
ProtocolsProtocols
without QoS Supportwithout QoS Support

28/9 - 2007

INF 5071 – Performance in Distributed Systems

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Requirements for Continuous Media

 Acceptable continuity

−Streams must be displayed in sequence

−Streams must be displayed at acceptable, consistent quality

 Acceptable delay

−Seconds in asynchronous on-demand applications

−Milliseconds in synchronous interpersonal communication

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Requirements for Continuous Media

 Acceptable synchronity

− Intra-media: time between successive packets must be
conveyed to receiver

− Inter-media: different media played out at matching times

 Acceptable jitter

−Milliseconds at the application level

−Tolerable buffer size for jitter compensation

−Delay and jitter include retransmission, error-correction, ...

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Basic Techniques
 Delay and jitter

− Reservation (sender, receiver, network)
− Buffering (receiver)
− Scaling (sender)

 Continuity
− Real-time packet re-ordering (receiver)
− Loss detection and compensation
− Retransmission
− Forward error correction
− Stream switching (encoding & server)

 Synchronity
− Fate-sharing and route-sharing (networks with QoS-support)
− Time-stamped packets (encoding)
− Multiplexing (encoding, server, network)
− Buffering (client)
− Smoothing (server)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

QoS vs. Non–QoS Approaches
 Internet without network QoS support

− Internet applications must cope with networking problems
• Application itself or middleware

• "Cope with" means either …
 … “adapt to” which must deal with TCP-like service variations

 … “don’t care about” which is considered “unfair” and cannot work with TCP

 Internet with network QoS support
− Application must specify their needs

− Internet infrastructure must change – negotiation of QoS parameters

− Routers need more features
• Keep QoS-related information

• Identify packets as QoS-worthy or not

• Treat packets differently keep routing consistent

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Overview

 Non-QoS protocols
−Download applications

• Defining application for good Internet behavior
• Total download time

−On-demand streaming applications
• Fairness to download applications
• Sustain application quality after streaming start

− Interactive applications
• Fairness to download applications
• Achieve a low latency

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP/IP Protocol stack

 Has only 4 layers

 IP is central

 Nothing must compete with IP at the
network layer

 There is no QoS support

 Routing is transparent for the
application

 Transport-unrelated functions are
application-layer tasks

Protocols for Non–QoS Approaches

Transport Layer

Application Layer

Network Layer

Physical Layer Various
 Not a concern

No flexibility – IP is THE protocol
 IPv4
 IPv6

Limited flexibility
 UDP
 TCP
 New developments

Complete freedom
 Compatibility is an application

issue

Download Applications

Bandwidth sharing problem

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Friendliness:
The definition of good Internet behavior

 TCP Congestion Control

 TCP limit sending rate as a function of perceived
network congestion
− little traffic – increase sending rate
−much traffic – reduce sending rate

 Congestion algorithm has three major “components”:
−additive-increase, multiplicative-decrease (AIMD)
− slow-start
− reaction to timeout events

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control
 sender receiver Initially, the CONGESTION WINDOW

is 1 MSS (message segment size)

ro
un

d
1

ro
un

d
2

ro
un

d
3

ro
un

d
4

sent packets
per round
(congestion window)

time

16

8

4

2

1

Then, the size increases by 1 for each
received ACK (until threshold
ssthresh is reached or an ACK is
missing)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control

16

8

4

2

1

Normally, the threshold is 65 K

sent packets
per round

(congestion window)

time

40

20

10

5

80

15

30

25

35

75

55

45

50

65

60

70

Losing a single packet (TCP Tahoe):
 threshold drops to halve CONGESTION WINDOW
 CONGESTION WINDOW back to 1

Losing a single packet (TCP Reno):
 threshold drops to halve CONGESTION WINDOW
 CONGESTION WINDOW back to new threshold

ssthresh

ssthresh

50%

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control

sent packets
per round

(congestion window)

time

40

20

10

5

80

15

30

25

35

75

55

45

50

65

60

70
ssthresh

ssthresh

Multiplicative decrease

Sl
ow

-s
ta

rt
 p

ha
se

Congestion avoidance
phase

Multiplicative Decrease
Performed when loss is detected in

slow-phase and in congestion
avoidance phase

Additive Increase
One more segments sent after 1

RTT without loss in
congestion avoidance phase

Slow Start
TCP will always return to a slow start when a packet

loss is detected by timeout (instead of duplicate
ACKs). That means that it starts from scratch with
only one segment per RTT, then 2, then 4, etc.

