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Overview

� Memory management
− caching
− copy free data paths

� Storage management
− disks
− scheduling
− placement
− file systems
−multi-disk systems
−…
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Memory Management
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Why look at a passive resource?

Lack of space (or bandwidth) can delay applications
ª e.g., the dining philosophers would die because the 

spaghetti-chef could not find a parking lot

“Dying philosophers problem”

Pa
rk

in
g



3

INF5071,  Autumn 2007,  Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Delivery Systems

Network

bus(es)
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file system communication 
system

application

user space

kernel space

bus(es)

Delivery Systems

) several disk-to-memory transfers

) several in-memory data movements
and context switches
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Memory Caching
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Memory Caching

communication 
system

application

disk network card

expensive

file system

cache

caching possible

How do we manage a cache?
9 how much memory to use?
9 how much data to prefetch?
9 which data item to replace?
9 …
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Is Caching Useful in a High-Rate Scenario?
� High rate data may need lots of memory for caching…

� Tradeoff: amount of memory, algorithms complexity, gain, …

� Cache only frequently used data – how?
(e.g., first (small) parts of a broadcast partitioning scheme, allow “top-ten” only, …)

43 min 41 s20 hr 48 min 18 s52 hr 00 min 46 s266 hr 02 min 02 s32 GB

16 GB

1 GB

100 MB

Buffer vs. Rate

21 min 51 s10 hr 24 min 09 s26 hr 00 min 23 s133 hr 01 min 01 s

1 min 22 s39 min 01 s1 hr 37 min 31 s14 hr 33 min 49 s

8 s3 min 49 s9 min 31 s85 min 20 s

100 Mbps
(e.g., uncompressed HDTV)

3.5 Mbps
(e.g., average DVD video)

1.4 Mbps
(e.g., uncompressed CD)

160 Kbps
(e.g., MP3)

Largest Dell Server in 2004 –
and all is NOT used for caching
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Need For Application-Specific Algorithms?
� Most existing systems use an LRU-variant

− keep a sorted list
− replace first in list
− insert new data elements at the end
− if a data element is re-accessed (e.g., new client or rewind), 

move back to the end of the list

� Extreme example – video frame playout:
LRU buffer

longest time 

since accessshortest time 

since access

play video (7 frames): 1234567

rewind and restart playout at 1: 7 6 5 4 3 21

playout 2: 1 7 6 5 4 32

playout 3: 2 1 7 6 5 43

playout 4: 3 2 1 7 6 54

In this case, LRU replaces 
the next needed frame. So 
the answer is in many cases 
YES…
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“Classification” of Mechanisms
� Block-level caching consider (possibly unrelated) set of blocks

− each data element is viewed upon as an independent item
− usually used in “traditional” systems
− e.g., FIFO, LRU, LFU, CLOCK, …

− multimedia (video) approaches:
• Least/Most Relevant for Presentation (L/MRP)
• …

� Stream-dependent caching consider a stream object as a whole
− related data elements are treated in the same way 
− research prototypes in multimedia systems
− e.g.,

• BASIC
• DISTANCE
• Interval Caching (IC)
• Generalized Interval Caching (GIC)
• Split and Merge (SAM)
• SHR
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Least/Most Relevant for Presentation (L/MRP)

� L/MRP is a buffer management mechanism for a single 
interactive, continuous data stream 

− adaptable to individual multimedia applications 

− preloads units most relevant for presentation from disk

− replaces units least relevant for presentation

− client pull based architecture 

[Moser et al. 95]

Server

request

Homogeneous 
stream e.g., 
MJPEG video

ClientBuffer

request

Continuous Presentation Units (COPU)
e.g., MJPEG video frames
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current 
presentation point

Least/Most Relevant for Presentation (L/MRP)

� Relevance values are calculated with respect to current playout of the 
multimedia stream 

• presentation point (current position in file)
• mode / speed (forward, backward, FF, FB, jump)

• relevance functions are configurable

[Moser et al. 95]

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

COPUs – continuous object presentation units 

10
11

20
21

26

COPU number
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

relevance value

1.0

0
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0.6
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playback direction
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loaded frames

� Global relevance value
− each COPU can have more than one relevance value

• bookmark sets (known interaction points)

• several viewers (clients) of the same 

− = maximum relevance for each COPU

Least/Most Relevant for Presentation (L/MRP)
[Moser et al. 95]

... ...

0

1

Relevance

Bookmark-Set Referenced-SetHistory-Set

100 101 102 1039998

current 
presentation 

point S1

91 92 93 949089 95 96 97 104 105 106

current 
presentation 

point S2

global relevance value
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Least/Most Relevant for Presentation (L/MRP)

� L/MRP …
☺ … gives “few” disk accesses (compared to other schemes)
☺ … supports interactivity 
☺ … supports prefetching

/ … targeted for single streams (users)
/ … expensive (!) to execute 

(calculate relevance values for all COPUs each round)

� Variations:
− Q-L/MRP – extends L/MRP with multiple streams and changes 

prefetching mechanism (reduces overhead) [Halvorsen et. al. 98]

− MPEG-L/MRP – gives different relevance values for different MPEG 
frames [Boll et. all. 00]
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Interval Caching (IC)
� Interval caching (IC) is a caching strategy for streaming servers

− caches data between requests for same video stream –
based on playout intervals between requests

− following requests are thus served from the cache filled by preceding stream

− sort intervals on length, buffer requirement is data size of interval

− to maximize cache hit ratio (minimize disk accesses) the shortest intervals are 
cached first

Video clip 1

S11

Video clip 1

S11S12

Video clip 1

S12 S11S13

Video clip 2

S22 S21

Video clip 3

S33 S31S32S34

I11I12

I21

I31I32I33

: I32 I33 I21I11I31I12
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Generalized Interval Caching (GIC)
� Interval caching (IC) does not work for short clips

− a frequently accessed short clip will not be cached

� GIC generalizes the IC strategy
− manages intervals for long video objects as IC
− short intervals extend the interval definition

