by which requests are serviced,
using a scheduling algorithm

Each active (CPU, disk, NIC) resources needs a scheduler
(passive resources are also “scheduled”, but in a slightly different way)

resource

requests

scheduler

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Scheduling
Scheduling algorithm classification:
− dynamic

• make scheduling decisions at run-time
• flexible to adapt
• considers only actual task requests and execution time parameters
• large run-time overhead finding a schedule

− static
• make scheduling decisions at off-line (also called pre-run-time)
• generates a dispatching table for run-time dispatcher at compile time
• needs complete knowledge of task before compiling
• small run-time overhead

− preemptive
• currently executing tasks may be interrupted (preempted) by higher priority processes
• the preempted process continues later at the same state
• potential frequent contexts switching
• (almost!?) useless for disk and network cards

− non-preemptive
• running tasks will be allowed to finish its time-slot (higher priority processes must wait)
• reasonable for short tasks like sending a packet (used by disk and network cards)
• less frequent switches

15

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Scheduling
Preemption:
− tasks waits for processing
− scheduler assigns priorities
− task with highest priority will be

scheduled first
− preempt current execution if a higher priority

(more urgent) task arrives

− real-time and best effort priorities
(real-time processes have higher priority
- if exists, they will run)

− to kinds of preemption:
• preemption points

predictable overhead
simplified scheduler accounting

• immediate preemption
needed for hard real-time systems
needs special timers and
fast interrupt and context switch handling

resource

requests

scheduler preemption

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Scheduling
Scheduling is difficult and takes time – RT vs NRT example:

process 1 process 2 process 3 process 4 process N RT process…

RT process

request

round-robin

process 1 process 2 process 3 process 4 process N…

RT process

request
priority,
non-preemtive

delay

RT process

delay

process 1 process 2 process 3 process 4 process N…

request
priority,
preemtive p 1 p 1 process 2 process 3 process 4 process N…

RT process

RT process p 1 process 2 process 3 process 4 process N…

only delay switching and interrupts

16

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Scheduling in Linux
Preemptive kernel
Threads and processes used to be equal,
but Linux uses (in 2.6) thread scheduling

SHED_FIFO
− may run forever, no timeslices
− may use it’s own scheduling algorithm

SHED_RR
− each priority in RR
− timeslices of 10 ms (quantums)

SHED_OTHER
− ordinary user processes
− uses “nice”-values: 1≤ priority≤40
− timeslices of 10 ms (quantums)

Threads with highest goodness are selected first:
− realtime (FIFO and RR):

goodness = 1000 + priority
− timesharing (OTHER):

goodness = (quantum > 0 ? quantum + priority : 0)

Quantums are reset when no ready
process has quantums left (end of epoch):
quantum = (quantum/2) + priority

127

126

...

2

1

127

126

...

2

1

default (20) 19

18

...

-19

-20

SHED_FIFO

SHED_RR

SHED_OTHER

nice

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Scheduling in Linux
The 2.6.23 kernel used the new
Completely Fair Scheduler (CFS)
− address unfairness in desktop and server workloads

− uses ns granularity, does not rely on jiffies or HZ details

− uses an extensible hierarchical scheduling classes

• SCHED_FAIR / SCHED_NORMAL – the CFS desktop scheduler –
replace SCHED_OTHER

no run-queues, a tree-based timeline of future tasks

• sched_rt replace SCHED_RT and SCHED_FIFO
uses 100 run-queues

http://kerneltrap.org/node/8059

17

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Real-Time Scheduling
Resource reservation
− QoS can be guaranteed
− relies on knowledge of tasks
− no fairness
− origin: time sharing operating systems
− e.g., earliest deadline first (EDF) and rate monotonic (RM)

(AQUA, HeiTS, RT Upcalls, ...)

Proportional share resource allocation
− no guarantees
− requirements are specified by a relative share
− allocation in proportion to competing shares
− size of a share depends on system state and time
− origin: packet switched networks
− e.g., Scheduler for Multimedia And Real-Time (SMART)

(Lottery, Stride, Move-to-Rear List, ...)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Earliest Deadline First (EDF)

Preemptive scheduling based on dynamic task priorities

Task with closest deadline has highest priority (dynamic)
stream priorities vary with time

Dispatcher selects the highest priority task

Assumptions:
− requests for all tasks with deadlines are periodic
− the deadline of a task is equal to the end on its period (starting of next)
− independent tasks (no precedence)
− run-time for each task is known and constant
− context switches can be ignored

18

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Earliest Deadline First (EDF)

Example:

Task A

Task B
time

Dispatching

deadlines

priority A > priority B

priority A < priority B

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Rate Monotonic (RM) Scheduling
Classic algorithm for hard real-time systems with one CPU
[Liu & Layland ‘73]

Pre-emptive scheduling based on static task priorities

Optimal: no other algorithms with static task priorities can
schedule tasks that cannot be scheduled by RM

Assumptions:
− requests for all tasks with deadlines are periodic
− the deadline of a task is equal to the end on its period (starting of next)
− independent tasks (no precedence)
− run-time for each task is known and constant
− context switches can be ignored
− any non-periodic task has no deadline