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Friendliness:
The definition of good Internet behavior

RTT

w
R
s

max=

A TCP connection’s
throughput is bounded

 wmax - maximum retransmission
 window size

 RTT - round-trip time

The TCP send rate limit is

2
1, =!= "" ww

In case of loss in an RTT:

In case of no loss:

1, =+= !!ww

Congestion windows size
changes

 AIMD algorithm
 additive increase, multiple

decrease

TCP is said to be fair
 Streams that share a path will

reach an equal share

That’s not generally true
 Bigger RTT

 higher loss probability per RTT
 slower recovery

 Disadvantage for long-distance
traffic

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

 A protocol is TCP-friendly if

− Colloquial: It long-term average
throughput is not bigger than TCP’s

− Formal: Its arrival rate is at most
some constant over the square root
of the packet loss rate

Thus, if the rule is not violated …

… the AIMD algorithm with α ≠ 1/2 and β ≠ 1 is still TCP-friendly

… TCP-friendly protocols may
probe for available bandwidth faster than TCP
adapt to bandwidth changes more slowly than TCP
use different equations or statistics, i.e., not AIMD
not use slow start (i.e., don’t start with w=0)

TCP Friendliness:
The definition of good Internet behavior

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives

 Why alternatives?
− Improve throughput and variance

• Early TCP implementations did little to minimize network congestion

• Loss indication forces setting new congestion window threshold to
half of the last congestion window size

• But …
 … what else to conclude from the loss?
 … which packets to retransmit?

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives
 Original TCP

− not in use

 TCP Tahoe
 TCP Reno
 TCP New-Reno

− standard TCP headers

 TCP SACK (Selective Acknowledgements)
 TCP FACK (Forward Acknowledgements)

− must use a TCP option
− RFC 2018 “TCP Selective Acknowledgment Options”

 TCP Westwood+
− use bandwidth estimate for congestion events

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives
• TCP/IP Header Format for TCP Tahoe, Reno and New Reno

Destination Address
Source address

Time to live Protocol Header checksum
Identification D M Fragment offset

Version IHL Type of service Total lengthPRE ToS

Data

Options
Source port Destination port

Sequence number
Piggyback acknowledgement

THL

THL – TCP header length
U: URG – urgent
A: ACK – acknowledgement
P: PSH – push
R: RST – reset
S: SYN – sync
F: FIN – finalize

F Advertised windowSRPAUunused
Checksum Urgent pointer

IP header

TCP header

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

THL F Advertised windowSRPAUunused

TCP Congestion Control Alternatives
• TCP/IP Header Format for TCP SACK and FACK

Destination Address
Source address

Time to live Protocol Header checksum
Identification D M Fragment offset

Version IHL Type of service Total lengthPRE ToS

Data

Options
Source port Destination port

Sequence number
Piggyback acknowledgement

Checksum Urgent pointer

IP header

TCP header5 SACK opt. len. Left edge 1st block, bits 31-16
Left edge 1st block, bits 15-0 Right edge 1st block, bits 31-16
Right edge 1st block, bits 15-0 Left edge 2nd block, bits 31-16
Left edge 2nd block, bits 15-0

Right edge last block, bits 15-0

…
…

5 SACK opt. len.
Left edge 1st block

Right edge 1st block

Right edge last block
…

Left edge: first sequence number of a
block of received packet after a lost
packet

Right edge: first sequence number
AFTER that block

Only 40 bytes TCP options allowed,
therefore never more than 4 blocks
reported at once

Sequence number of packet that
triggered ACK must be in first block
unless it is in the sequence number
field

Always use as many blocks as possible

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

NoNo

No

Linear
decrease

ImmediatelyCong. window
halving

By 1st
SACK blk

By TCP sequence numberIn flight packet
estimation

Consider gapsYesNoStay in f. rec.