• keep track of a finished stream for a while after its termination
• define the interval for short stream as the length between the new stream 

and the position of the old stream if it had been a longer video object
• the cache requirement is, however, only the real requirement

− cache the shortest intervals as in IC 

Video clip 1

S11S12

I11
C11

S11

Video clip 2

S22 S21

I21
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Generalized Interval Caching (GIC)
� Open function:

form if possible new interval with previous stream;
if (NO) {exit} /* don’t cache */
compute interval size and cache requirement;
reorder interval list; /* smallest first */
if (not already in a cached interval) {

if (space available) {cache interval}
else if (larger cached intervals exist
and sufficient memory can be released) {

release memory from larger intervals;
cache new interval;

}
}

� Close function
if (not following another stream) {exit} /* not served from cache */
delete interval with preceding stream;
free memory;
if (next interval can be cached in released memory) {

cache next interval
}
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wasted buffering

LRU  vs.  L/MRP  vs.  IC  Caching
� What kind of caching strategy is best (VoD streaming)?

− caching effect

movie X

S5 S4 S2 S1S3

Memory (L/MRP):

Memory (IC):

loaded page frames

global relevance values

I1 I2I3 I4

4 streams from disk, 
1 from cache

2 streams from disk, 
3 from cache

Memory (LRU): 4 streams from disk, 
1 from cache
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LRU  vs.  L/MRP  vs.  IC  Caching
� What kind of caching strategy is best (VoD streaming)?

− caching effect (IC best) 
− CPU requirement

LRU

for each I/O request
reorder LRU chain

L/MRP

for each I/O request
for each COPU

RV = 0
for each stream 

tmp = rel ( COPU, p, mode )
RV = max ( RV, tmp )

IC

for each block consumed
if last part of interval

release memory element
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In-Memory Copy 
Operations
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In Memory Copy Operations

communication 
system

application

disk network card

expensive

file system

expensive
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file system communication 
system

application

user space

kernel space

bus(es)

data_pointer data_pointer

Basic Idea of Zero–Copy Data Paths

Existing Linux Existing Linux 
Data PathsData Paths

A lot of research has been performed in this area!!!!
BUT, what is the status today of commodity operating systems?
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Content Download

file system communication 
system

application

user space

kernel space

bus(es)
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Content Download: read / send

application

kernel

page cache socket buffer

application
buffer

read send

copycopy

DMA transfer DMA transfer

¾ 2n copy operations
¾ 2n system calls
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Content Download: mmap / send

application

kernel

page cache socket buffer

mmap send

copy

DMA transfer DMA transfer

¾ n copy operations
¾ 1 + n system calls
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Content Download: sendfile

application

kernel

page cache socket buffer

sendfile

gather DMA transfer

append descriptor

DMA transfer

¾ 0 copy operations
¾ 1 system calls



15

INF5071,  Autumn 2007,  Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Content Download: Results

UDP TCP

� Tested transfer of 1 GB file on Linux 2.6
� Both UDP (with enhancements) and TCP
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Streaming

file system communication 
system

application

user space

kernel space

bus(es)
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Streaming: read / send

application

kernel

page cache socket buffer

application buffer

read send

copycopy

DMA transfer DMA transfer

¾ 2n copy operations
¾ 2n system calls
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Streaming: read / writev

application

kernel

page cache socket buffer

application buffer

read writev

copycopy

DMA transfer DMA transfer

¾ 3n copy operations
¾ 2n system calls

copy

Å Previous solution: one less copy per packet
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Streaming: mmap / send

application

kernel

page cache socket buffer

application buffer

mmap uncork

copy

DMA transfer DMA transfer

¾ 2n copy operations
¾ 1 + 4n system calls

copy

sendsendcork
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Streaming: mmap / writev

application

kernel

page cache socket buffer

application buffer

mmap writev

copy

DMA transfer DMA transfer

¾ 2n copy operations
¾ 1 + n system calls

copy

Å Previous solution: three more calls per packet
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Streaming: sendfile

application

kernel

page cache socket buffer

application buffer

DMA transfer

¾ n copy operations
¾ 4n system calls

gather DMA transfer

append descriptor

copy

uncorksendfilesendcork
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Streaming: Results

� Tested streaming of 1 GB file on Linux 2.6
� RTP over UDP

TCP sendfile
(content download)

Compared to not sending an RTP header 
over UDP, we get an increase of 29%
(additional send call)

More copy operations and system calls required
Æ potential for improvements
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Enhanced Streaming Enhanced Streaming 
Data PathsData Paths
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Enhanced Streaming: mmap / msend

application

kernel

page cache socket buffer

application buffer

DMA transfer

¾ n copy operations
¾ 1 + 4n system calls

gather DMA transfer

append descriptor

copy

msend allows to send data from an
mmap’ed file without copy

mmap uncorksendsendcork msend

copy

DMA transfer

Å Previous solution: one more copy per packet
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Enhanced Streaming: mmap / rtpmsend

application

kernel

page cache socket buffer

application buffer

DMA transfer

¾ n copy operations
¾ 1 + n system calls

gather DMA transfer

append descriptor

copy

mmap uncorkmsendsendcork rtpmsend

RTP header copy integrated into
msend system call

Å previous solution: three more calls per packet 
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Enhanced Streaming: mmap / krtpmsend

application

kernel

page cache socket buffer

application buffer

DMA transfer

¾ 0 copy operations
¾ 1 system call

gather DMA transfer

append descriptor

copy

krtpmsend

Å previous solution: one more call per packet

An RTP engine in the kernel 
adds RTP headers

rtpmsend

RTP engine

Å previous solution: one more copy per packet



21

INF5071,  Autumn 2007,  Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Enhanced Streaming: rtpsendfile

application

kernel

page cache socket buffer

application buffer

DMA transfer

¾ n copy operations
¾ n system calls

gather DMA transfer

append descriptor

copy

rtpsendfile

Å existing solution: three more calls per packet 

uncorksendfilesendcork

RTP header copy integrated into
sendfile system call
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Enhanced Streaming: krtpsendfile

application

kernel

page cache socket buffer

application buffer

DMA transfer

¾ 0 copy operations
¾ 1 system call

gather DMA transfer

append descriptor

copy

krtpsendfile

Å previous solution: one more call per packet

An RTP engine in the kernel
adds RTP headers

rtpsendfile

RTP engine

Å previous solution: one more copy per packet
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Enhanced Streaming: Results

