
Distribution Distribution –– Part III Part III

26/10 & 2/11 – 2007

INF5071 – Performance in distributed systems:

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Client-Server

backbone
network

local
distribution

network

local
distribution

network

local
distribution

network

Traditional distributed computing
Successful architecture, and will continue to
be so (adding proxy servers)
Tremendous engineering necessary to
make server farms scalable and robust

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Distribution with proxies

 Hierarchical distribution
system
−E.g. proxy caches that

consider popularity

 Popular videos replicated
and kept close to clients

 Unpopular ones close to the
root servers

 Popular videos are
replicated more frequently

end-systems

local servers

root servers

regional
servers

completeness of
available content

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Peer-to-Peer (P2P)

backbone
network

local
distribution

network

local
distribution

network

local
distribution

network

Really an old idea - a distributed system architecture
No centralized control
Nodes are symmetric in function

Typically, many nodes, but unreliable and heterogeneous

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Overlay networks

LAN

backbone
network

backbone
network backbone

network

LAN

LAN
LAN

IP routing

IP link

IP path

Overlay node

Overlay link

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

P2P
 Many aspects similar to proxy caches

− Nodes act as clients and servers
− Distributed storage
− Bring content closer to clients
− Storage limitation of each node
− Number of copies often related to content popularity
− Necessary to make replication and de-replication decisions
− Redirection

 But
− No distinguished roles
− No generic hierarchical relationship

• At most hierarchy per data item
− Clients do not know where the content is

• May need a discovery protocol
− All clients may act as roots (origin servers)
− Members of the P2P network come and go

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

P2P Systems
 Peer-to-peer systems

− New considerations for distribution systems

 Considered here
− Scalability, fairness, load balancing
− Content location
− Failure resilience
− Routing

• Application layer routing
• Content routing
• Request routing

 Not considered here
− Copyright
− Privacy
− Trading

Examples: Napster

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Napster

 Program for sharing (music) files over the Internet

 Approach taken
− Central index
− Distributed storage and download
− All downloads are shared

 P2P aspects
− Client nodes act also as file servers

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Napster

 Client connects to Napster
with login and password

 Transmits current listing of
shared files

 Napster registers username,
maps username to IP address
and records song list

central index

join

...

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Napster

central index

query
answer

...

 Client sends song request to
Napster server

 Napster checks song database

 Returns matched songs with
usernames and IP addresses
(plus extra stats)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Napster

central index

get
file

...

 User selects a song, download
request sent straight to user

 Machine contacted if available

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Napster: Assessment
 Scalability, fairness, load balancing

− Replication to querying nodes
• Number of copies increases with popularity

− Large distributed storage
− Unavailability of files with low popularity
− Network topology is not accounted for at all
− Latency may be increased

 Content location
− Simple, centralized search/location mechanism
− Can only query by index terms

 Failure resilience
− No dependencies among normal peers
− Index server as single point of failure

Examples: Gnutella

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Gnutella
 Program for sharing files over the Internet

 Approach taken
− Purely P2P, centralized nothing
− Dynamically built overlay network
− Query for content by overlay broadcast
− No index maintenance

 P2P aspects
− Peer-to-peer file sharing
− Peer-to-peer querying
− Entirely decentralized architecture

 Many iterations to fix poor initial design (lack of scalability)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Gnutella: Joining
 Connect to one known

host and send a
broadcast ping

− Can be any host, hosts
transmitted through
word-of-mouth or host-
caches

− Use overlay broadcast
ping through network
with TTL of 7

TTL 1TTL 2TTL 3TTL 4

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Gnutella: Joining

Hosts that are not
overwhelmed respond with
a routed pong

Gnutella caches these
IP addresses or replying
nodes as neighbors

In the example the grey nodes
do not respond within a
certain amount
of time (they are
overloaded)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Gnutella: Query

 Query by broadcasting
in the overlay

− Send query to all
overlay neighbors

− Overlay neighbors
forward query to all
their neighbors

− Up to 7 layers deep
(TTL 7)

query

query

query

query

query

query

query

query

query

TTL:7

TTL:6

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Gnutella: Query
 Send routed responses