Yes (3 duplicate ACKs)NoFast recovery

YesNoFast retransmit

YesNoCongestion
avoidance

YesNoSlow start

By SACK blkRetransmit lost packet,
continue after last sent

Go back-nRetransmission
strategy

FACKSACKNew-RenoRenoTahoeOriginal
TCP

Feature

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives

Retransmit lost
packet, continue

after last sent

Yes

Yes
Yes

Ye
s

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

NoNo
No

Spread
out

ImmediatelyCong. window
halving

By 1st
SACK

blk

By TCP sequence numberIn flight packet
estimation

Consider gapsYesNoStay in f. rec.
Yes (3 duplicate ACKs)NoFast recovery

YesNoFast retransmit

YesNoCongestion
avoidance

YesNoSlow start

By SACK blkGo back-nRetransmissio
n strategy

FACKSACKNew-
Reno

RenoTahoeOriginal
TCP

Feature

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Simulation results

Sequence number development

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20Time (s)

S
e
q
u
e
n
c
e
 n

u
m

b
e
r

(s
e
g
m

e
n
t
n
u
m

b
e
r)

TCP New Reno

SACK TCP

FACK TCP

Lossy transfer with small delays (link: 500kbps, 105ms delay):

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+
 Very recent
 Developed for wireless networks with many losses

− Losses in wireless networks are often non-congestion losses:
corruption losses

 Side effect
− Less unfair against long round-trip times

 Implemented in Linux
− With SACK extensions

 Procedure
− TCP Westwood uses ACK packets
− provide a bandwidth estimate

 “Faster recovery”
− After loss indication by a triple-ACK go into faster recovery

• Use bandwidth estimate to set new congestion window size and new slow
start threshold

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

!

ssthresh =
lk+1 *RTTmin

seg_ size

cwin =min(cwin,ssthresh)

 sender receiver

DUPACKs

new RTTmin

Reno ssthresh

time

4

2

1

3

6

5

7

Westwood
ssthresh

bk = estimate number of bytes
sent in this RTT.
Uses average difference of
time(sent) and time(ack’d)
for every packet
for this RTT

lk = estimate bytes that can be
sent per times unit (e.g. second)
uses a low pass filter (aging) to
estimate longer-term development of
bytes per RTT

bk+1 = estimate number of bytes
sent in this RTT.
Uses average difference of
time(sent) and time(ack’d)
for every packet
for this RTT

ssthresh = in case of loss,
multiply lk with the minimum RTT to
get a minimum of bytes that have
been supported per RTT.
Divide by segment size to get
number of segments/RTT that should
be supportable.

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

 TCP Westwood assumption
− Immediately before the loss, TCPW was very close to its fair

share. Therefore, on triple ACKs and DUPACKs, a state of
congestion is reached and the previously used bandwidth is
used for the congestion window size (not halving!)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

Se
qu

en
ce

 n
um

be
r

in
 s

eg
m

en
ts

/1
00

50 ms Westwood

50 ms Reno

200 ms Reno

200 ms Westwood

Time (sec)

0 50 100 150 200
0

50

100

150

200

(approximation of a perf. eval. figure)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

TCP senders TCP receivers

bottleneck link:
packet loss

limited bandwidth

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

Westwood

TCP Reno TCP SACK

Th
ro

ug
hp

ut
 (

M
bi

t/
s)

Speed of the bottleneck link (Mbit/s)

Uniformly distributed errors at the bottleneck link: 0.5% loss

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7

(approximation of a perf. eval. figure)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Random Early Detection (RED)

 Random Early Detection (discard/drop) (RED) uses
active queue management

 Drops packet in an intermediate node based on
average queue length exceeding a threshold
−TCP receiver reports loss in ACK
− sender applies MD

 Why?
− if not, many TCPs loose packets at the same time
−many TCP streams probe again at the same time
−oscillating problems

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Early Congestion Notification (ECN)
 Early Congestion Notification (ECN) - RFC 2481

−an end-to-end congestion avoidance mechanism
− implemented in routers and supported by end-systems
−not multimedia-specific, but very TCP-specific
− two IP header bits used

• ECT - ECN Capable Transport, set by sender
• CE - Congestion Experienced, may be set by router

 Extends RED
− if packet has ECT bit set

• ECN node sets CE bit
• TCP receiver sets ECN bit in ACK
• sender applies multiple decrease (AIMD)

−else
• Act like RED

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Early Congestion Notification (ECN)

 (brief reminder of INF3190)
 Effects

− Congestion is not oscillating - RED & ECN
− ECN-packets are never lost on uncongested links
− Receiving an ECN mark means

• TCP window decrease
• No packet loss
• No retransmission

Tail drop

RED

ECN

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Download applications
 Loss is worst …