� Tested streaming of 1 GB file on Linux 2.6
� RTP over UDP
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Storage: Disks
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Disks 
� Two resources of importance

− storage space

− I/O bandwidth

� Several approaches to manage data on disks:

− specific disk scheduling and appropriate buffers 

− optimize data placement

− replication / striping

− prefetching

− combinations of the above
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Mechanics of Disks

Platters
circular platters covered with 
magnetic material to provide 
nonvolatile storage of bits

Tracks
concentric circles on a
single platter

Sectors
segment of the track circle –
usually each contains 512 bytes –
separated by non-magnetic gaps.
The gaps are often used to identify
beginning of a sector

Cylinders
corresponding tracks on the different 
platters are said to form a cylinder

Spindle
of which the platters 
rotate around

Disk heads
read or alter the 
magnetism (bits) passing 
under it. The heads are 
attached to an arm 
enabling it to move 
across the platter surface
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Disk Specifications
� Some existing (Seagate) disks today:

Note 2:
there is usually a 
trade off between 
speed and capacity

Note 1:
there is a difference between internal and formatted transfer rate. Internal
is only between platter. Formatted is after the signals interfere with the 
electronics (cabling loss, interference, retransmissions, checksums, etc.)

8 MB4 MB16 MBdisk buffer cache

609 – 891 520 – 682282 – 508 internal transfer rate (Mbps)

234.17average latency

71216max (full stroke) seek (ms)

0.20.60.8min (track-to-track) seek (ms) 

3.6 5.77.4average seek time (ms)

18.4799.77224.247#cylinders

15.00010.0007200Spindle speed (RPM)

73.436.4181.6Capacity (GB)

Cheetah X15Cheetah 36Barracuda 180
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Disk Access Time

� How do we retrieve data from disk?
− position head over the cylinder (track) on which the block 

(consisting of one or more sectors) are located
− read or write the data block as the sectors move under the 

head when the platters rotate

� The time between the moment issuing a disk request 
and the time the block is resident in memory is called 
disk latency or disk access time
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+ Rotational delay

+ Transfer time

Seek time

Disk access time =

+ Other delays

Disk platter

Disk arm

Disk head

block x
in memory

I want
block X

Disk Access Time
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Disk Access Time: Seek Time
� Seek time is the time to position the head

− the heads require a minimum amount of time to start and stop moving 
the head

− some time is used for actually moving the head –
roughly proportional to the number of cylinders traveled

− Time to move head:

~ 10x - 20x  

x

1 N
Cylinders Traveled

Time

“Typical” average: 
10 ms → 40 ms
7.4 ms (Barracuda 180)
5.7 ms (Cheetah 36)
3.6 ms (Cheetah X15)

nβα + number of tracks
seek time constant
fixed overhead
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Disk Access Time: Rotational Delay
� Time for the disk platters to rotate so the first of the 

required sectors are under the disk head

head here

block I want

Average delay is 1/2 revolution

“Typical” average: 
8.33 ms (3.600 RPM)
5.56 ms (5.400 RPM)
4.17 ms (7.200 RPM)
3.00 ms (10.000 RPM)
2.00 ms (15.000 RPM)
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Disk Access Time: Transfer Time

� Time for data to be read by the disk head, i.e., time it takes the 
sectors of the requested block to rotate under the head

� Transfer rate =

� Transfer time = amount of data to read / transfer rate

� Example – Barracuda 180:
406 KB per track x 7.200 RPM ≈ 47.58 MB/s

� Example – Cheetah X15:
316 KB per track x 15.000 RPM ≈ 77.15 MB/s

� Transfer time is dependent on data density and rotation speed
� If we have to change track, time must also be added for 

moving the head

amount of data per track
time per rotation

Note:
one might achieve these 
transfer rates reading 
continuously on disk, 
but time must be added 
for seeks, etc.
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Disk Access Time: Other Delays
� There are several other factors which might introduce 

additional delays:
− CPU time to issue and process I/O
− contention for controller
− contention for bus
− contention for memory
− verifying block correctness with checksums (retransmissions)
−waiting in scheduling queue
− ...

� Typical values: “0”
(maybe except from waiting in the queue)
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Disk Throughput

� How much data can we retrieve per second?

� Throughput =

� Example:
for each operation we have

- average seek - average rotational delay
- transfer time - no gaps, etc.

− Cheetah X15 (max 77.15 MB/s)
4 KB blocks Æ 0.71 MB/s
64 KB blocks Æ 11.42 MB/s

− Barracuda 180 (max 47.58 MB/s)
4 KB blocks Æ 0.35 MB/s
64 KB blocks Æ 5.53 MB/s

data size
transfer time (including all)
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Block Size 
� The block size may have large effects on performance
� Example:

assume random block placement on disk and sequential file access
− doubling block size will halve the number of disk accesses

• each access take some more time to transfer the data, but the total 
transfer time is the same (i.e., more data per request)

• halve the seek times 
• halve rotational delays are omitted

− e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)
for Cheetah X15 typically an average of:
☺ 3.6 ms is  saved for seek time
☺ 2 ms is  saved in rotational delays
/ 0.026 ms is added per transfer time 

− increasing from 2 KB to 64 KB saves ~96,4 % when reading 64 KB

} saving a total of 5.6 ms 
when reading 4 KB (49,8 %)
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Block Size
� Thus, increasing block size 

can increase performance 
by reducing seek times and 
rotational delays
(figure shows calculation on some older device)