− To the overlay node that
was the source of the
broadcast query

− Querying client receives
several responses

− User receives a list of
files that matched the
query and a
corresponding IP address

query

responsequeryresponse

query

response

qu
er

y
re

sp
on

se

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Gnutella: Transfer
 File transfer

− Using direct communication

− File transfer protocol not part of
the Gnutella specification

do
w

nl
oa

d
re

qu
es

t
re

qu
es

te
d

fil
e

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Gnutella: Assessment
 Scalability, fairness, load balancing

− Replication to querying nodes
• Number of copies increases with popularity

− Large distributed storage
− Unavailability of files with low popularity
− Bad scalability, uses flooding approach
− Network topology is not accounted for at all, latency may be increased

 Content location
− No limits to query formulation
− Less popular files may be outside TTL

 Failure resilience
− No single point of failure
− Many known neighbors
− Assumes quite stable relationships

Examples: Freenet

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Freenet
 Program for sharing files over the Internet

− Focus on anonymity

 Approach taken
− Purely P2P, centralized nothing
− Dynamically built overlay network
− Query for content by hashed query and best-first-search
− Caching of hash values and content
− Content forwarding in the overlay

 P2P aspects
− Peer-to-peer file sharing
− Peer-to-peer querying
− Entirely decentralized architecture
− Anonymity

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Freenet: Nodes and Data

 Nodes
−Routing tables

• Contain IP addresses of other nodes and the hash values they hold
(resp. held)

 Data is indexed with a hash values
− “Identifiers” are hashed
− Identifiers may be keywords, author ids, or the content itself
−Secure Hash Algorithm (SHA-1) produces a “one-way” 160-

bit key
−Content-hash key (CHK) = SHA-1(content)

• Typically stores blocks

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Freenet: Storing and Retrieving Data
 Storing Data

− Data is moved to a server with arithmetically close keys
1. The key and data are sent to the local node
2. The key and data is forwarded to the node with the nearest key
Repeat 2 until maximum number of hops is reached

 Retrieving data
− Best First Search

1. An identifier is hashed into a key
2. The key is sent to the local node
3. If data is not in local store, the request is forwarded to the best neighbor
Repeat 3 with next best neighbor until data found, or request times out
4. If data is found, or hop-count reaches zero, return the data or error along

the chain of nodes (if data found, intermediary nodes create entries in their
routing tables)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Freenet: Best First Search

 Heuristics for Selecting Direction
>RES: Returned most results
<TIME: Shortest satisfaction time
<HOPS: Min hops for results
>MSG: Sent us most messages (all types)
<QLEN: Shortest queue
<LAT: Shortest latency
>DEG: Highest degree

query
?...

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Freenet: Routing Algorithm

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Freenet: Assessment
 Scalability, fairness, load balancing

− Caching in the overlay network
• Access latency decreases with popularity

− Large distributed storage
− Fast removal of files with low popularity

• A lot of storage wasted on highly popular files

− Network topology is not accounted for

 Content location
− Search by hash key: limited ways to formulate queries
− Content placement changes to fit search pattern
− Less popular files may be outside TTL

 Failure resilience
− No single point of failure

Examples: FastTrack,
Morpheus, OpenFT

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

FastTrack, Morpheus, OpenFT

 Peer-to-peer file sharing protocol

 Three different nodes

−USER
• Normal nodes

−SEARCH
• Keep an index of “their” normal nodes
• Answer search requests

− INDEX
• Keep an index of search nodes
• Redistribute search requests

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

FastTrack, Morpheus, OpenFT

INDEX

SEARCH

USER

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

FastTrack, Morpheus, OpenFT

INDEX

SEARCH

USER

?

!
!

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

FastTrack, Morpheus, OpenFT: Assessment
 Scalability, fairness, load balancing

− Large distributed storage
− Avoids broadcasts
− Load concentrated on super nodes (index and search)
− Network topology is partially accounted for
− Efficient structure development

 Content location
− Search by hash key: limited ways to formulate queries
− All indexed files are reachable
− Can only query by index terms

 Failure resilience
− No single point of failure but overlay networks of index servers (and search

servers) reduces resilience
− Relies on very stable relationship / Content is registered at search nodes
− Relies on a partially static infrastructure

Examples: BitTorrent

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent

 Distributed download system

 Content is distributed in segments

 Tracker
−One central download server per content
−Approach to fairness (tit-for-tat) per content