− … because it must be corrected
− … because it must be interpreted as congestion, and
− TCP-friendliness demands that bandwidth consumption is reduced

 Non-QoS problem
− Transport layer can share bandwidth only fairly
− End-users can tweak this: performance isolation

 Other TCP variants (that you find in Linux)
− BIC
− CUBIC
− Vegas
− High-speed TCP
− Fast TCP
− H-TCP
− …

On–demand Streaming Applications

Stable bandwidth problem

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control

 TCP congestion control is based on the notion
that the network is a “black box” –
congestion indicated by a loss

 Sufficient for best-effort applications, but losses might
severely hurt traffic like audio and video streams
 congestion indication can enable features like

quality adaptation

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

UDP

 The classical solution
−Send data at playout speed
−Write loss-tolerant audio-video codecs
− Ignore all kinds of loss

 Problem
−Does not back off at bandwidth bottlenecks
−TCP connections suffer

⇒ Approach is no longer accepted

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Comparison of Non-QoS Philosophies

Most applications are on-demandOne-fits-all protocol possible
on-demand, quasi-broadcasting, conferencing

Works through firewalls

TCP-friendly without additional workTCP-friendliness
can be implemented (end-to-end)

variations of the algorithm possible

Small buffers possible
if loss is handled gracefully

Lossless
codecs don’t need additional loss resistance

Scalable codecs are needed anyway

No need to handle retransmissionsApplication controls retransmission

Existing optimization is for TCP
routers, firewall, OS network stacks

Faster
only one end-to-end delay for packet delivery

ISPs dislike multicast

Proxies, caches and reflectors
are beneficial anyway, can replace multicast

Scalable due to multicast

Pro TCPPro UDP

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Using Standard Protocols

MSP
Media Streaming Protocol

Research, UIUC

PRTP-ECN
Partially reliable transport protocol

using ECN
Research, Univ. Karlstad

Priority Progress Streaming
needs special encoding

needs special routers for ’multicast’

VDP
Video Datagram Protocol

Research, for Vosaic

SR-RTP
TCP-friendly with RTP/UDP

needs special encoding
(OpenDivX)

DCCP
Datagram Congestion Control

Protocol
IETF RFC, driven by TCP-
friendliness researchers

"Progressive Download" or
"HTTP Streaming"

application-level prefetching and
buffering

trivial, cheap, firewall-friendly

RLM
TCP-friendly, needs fine-grained

layered video

SCTP
Stream Control Transmission

Protocol
IETF RFC, supported by telephone

industry

RTP in RTSP over TCP
standardized worst-case fallback

firewall-friendly

RTP
Real Time Protocol

IETF std, supported by ITU-T &
Industry

Alternative TransportOver TCPOver UDP

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Progressive Download
 In-band in long-running HTTP response

− Plain file for the web server
− Even simpler than FTP
− No user interactions – start, stop, ...

 If packet loss is ...
− ... low – rate control by back-pressure from client
− ... high – client’s problem

 Applicability
− Theoretical

• For very low-bit-rate codecs
• For very loss-intolerant codecs

− Practical
• All low-volume web servers

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Progressive Download

TCP Stack TCP Stack

Decoder

Receive buffer

Web server

Network (uncongested)

Backpressure !

Serves requested files
as quickly as
possible

Can recreate timing from
media file

Accepts buffer underruns

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Progressive Download

TCP Stack TCP Stack

Decoder

Receive buffer

Web server

Network (congested)

Retransmission
Timeout

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Priority Progress Streaming
 Unmodified TCP (other transports conceivable)
 Unmodified MPEG-1 video-in (other encoding formats conceivable)

 Real-time video processing
− Convert MPEG to Spatially Scalable MPEG (SPEG) – 10-25% overhead
− Packetize SPEG to separate by frame and by SNR quality step

• More variations conceivable: color, resolution
− Assign priorities to SPEG packets

• Dynamic utility curves indicate preference for frame or SNR dropping
− Write SPEG packets in real-time into reordering priority progress queue

 Queues are long
− Much longer than TCP max window
− Dynamically adjustment allows fast start and dynamic growth
− With longer queues

• Total delay is increased
• High priority packets win more often

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Priority Progress Streaming

Smoothing buffer

MPEG decoder

Viewer

Transparent
OS Issues

TCP Net

bottlenecks
slow TCP down

TCP

SPEG transcoderbuffer size to account
for priority reordering
& TCP backpressure

Priority Progess Queue

SPEG transcoder

MPEG file

Priority Mapper

Timing Generator

High priority

Medium priority

Low priority
To TCP

Priority Progress Queue

Packets to send

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Selective Retransmission–RTP (SR−RTP)