� But, blocks spanning several 
tracks still introduce latencies…

� … and a large block size 
is not always best
− small data elements may 

occupy only a fraction of the 
block (fragmentation)

� Which block size to use therefore 
depends on data size and data reference patterns

� The trend, however, is to use large block sizes as new technologies appear 
with increased performance – at least in high data rate systems
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Writing and Modifying Blocks
� A write operation is analogous to read operations

− must add time for block allocation

− a write operation may has to be verified – must wait another rotation 
and then read the block to see if it is the block we wanted to write

− Total write time ≈ read time (+ time for one rotation)

� Cannot modify a block directly:
− read block into main memory

− modify the block

− write new content back to disk

− (verify the write operation)

− Total modify time ≈ read time + time to modify + write time
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Disk Controllers
� To manage the different parts of the disk, we use a disk 

controller, which is a small processor capable of:

− controlling the actuator moving the head to the desired track

− selecting which platter and surface to use

− knowing when right sector is under the head

− transferring data between main memory and disk

� New controllers acts like small computers themselves

− both disk and controller now has an own buffer reducing disk access time

− data on damaged disk blocks/sectors are just moved to spare room at 
the disk – the system above (OS) does not know this, i.e., a block may 
lie elsewhere than the OS thinks   
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Efficient Secondary Storage Usage
� Must take into account the use of secondary storage

− there are large access time gaps, i.e., a disk access will probably 
dominate the total execution time

− there may be huge performance improvements if we reduce the number 
of disk accesses

− a “slow” algorithm with few disk accesses will probably outperform a 
“fast” algorithm with many disk accesses

� Several ways to optimize .....
− block size - 4 KB 
− file management / data placement - various
− disk scheduling - SCAN derivate
− multiple disks - a specific RAID level
− prefetching - read-ahead prefetching
− memory caching /replacement algorithms - LRU variant
− …

Disk Scheduling
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Disk Scheduling – I
� Seek time is the dominant factor of total disk I/O time

� Let operating system or disk controller choose which request 
to serve next depending on the head’s current position and 
requested block’s position on disk (disk scheduling)

� Note that disk scheduling ≠ CPU scheduling
− a mechanical device – hard to determine (accurate) access times
− disk accesses cannot be preempted – runs until it finishes
− disk I/O often the main performance bottleneck

� General goals
− short response time
− high overall throughput 
− fairness (equal probability for all blocks to be accessed in the same time)

� Tradeoff: seek and rotational delay vs. maximum response time
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Disk Scheduling – II
� Several traditional (performance oriented) algorithms

− First-Come-First-Serve (FCFS)
− Shortest Seek Time First (SSTF)
− SCAN (and variations)
− Look (and variations)
−…
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First–Come–First–Serve (FCFS)
FCFS serves the first arriving request first:
� Long seeks
� “Short” average response time

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24
8

21
7

2

14

12

Note:
the lines only indicate some 
time – not exact amount
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Shortest Seek Time First (SSTF)
SSTF serves closest request first:
� short seek times
� longer maximum seek times – may even lead to starvation

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24821721412
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SCAN
SCAN (elevator) moves head edge to edge and serves requests on the way:
� bi-directional
� compromise between response time and seek time optimizations 

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24821721412
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SCAN vs. FCFS

� Disk scheduling 
makes a 
difference!

� In this case, we 
see that SCAN 
requires much less 
head movement 
compared to FCFS
(37 vs. 75 tracks/cylinders)

cylinder number
1 5 10 15 20 25

tim
e

tim
e

12incoming requests (in order of arrival): 14 2 7 21 8 24

FCFS

SCAN
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C–SCAN
Circular-SCAN moves head from edge to edge
� serves requests on one way – uni-directional
� improves response time (fairness) 

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24821721412
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SCAN vs. C–SCAN
� Why is C-SCAN in average better in reality than SCAN when 

both service the same number of requests in two passes?
− modern disks must accelerate (speed up and 

down) when seeking
− head movement formula: 

requests: n
avg. dist: x
total cost:

requests: n
avg. dist: 2x
total cost: 

uni-directionalbi-directional

C-SCANSCAN

cylinders traveled

tim
e

nβα + number of tracks
seek time constant
fixed overhead

xnxn ××=× 22 xnnxnxn ×+=×+× )(

22 22

2

nnnnn

nnn

++>×

+>
cif n is large:
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LOOK and C–LOOK
LOOK (C-LOOK) is a variation of SCAN (C-SCAN):
� same schedule as SCAN
� does not run to the edges
� stops and returns at outer- and innermost request
� increased efficiency 
� SCAN vs. LOOK example:

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24
8

21

7

2

14

12
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V–SCAN(R)
� V-SCAN(R) combines SCAN (or LOOK) and SSTF

− define an R-sized unidirectional SCAN window, i.e., C-SCAN, and use SSTF 
outside the window

− Example: V-SCAN(0.6) 
• makes a C-SCAN window over 60 % of the cylinders
• uses SSTF for requests outside the window 

− V-SCAN(0.0) equivalent with SSTF
− V-SCAN(1.0) equivalent with C-SCAN

− V-SCAN(0.2) is supposed to be an appropriate configuration

cylinder number
1 5 10 15 20 25
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LAST WEEK!!