−No approach for finding the tracker

 No content transfer protocol included

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent

Tracker

Segment download operation
Tracker tells peer source and

number of segment to get
Peer retrieves content in pull

mode
Peer reports availability of

new segment to tracker

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent

Tracker

Rarest first strategy

No second input stream:
not contributed enough

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent

Tracker

All nodes: max 2 concurrent streams in and outNo second input stream:
not contributed enough

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent

Tracker

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent

Tracker

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent

Tracker

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

BitTorrent Assessment
 Scalability, fairness, load balancing

−Large distributed storage
−Avoids broadcasts
−Transfer content segments rather than complete content
−Does not rely on clients staying online after download

completion
−Contributors are allowed to download more

 Content location
−Central server approach

 Failure resilience
−Tracker is single point of failure
−Content holders can lie

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Comparison

By search
server

assignment

Physical
locality

O(#blocks)O(1)O(#nodes)O(log(#nodes))O(1)
Lookup

cost

One tracker
per file

Index serverNeighbour listOne central
server

Routing
information

Separate
overlays per

file
Uses cachingLimited by

flooding

Scalability

BitTorrentFastTrackFreeNetGnutellaNapster

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Comparison

Search by
hash

Uses flooding
Uses index

server
Search by
index term

Tracker as
single point of

failure

Overlay
network of

index servers
No single point of failure

Index server
as single point

of failure

Failure
resilience

External issue
All files

reachable
Search by

hash

Unpopular files may be
outside TTL

All files
reachable

Content
location

Rarest first
copying

Load
concentrated

on
supernodes

Content
placement

changes to fit
search

Many replicas of popular
content

Load
balancing

BitTorrentFastTrackFreeNetGnutellaNapster

Peer-to-Peer SystemsPeer-to-Peer Systems

Distributed directories

Examples: Chord

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Chord

 Approach taken
− Only concerned with efficient indexing
− Distributed index - decentralized lookup service
− Inspired by consistent hashing: SHA-1 hash
− Content handling is an external problem entirely

• No relation to content
• No included replication or caching

 P2P aspects
− Every node must maintain keys
− Adaptive to membership changes
− Client nodes act also as file servers

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

key
hash

function

hash table

pos

0
1
2
3
..
..
..
N

y z

Hash
bucket

lookup(key) → data
Insert(key, data)

Lookup Based on Hash Tables

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

 Nodes are the hash buckets
 Key identifies data uniquely
 DHT balances keys and data across nodes

Distributed Hash Tables (DHTs)

Distributed application

Distributed hash tables

Lookup (key) data

node ….

Insert(key, data)

node node node

Define a useful key nearness metric
Keep the hop count small
Keep the routing tables “right size”
Stay robust despite rapid changes in membership

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Chord IDs & Consistent Hashing
 m bit identifier space for both keys and nodes
− Key identifier = SHA-1(key)

− Node identifier = SHA-1(IP address)

− Both are uniformly distributed

 Identifiers ordered in a circle modulo 2m

 A key is mapped to the first
node whose id is equal to or
follows the key id

Key=“LetItBe” ID=54
SHA-1

IP=“198.10.10.1” ID=123
SHA-1

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Routing: Everyone-Knows-Everyone
 Every node knows of every other node - requires global information

 Routing tables are large – N

Hash(“LetItBe”) = K54

Where is “LetItBe”?
“N56 has K60”

Requires O(1) hops

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Hash(“LetItBe”) = K54

Where is “LetItBe”?

Routing: All Know Their Successor
 Every node only knows its successor in the ring

 Small routing table – 1

Requires O(N) hops

“N56 has K60”

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Routing: “Finger Tables”
 Every node knows m other nodes in the ring
 Increase distance exponentially
 Finger i points to successor of n+2i

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Joining the Ring
 Three step process:

− Initialize all fingers of new node - by asking another node for help
− Update fingers of existing nodes
− Transfer keys from successor to new node

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Handling Failures
 Failure of nodes might cause incorrect lookup

 N80 doesn’t know correct successor, so lookup fails
 One approach: successor lists

− Each node knows r immediate successors
− After failure find first known live successor
− Increased routing table size