19

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Process priority based on task periods
− task with shortest period gets

highest static priority
− task with longest period gets

lowest static priority
− dispatcher always selects task requests with highest priority

Example:

Rate Monotonic (RM) Scheduling

pr
io

rit
y

period length

shortest period,
highest priority

longest period,
lowest priority

Task 1

p1

Dispatching

Task 2

p2 P1 < P2
P1 highest priority

Pi = period for task i

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

EDF Versus RM
It might be impossible to prevent deadline misses in a strict, fixed priority system:

Task A

Task B

Fixed priorities,
A has priority, no dropping

Fixed priorities,
B has priority, no dropping

Fixed priorities,
A has priority, dropping

Fixed priorities,
B has priority, dropping

time

deadline miss

deadline miss

deadline miss

deadline miss

Earliest deadline first

deadlines

waste of time

waste of time

waste of time

Rate monotonic (as the first)
deadline miss

RM may give some
deadline violations
which is avoided by EDF

20

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

SMART (Scheduler for Multimedia And Real–Time applications)

Designed for multimedia and real-time applications

Principles

− priority – high priority tasks should not suffer degradation due to
presence of low priority tasks

− proportional sharing – allocate resources proportionally and distribute
unused resources (work conserving)

− tradeoff immediate fairness – real-time and less competitive processes
(short-lived, interactive, I/O-bound, ...) get instantaneous higher shares

− graceful transitions – adapt smoothly to resource demand changes

− notification – notify applications of resource changes

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tasks have…
− urgency – an immediate real-time constraint, short deadline

(determine when a task will get resources)
− importance – a priority measure

• expressed by a tuple:
[priority p , biased virtual finishing time bvft]

• p is static: supplied by user or assigned a default value

• bvft is dynamic:
virtual finishing time: virtual application time for finishing if given the
requested resources
bias: bonus for interactive tasks

Best effort schedule based on urgency and importance
find most important tasks – compare tuple:
T1 > T2 ⇔ (p1 > p2) ∨ (p1 = p2 ∧ bvft1 > bvft2)
sort each group after urgency (EDF based sorting)
iteratively select task from candidate set as long as schedule is feasible

SMART (Scheduler for Multimedia And Real–Time applications)

21

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Evaluation of a Real-Time Scheduling
Tests performed
− by IBM (1993)
− executing tasks with and without EDF
− on an 57 MHz, 32 MB RAM, AIX Power 1

Video playback program:
− one real-time process

• read compressed data
• decompress data
• present video frames via X server to user

− process requires 15 timeslots of 28 ms each per second
42 % of the CPU time

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Evaluation of a Real-Time Scheduling

task number

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120 140 160 180 200

without real-time schedul ing
with real-time schedul ing

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e)

several deadline
violations by the
non-real-time
scheduler

the real-time
scheduler reaches
all its deadlines

3 load processes
(competing with the video playback)

22

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Evaluation of a Real-Time Scheduling

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0 20 40 60 80 100 120 140 160 180 200
task number

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e)

Varied the number of load processes
(competing with the video playback)

NB! The EDF
scheduler kept
its deadlines

4 other
processes

16 other
processes

Only video process

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Evaluation of a Real-Time Scheduling
Tests again performed
− by IBM (1993)
− on an 57 MHz, 32 MB RAM, AIX Power 1

“Stupid” end system program:
− 3 real-time processes only requesting CPU cycles
− each process requires 15 timeslots of 21 ms each per second

31.5 % of the CPU time each
94.5 % of the CPU time required for real-time tasks

23

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Evaluation of a Real-Time Scheduling

t b

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

1 load process
(competing with the
real-time processes)

task number

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e) the real-time

scheduler reaches
all its deadlines

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Evaluation of a Real-Time Scheduling
16 load process
(competing with the real-time processes)

task number

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

g p

Regardless of
other load, the
EDF-scheduler reach
its deadlines
(laxity almost equal
as in 1 load process
scenario)

process 1

process 2

process 3
NOTE: Processes are
scheduled in same
order

t b

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

24

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Summary
Resources need to be properly scheduled

CPU is an important resource
Many ways to schedule depending on workload

Hierarchical, multi-queue priority schedulers have
existed a long time already, and newer ones usually
try to improvement upon of this idea

Next week, memory and persistent storage

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Some References
1. AMD, http://multicore.amd.com/en/Products
2. C-COR, http://www.c-cor.com
3. Haskin, R.L: “Tiger Shark--A scalable file system for multimedia”, IBM Journal of Research and

Development, Vol. 42, No. 2, 1997, p. 185
4. IBM: http://www-306.ibm.com/software/data/videocharger/
5. Intel, http://www.intel.com
6. MPEG.org, http://www.mpeg.org/MPEG/DVD
7. nCUBE, http://ncube.com (not available after Jan. 2005)
8. Sitaram, D., Dan, A.: “Multimedia Servers – Applications, Environments, and Design”, Morgan Kaufmann

Publishers, 2000
9. Tendler, J.M., Dodson, S., Fields, S.: “IBM e-server: POWER 4 System Microarchitecture”, Technical white

paper, 2001
10. Tetzlaff, W., Flynn, R.: “Elements of Scalable Video Servers”, IBM Research Report 19871 (87884), 1994