DISKS 
& 

SCHEDULING OF “TRADITIONAL” LOAD
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What About Time-Dependent Media?
� Suitability of classical algorithms

−minimal disk arm movement (short seek times)
− but, no provision of time or deadlines
ªgenerally not suitable

� For example, a continuous media server requires
− support for both periodic and aperiodic

• never miss deadline due to aperiodic requests
• aperiodic requests must not starve

− support multiple streams

− buffer space and efficiency tradeoff?
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Real–Time Disk Scheduling
� Traditional algorithms have no provision of time or 

deadlines

ªReal–time algorithms targeted for real–time 
applications with deadlines

� Several proposed algorithms
− earliest deadline first (EDF)
− SCAN-EDF
− shortest seek and earliest deadline by ordering/value (SSEDO / SSEDV)
− priority SCAN (PSCAN)
− ...
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Earliest Deadline First (EDF)
EDF serves the request with nearest deadline first

� non-preemptive (i.e., an arriving request with a shorter deadline must wait)

� excessive seeks Æ poor throughput

tim
e

cylinder number
1 5 10 15 20 25

12,5

incoming requests (<block, deadline>, in order of arrival):

14,6 2,4 7,7 21,1 8,2 24,3

scheduling
queue

12,5 14,6 2,4 7,7 21,1 8,2 24,3
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SCAN–EDF
SCAN-EDF combines SCAN and EDF:
� the real-time aspects of EDF
� seek optimizations of SCAN
� especially useful if the end of the period is the 

deadline (some equal deadlines)

� algorithm:
− serve requests with earlier 

deadline first (EDF)
− sort requests with same 

deadline after track location 
(SCAN)

tim
e

cylinder number
1 5 10 15 20 25

2,3

incoming requests (<block, deadline>, in order of arrival):

14,1 9,3 7,2 21,1 8,2 24,2

scheduling
queue

2,3 14,1 9,3 7,2 21,1 8,2 24,2 16,116,1

Note:
similarly, we can combine EDF 
with C-SCAN, LOOK or C-LOOK
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Stream Oriented Disk Scheduling
� Streams often have soft deadlines and tolerate some slack due 

to buffering, i.e., pure real-time scheduling is inefficient and 
unnecessary

Stream oriented algorithms targeted for streaming continuous 
media data requiring periodic access

� Several algorithms proposed:
− group sweep scheduling (GSS)
− mixed disk scheduling strategy
− contiguous media file system (CMFS)
− lottery scheduling
− stride scheduling
− batched SCAN (BSCAN)
− greedy-but-safe EDF (GS_EDF)
− bubble up
− …
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Group Sweep Scheduling (GSS)
GSS combines Round-Robin (RR) and SCAN

� requests are serviced in rounds (cycles)

� principle:
− divide S active streams into G groups
− service the G groups in RR order
− service each stream in a group in C-SCAN order 
− playout can start at the end of the group

� special cases:
− G = S: RR scheduling
− G = 1: SCAN scheduling

� tradeoff between buffer space and disk arm movement
− try different values for G giving minimum buffer requirement – select minimum
− a large G Æ smaller groups, more arm movements
− a small G Æ larger groups, less arm movements
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Group Sweep Scheduling (GSS)
GSS example: streams A, B, C and D Æ g1:{A,C} and g2:{B,D}
� RR group schedule
� C-SCAN block schedule within a group

tim
e

cylinder number
1 5 10 15 20 25

A2 A1A3 B2 B3B1C1 C2 C3D3 D1 D2

g1

A2

C1

A1

A3

B2

B3

B1

C2

C3

D3

D1

D2

g2

g1

g2

g1

g2

{A,C}

{B,D}

{C,A}

{B,D}

{A,C}

{B,D}
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Mixed Media Oriented Disk Scheduling
� Applications may require both RT and NRT data –

desirable to have all on same disk

� Several algorithms proposed:
− Felini’s disk scheduler
− Delta L
− Fair mixed-media scheduling (FAMISH)
−MARS scheduler
− Cello 
− Adaptive disk scheduler for mixed media workloads (APEX) 
−…
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MARS Disk Scheduler

� Massively-parallel And Real-time Storage (MARS) scheduler 
supports mixed media on a single system
− a two-level scheduling
− round-based

− top-level:
1 NRT queue and n (1) RT queue
(SCAN, but future GSS, SCAN-EDF, or…)

− use deficit RR fair queuing to assign 
quantums to each queue per round –
divides total bandwidth among queues 

− bottom-level:
select requests from queues according to 
quantums, use SCAN order

− work-conserving
(variable round times, new round starts immediately)

…

deficit round robin fair queuing
job selector

NRT RT
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Cello and APEX
� Cello and APEX are similar to MARS, but slightly different in 

bandwidth allocation and work conservation

− Cello has
• three queues: deadline (EDF), throughput intensive best effort (FCFS), 

interactive best effort (FCFS)
• static proportional allocation scheme for bandwidth
• FCFS ordering of queue requests in lower-level queue
• partially work-conserving:

extra requests might be added at the end of the class
independent scheduler, but constant rounds

− APEX
• n queues
• uses token bucket for traffic shaping (bandwidth allocation)  
• work-conserving: 

adds extra requests if possible to a batch & starts extra batch between 
ordinary batches
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Cello
� Cello is part of the Symphony FS supporting mixed media

− two-level scheduling
− round-based

− top-level: n (3) service classes (queues)
• deadline (= end-of-round) real-time (EDF)
• throughput intensive best effort (FCFS)
• interactive best effort (FCFS)

− divides total bandwidth among queues 
according to a static proportional allocation scheme
(equal to MARS’ job selector)

− bottom-level: class independent scheduler (FCFS)
• select requests from queues according to BW share
• sort requests from each queue in SCAN order when transferred 

− partially work-conserving
(extra requests might be added at the end of the class
independent scheduler if space, but constant rounds)

deadline RT throughput intensive
best-effort

interactive
best-effort

3
1

2
7

8
4

2 1 2

sort each queue in SCAN order when transferred
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Adaptive Disk Scheduler for Mixed Media Workloads

� APEX is another mixed media scheduler
− two-level, round-based scheduler similar to Cello and MARS

− uses token bucket for traffic shaping
(bandwidth allocation)  

− the batch builder select requests in
FCFS order from the queues based on 
number of tokens – each queue must 
sort according to deadline 
(or another strategy)

− work-conserving
• adds extra requests if possible to a batch
• starts extra batch between ordinary batches

Request Distributor/
Queue Scheduler

Queue/Bandwidth
Manager

...