 Features
− Relies on a layered video codec
− Supports selective retransmission
− Uses congestion control to choose number of video layers

 Congestion Manager
− Determines the permitted send rate at the sender
− Uses TCP-friendly algorithm for rate computation

 Knowledge about encoding
− Required at sender to select video layers to send
− Required at receiver to

• decode at correct rate
• send NAKs

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Selective Retransmission–RTP (SR−RTP)

UDP Stack UDP Stack

Decoder

Smoothing buffer

MPEG-4 server

Network

SR-RTP
RTCP

SR-RTP
RTCP

Congestion
Manager

RTCP report
Includes loss information

Forwarding to the
Congestion Manager

Update allowed
Bandwidth
for stream

Transmission schedule of
a layered video

Retransmission demand

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Selective Retransmission–RTP (SR−RTP)

 Binomial Congestion Control
−Provides a generalization of TCP AIMD

−Congestion window size wt depends on losses per RTT

−TCP’s AIMD: α = 1, β = .5, k = 0 and l = 1

−k + l = 1: binomial congestion control is TCP friendly

0, >+=+ !!
k

t

tRTTt
w

ww

Increase

10, <<!=+ "" l

tRTTt
ww

Decrease

Nick Feamster and Hari Balakrishnan

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Selective Retransmission–RTP (SR−RTP)

AIMD

SQRT

 SQRT
− Special case of binomial congestion control
− k=0.5, l=0.5
− Name because w0.5 = sqrt(w)

 Effect of SQRT
− Average bandwidth is like TCP’s
− Maximum is lower
− SQRT covers a step function with

less steps

AIMD

SQRT

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Datagram Congestion Control Protocol (DCCP)

 Datagram Congestion Control Protocol

 Transport Protocol
− Offers unreliable delivery
− Low overhead like UDP
− Applications using UDP can easily change to this new protocol

 Accommodates different congestion control
− Congestion Control IDs (CCIDs)

• Add congestion control schemes on the fly
• Choose a congestion control scheme
• TCP-friendly Rate Control (TFRC) is included

− Half-Connection
• Data Packets sent in one direction

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Datagram Congestion Control Protocol (DCCP)
 Congestion control is pluggable

− One proposal is TCP-Friendly Rate Control (TFRC)
• Equation-based TCP-friendly congestion control
• Receiver sends rate estimate and loss event history
• Sender uses models of SACK TCP to compute send rate

Steady state TCP
send rate

Loss probability

Number of packets ack’d by
one ACK

Retransmission timeout

Padhye’s TCP New Reno estimation formula

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Datagram Congestion Control Protocol (DCCP)

b = 1
tRTO = 3 RTT

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

On-demand streaming applications

 Smoothness is key
−Use a lot of buffering
−Don’t surprise the application
−Consume a limited amount of buffers
−Try to make congestion control as smooth as possible

 Adaptive applications
−Can by improved by this

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Some References
 Charles Krasic, Jonathan Walpole, Wu-chi Feng: "Quality-Adaptive Media Streaming by Priority Drop", 13th

International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV
2003), June 2003

 Charles Krasic, Jonathan Walpole: "Priority-Progress Streaming for Quality-Adaptive Multimedia", ACM
Multimedia Doctoral Symposium, Ottawa, Canada, October 2001

 Kurose, J.F., Ross, K.W.: “Computer Networking – A Top-Down Approach Featuring the Internet”, 2nd ed.
Addison-Wesley, 2003

 The RFC repository maintained by the IETF Secretariat can be found at
http://www.ietf.org/rfc.html
The following RFCs might be interesting with respect to this lecture:

 RFC 793: Transmission Control Protocol
 RFC 2988: Computing TCP's Retransmission Timer
 RFC 768: User Datagram Protocol
 RFC 2481: A Proposal to add Explicit Congestion Notification (ECN) to IP
 RFC 1889: RTP: A Transport Protocol for Real-Time Applications
 RFC 1890: RTP Profile for Audio and Video Conferences with Minimal Control
 RFC 2960: Stream Control Transmission Protocol
 RFC 2326: Real Time Streaming Protocol