Batch Builder
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APEX, Cello and C–LOOK Comparison
� Results from Ketil Lund (2002)

� Configuration:
− Atlas Quantum 10K
− data placement: random
− round time: 1 second
− block size: 64KB

� 6 video playbacks and 9 user queries
− Video data disk requests are assigned to a real-time queue
− User-query disk requests to a best-effort queue 

− Bandwidth is shared 50/50 between real-time and best-effort queue
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APEX, Chello and C–LOOK Comparison
Average response time for user-query disk requests
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violations
(video)

Data Placement 
on Disk
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Data Placement on Disk 

� Disk blocks can be assigned to files many ways, and 
several schemes are designed for

− optimized latency
− increased throughput

ªaccess pattern dependent
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Disk Layout

� Constant angular velocity (CAV) disks
− equal amount of data in each track

(and thus constant transfer time)
− constant rotation speed

� Zoned CAV disks
− zones are ranges of tracks
− typical few zones
− the different zones have

• different amount of data 
• different bandwidth 
• i.e., more better on outer tracks
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Disk Layout
outer:

inner:

outer:

inner:

constant transfer rate 

variable
transfer 
rate 

zoned disk

non-zoned disk
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Disk Layout

� Cheetah X15.3 is a zoned CAV disk:

4192,69075,3%8188848596,07438234210

4428,26875,5%8648960632,4746623259

4781,50675,7%9338880649,4148024378

5345,64176,3%10440704687,0551225547

5875,00375,5%11474616728,4753726766

6603,66978,1%12897792755,2957628055

7148,07376,0%13961080801,8859529394

7854,29376,5%15340416835,7662430793

9013,24876,0%17604000878,4365233822

9735,63577,2%19014912890,9867235441

Formatted 
Capacity (MB)Efficiency

Sectors per 
Zone

Zone Transfer 
Rate (MBps)

Sectors per 
Track

Cylinders per 
ZoneZone

9 Always place often used or high rate data on outermost tracks (zone 1) …!? 

ª NO, arm movement is often more important than transfer time 
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Data Placement on Disk

� Contiguous placement stores disk blocks contiguously on disk

− minimal disk arm movement reading the whole file (no intra-file seeks)

− pros/cons
☺ head must not move between read operations - no seeks / rotational delays
☺ can approach theoretical transfer rate 
/ but usually we read other files as well (giving possible large inter-file seeks)

− real advantage
• do not have to pre-determine block (read operation) size 

(whatever amount to read, at most track-to-track seeks are performed)

− no inter-operation gain if we have unpredictable disk accesses

file A file B file C
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Data Placement on Disk
� Interleaved placement tries to store blocks from a file with a 

fixed number of other blocks in-between each block 

− minimal disk arm movement reading the files A, B and C
(starting at the same time)

− fine for predictable workloads reading multiple files

− no gain if we have unpredictable disk accesses

� Non-interleaved (or even random) placement can be used for 
highly unpredictable workloads

file A
file B

file C
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Data Placement on Disk
� Organ-pipe placement consider the ‘average’ disk head position

− place most popular data where head is most often

− center of the disk is closest to the head using CAV disks
− but, a bit outward for zoned CAV disks (modified organ-pipe)

disk:
innermost

outermost

head

bl
oc

k 
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

bl
oc

k 
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

organ-pipe: modified organ-pipe:
Note:
skew dependent on    
tradeoff between 
zoned transfer time 
and storage
capacity vs.
seek time

Modern Disks:
Complicating Factors
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Complicating Factors
� Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only…

� … but, new disks are more complex 
− hide their true layout, e.g., 

• only logical block numbers
• different number of surfaces, cylinders, sectors, etc.

OS view real view
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Complicating Factors
� Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only…

� … but, new disks are more complex  
− hide their true layout
− transparently move blocks to spare cylinders

• Seagate X15.3 - zone 1 - 10: (7,7,6,6,6,5,5,5,5,5)
• e.g., due to bad disk blocks 

OS view real view
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Complicating Factors
� Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only…

� … but, new disks are more complex  
− hide their true layout
− transparently move blocks to spare cylinders
− have different zones

� Constant angular 
velocity (CAV) disks
− constant rotation speed
− equal amount of data in 

each track
Ö thus, constant 

transfer time

� Zoned CAV disks
− constant rotation speed 
− zones are ranges of tracks
− typical few zones
− the different zones have 

different amount of data, i.e., 
more better on outer tracks

Ö thus, variable transfer time

outer

inner

OS view real view
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Complicating Factors
� Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only…

� … but, new disks are more complex  
− hide their true layout
− transparently move blocks to spare cylinders
− have different zones
− head accelerates – most algorithms assume linear movement overhead

~ 10x - 20x  

x

1 N
Cylinders Traveled

Time
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Complicating Factors
� Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only…

� … but, new disks are more complex  
− hide their true layout
− transparently move blocks to spare cylinders
− have different zones
− head accelerates
− on device (and controller) buffer caches may use read-ahead prefetching

diskbufferdisk
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Complicating Factors
� Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only…

� … but, new disks are more complex  
− hide their true layout
− transparently move blocks to spare cylinders
− have different zones
− head accelerates
− on device (and controller) buffer caches may use read-ahead prefetching
− gaps and checksums between each sector

track



51

INF5071,  Autumn 2007,  Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Complicating Factors
� Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only…

� … but, new disks are more complex  
− hide their true layout
− transparently move blocks to spare cylinders
− have different zones
− head accelerates 
− on device (and controller) buffer caches may use read-ahead prefetching
− gaps and checksums between each sector

“smart” with a build-in low-level scheduler (usually SCAN-derivate)
we cannot fully control the device (black box)
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Why Still Do Disk Related Research?

� If the disk is more or less a black box – why bother?

− many (old) existing disks do not have the “new properties”

− according to Seagate technical support:

“blocks assumed contiguous by the OS probably still will be 
contiguous, but the whole section of blocks might be elsewhere”

[private email from Seagate support] 

− delay sensitive requests

� But, the new disk properties should be taken into account
− existing extent based placement is probably good
− OS could (should?) focus on high level scheduling only
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Next Generation Disk Scheduling?
� Thus, due to the complicating factors…

(like head acceleration, disk buffer caches, hidden data layout, built-in “SCAN” scheduler,…)

… a server scheduler can be (???):

− hierarchical high-level software scheduler
• several top-level queues (at least RT & NRT)

• process queues in rounds (RR)
� dynamic assignment of quantums
� work-conservation with variable round length

(full disk bandwidth utilization vs. buffer requirement)

• only simple collection of requests according to 
quantums in lowest level and forwarding to disk, 
because ...

− ...fixed SCAN scheduler in hardware (on disk)

� On-device programmable processors??

…

RT NRT

SCAN

EDF / FCFS

No sorting

Multiple Disks
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Parallel Access
� Disk controllers and busses manage several devices

� One can improve total system performance by replacing one 
large disk with many small accessed in parallel

� Several independent heads can read simultaneously

Single disk:Two disks:
Note:
the single disk might be 
faster, but as seek time and 
rotational delay are the 
dominant factors of total 
disk access time, the two 
smaller disks might operate 
faster together performing 
seeks in parallel...
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Client1 Client2 Client3 Client4 Client5

Server

Striping
� Another reason to use multiple disks is when one disk cannot 

deliver requested data rate
� In such a scenario, one 

might use several disks 
for striping:
− bandwidth disk: Bdisk

− required bandwidth: Bconsume

− Bdisk < Bconsume

− read from n disks in parallel: n Bdisk > Bconsume

� Advantages
− high data rates

higher transfer rate compared to one disk

� Drawbacks
− can’t serve multiple clients in parallel
− positioning time increases 

(i.e., reduced efficiency)
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Interleaving (Compound Striping)
� Full striping usually not necessary today:  

− faster disks
− better compression algorithms

� Interleaving lets each client be serviced
by only a set of the available disks

− make groups 

− ”stripe” data in a way such that a consecutive 
request arrive at next group 

− one disk group example:

Client1 Client2 Client3

Server
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Interleaving (Compound Striping)
� Divide traditional striping group into sub-groups, e.g., 

staggered striping

� Advantages
− multiple clients can still be served in parallel
− more efficient disks operations
− potentially shorter response time

� Potential drawback/challenge
− load balancing (all clients access same group)

X0,0 X0,1

X1,0 X1,1

X2,0 X2,1

X3,1 X3,0
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Mirroring
� Multiple disks might do come in the situation where all requests

are for one of the disks and the rest lie idle

� In such cases, it might make sense to have replicas of data on 
several disks – if we have identical disks, it is called mirroring

� Advantages
− faster response time
− survive crashes – fault tolerance
− load balancing by dividing the requests for the data on the same disks 

equally among the mirrored disks 

� Drawbacks
− increases storage requirement
− more expensive write operations
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Redundant Array of Inexpensive Disks
� The various RAID levels define different disk organizations to 

achieve higher performance and more reliability
− RAID 0 - striped disk array without fault tolerance (non-redundant)

− RAID 1 - mirroring

− RAID 2 - memory-style error correcting code (Hamming Code ECC)

− RAID 3 - bit-interleaved parity

− RAID 4 - block-interleaved parity

− RAID 5 - block-interleaved distributed-parity

− RAID 6 - independent data disks with two independent distributed parity schemes (P+Q redundancy)

− RAID 10 - striped disk array (RAID level 0) whose segments are mirrored (level 1)

− RAID 0+1 - mirrored array (RAID level 1) whose segments are RAID 0 arrays

− RAID 03 - striped (RAID level 0) array whose segments are RAID level 3 arrays

− RAID 50 - striped (RAID level 0) array whose segments are RAID level 5 arrays

− RAID 53, 51, …
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Replication
� Replication is in traditional disk array systems often used for 

fault tolerance (and higher performance in the new combined 
RAID levels)

� Replication can also be used for 
− reducing hot spots
− increase scalability 
− higher performance
− …
− and, fault tolerance is often a side effect ☺

� Replication should 
− be based on observed load
− changed dynamically as popularity changes
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� DSR tries to balance load by dynamically replicating hot data
− also known as dynamic policy for segment replication (DPSR)
− assumes read only, VoD-like retrieval
− predefines a load threshold for when to replicate a segment by 

examining current and expected load
− uses copyback streams
− replicate when threshold is reached, but which segment and where??

• tries to find a lightly loaded device, based on future load calculations
• not necessarily segment that receives additional requests

(another segment may have more requests)
• replicates based on payoff factor p (replicate segment i with highest p):
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File Placement 
� A file might be stored on multiple disks, but how should one 

choose on which devices?

− storage devices limited by both bandwidth and space

− we have hot (frequently viewed) and cold (rarely viewed) files

− we may have several heterogeneous storage devices

− the objective of a file placement policy is to achieve maximum utilization 
of both bandwidth and space, and hence, efficient usage of all devices 
by avoiding load imbalance 

• must consider expected load and storage requirement

• expected load may change over time
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Bandwidth-to-Space Ratio (BSR) 
� BSR attempts to mix hot and cold as well as large and small 

multimedia objects on heterogeneous devices
− don’t optimize placement based on throughput or space only

− BSR consider both required storage space and throughput requirement
(which is dependent on playout rate and popularity) to achieve a best 
combined device utilization
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Bandwidth-to-Space Ratio (BSR)
� The BSR policy algorithm:

− input: space and bandwidth requirements

− phase 1: 
• find a device to place the media object according to BSR
• if no device, or stripe of devices, can give sufficient space or bandwidth, 

then add replicas
− phase 2:

• find devices for the needed replicas
− phase 3:

• allocate expected load on replica devices according to BSR of the devices
− phase 4:

• if not enough resources are available, see if other media objects can delete replicas 
according to their current workload

− all phases may be needed adding a new media object or increasing the workload 
– for decrease, only the reallocation in needed

� Popular, high data rate movies should be on high bandwidth disks
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Disk Grouping
� Disk grouping is a technique to “stripe” (or fragment) data over 

heterogeneous disks
− groups heterogeneous physical disks to homogeneous logical disks
− the amount of data on each disk (fragments) is determined so that the service 

time (based on worst-case seeks) is equal for all physical disks in a logical disk
− blocks for an object are placed (and read) on logical disks in a round-robin 

manner – all disks in a group is activated simultaneously
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Staggered Disk Grouping
� Staggered disk grouping is a variant of disk grouping minimizing 

memory requirement
− reading and playing out differently
− not all fragments of a logical block is needed at the same time
− first (and largest) fragment on most powerful disk, etc.
− read sequentially (must not buffer later segments for a long time)
− start display when largest fragment is read
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Disk Merging
� Disk merging forms logical disks from capacity fragments of a physical disk 

− all logical disks are homogeneous
− supports an arbitrary mix of heterogeneous disks (grouping needs equal groups)
− starts by choosing how many logical disks the slowest device shall support 

(e.g., 1 for disk 1 and 3) and calculates the corresponding number of more 
powerful devices (e.g., 1.5 for disk 0 and 2 if these disks are 1.5 times better)

− most powerful: most flexible (arbitrary mix of devices) and can be adapted to 
zoned disks (each zone considered as a disk)
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File Systems

� Many examples of application specific storage systems

− integrate several subcomponents (e.g., scheduling, placement, caching, 
admission control, …)

− often labeled differently: file system, file server, storage server, …
Æ accessed through typical file system abstractions

− need to address applications distinguishing features:
• soft real-time constraints (low delay, synchronization, jitter)

• high data volumes (storage and bandwidth)
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Classification
� General file systems: “support” for all applications

e.g.: file allocation table (FAT), windows NT file system (NTFS), second/third extended file 
system (Ext2/3), journaling file system (JFS), Reiser, fast file system (FFS), …

� Multimedia file systems: address multimedia requirements
− general file systems with multimedia support

e.g.: XFS, Minorca

− exclusively streaming
e.g.: Video file server, embedded real-time file system (ERTFS),  Shark, Everest, 
continuous media file system (CMFS), Tiger Shark

− several application classes
e.g.: Fellini, Symphony, (MARS & APEX schedulers)

� High-performance file systems: primarily for large data 
operations in short time
e.g.: general parallel file system (GPFS), clustered XFS (CXFS), Frangipani, global file 
system (GFS), parallel portable file system (PPFS), Examplar, extensible file system (ELFS) 
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Fellini Storage System
� Fellini (now CineBlitz)…

− supports both real-time (with guarantees) and non-real-time by assigning resources for 
both classes

− SGI (IRIX Unix), Sun (Solaris), PC (WinNT & Win95)

� Admission control
− deterministic (worst-case) to make hard guarantees

− services streams in rounds

− used (and available) disk BW is calculated using 
• worst-case 

� seek (inner to outer)
� rotational delay (one round)
� settle (servicing latency) - transfer rate of inner track

• Tperiod > total disk time = 2 x seek + Σ[blocksi x (rotation delay + settle)]

− used (and available) buffer space is calculated using
• buffer requirement per stream = 2 x rate x service round

− a new client is admitted if enough free disk BW and buffer space
(additionally Fellini checks network BW)

− new real-time clients are admitted first
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Fellini Storage System

� Cache manager

− pages are pinned (fixing) using a reference counter

− replacement in three steps

1. search free list

2. search current buffer list (CBL) for the unused LRU file

3. search in-use CBLs and assign priorities to replaceable buffers (not pinned) 
according to reference distance (depending on rate, direction)

� sort (using Quicksort)

� replace buffer with highest weight
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Fellini Storage System
� Storage manager

− maintains free list with grouping contiguous blocks Æ store blocks contiguously
− uses C-SCAN disk scheduling
− striping 

• distribute the total load
• add fault-tolerance (parity data)

− simple flat file system

� Application interface
− real-time: 

• begin_stream (filename, mode, flags, rate)
• retrieve_stream (id, bytes)

• store_stream (id, bytes)

• seek_stream (id, bytes, whence)

• close_stream(id)

− non-real-time: more or less as in other file systems, except that when opening 
one has an admittance check
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Evolution: New Requirements
� Architectural considerations [Prashant Shenoy et al]:

− integrated file system support for a variety of applications

− modernizing the multimedia file system
• server-independent
• self managing
• self healing
• networked 
• disk processors

� Trend in research towards high-performance file systems
− usually no timeliness guarantees, but performance is maximized

− several build on multimedia file systems (Tiger Shark Æ GPFS,  XFS Æ CXFS), 
but have gained scalability while still supporting reservation 

− efficient support for operations like strided (non-continuous) I/O will be 
increasingly important  (edition, interactions, scalable streaming, non-linearity)
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Discussion: We have the Qs, you have the As!

� New devices
− solid state storage devices 
− SAN / NAS
− storage bricks
−…

� I/O architectures for multiprocessors 

� Virtual machines

The End:
Summary
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Summary
� All resources needs to be scheduled

� Scheduling algorithms have to…
−… be fair
−… consider real-time requirements (if needed)
−… provide good resource utilization
− (… be implementable)

� Memory management is an important issue
− caching
− copying is expensive Æ copy-free data paths
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Summary
� The main bottleneck is disk I/O performance due to disk 

mechanics: seek time and rotational delays

� Much work has been performed to optimize disks performance

� Many algorithms trying to minimize seek overhead
(most existing systems uses a SCAN derivate)

� World today more complicated 
− both different media
− unknown disk characteristics –

new disks are “smart”, we cannot fully control the device

� Disk arrays frequently used to improve the I/O capability

� Many existing file systems with various application specific  
support
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