N120

N113

N102

N80

N85

N10

Lookup(90)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Chord Assessment
 Scalability, fairness, load balancing

− Large distributed index
− Logarithmic search effort
− Network topology is not accounted for
− Routing tables contain log(#nodes)
− Quick lookup in large systems, low variation in lookup costs

 Content location
− Search by hash key: limited ways to formulate queries
− All indexed files are reachable
− Log(#nodes) lookup steps
− Not restricted to file location

 Failure resilience
− No single point of failure
− Not in basic approach

• Successor lists allow use of neighbors to failed nodes
• Salted hashes allow multiple indexes

− Relies on well-known relationships, but fast awareness of disruption and
rebuilding

Examples: Pastry

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Pastry
 Approach taken
− Only concerned with efficient indexing
− Distributed index - decentralized lookup service
− Uses DHTs
− Content handling is an external problem entirely

• No relation to content
• No included replication or caching

 P2P aspects
− Every node must maintain keys
− Adaptive to membership changes
− Leaf nodes are special
− Client nodes act also as file servers

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Pastry
 DHT approach

− Each node has unique 128-bit nodeId
• Assigned when node joins
• Used for routing

− Each message has a key
− NodeIds and keys are in base 2b

• b is configuration parameter with typical value 4 (base = 16, hexadecimal digits)
− Pastry node routes the message to the node with the closest nodeId to the key
− Number of routing steps is O(log N)
− Pastry takes into account network locality

 Each node maintains
− Routing table is organized into log2b N rows with 2b-1 entry each
− Neighborhood set M — nodeId’s, IP addresses of M closest nodes, useful to

maintain locality properties
− Leaf set L — set of L nodes with closest nodeId

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Pastry Routing

NodeId 10233102
SMALLER LARGER

10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

Leaf set

-0-2212102 -2-2301203 -3-1203203

10-3-23302
1-3-0210221-2-230203

10-0-31203
1-1-301233

102-0-0230
10-1-32102

10233-0-01
1023-2-1211023-1-0001023-0-322
102-2-2302102-1-1302

102331-2-0
10233-2-32

1
0

2
3

1
0

2

3

Routing table

1020023013021022
33213321312032032230120302212102
3130123311301233

Neighborhood set

b=2, so nodeId
is base 4 (16 bits)

Contains the
nodes that are

numerically
closest to

local node

Contains the
nodes that are

closest to
local node

according to
proximity metric

2b-1 entries per row

 l
og

2b
 N

ro

w
s

Entries in the nth row
share the first n-1 digits
with current node
common prefix – next digit – rest

Entries in the mth column
have m as nth row digit

Entries with no suitable
nodeId are left empty

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

1331
X1: 1-0-30 | 1-1-23 | 1-2-11 | 1-3-31

1211

X2: 12-0-1 | 12-1-1 | 12-2-3 | 12-3-3 1223

L: 1232 | 1221 | 1300 | 1301

2331

X0: 0-130 | 1-331 | 2-331 | 3-001

source

1221

dest

Pastry Routing
 Search leaf set for exact match
 Search route table for entry with at one

more digit common in the prefix
 Forward message to node with equally

number of digits in prefix,
but numerically closer in leaf set

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Pastry Assessment

 Scalability, fairness, load balancing
− Distributed index of arbitrary size
− Support for physical locality and locality by hash value
− Stochastically logarithmic search effort
− Network topology is partially accounted for, given an additional metric for

physical locality
− Stochastically logarithmic lookup in large systems, variable lookup costs

 Content location
− Search by hash key: limited ways to formulate queries
− All indexed files are reachable
− Not restricted to file location

 Failure resilience
− No single point of failure
− Several possibilities for backup routes

Examples: Tapestry

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tapestry

 Approach taken
− Only concerned with self-organizing indexing
− Distributed index - decentralized lookup service
− Uses DHTs
− Content handling is an external problem entirely

• No relation to content
• No included replication or caching

 P2P aspects
− Every node must maintain keys
− Adaptive to changes in membership and value change

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Routing and Location
 Namespace (nodes and objects)
− SHA-1 hash: 160 bits length
− Each object has its own hierarchy rooted at RootID = hash(ObjectID)

 Prefix-routing [JSAC 2004]

− Router at hth hop shares prefix of length ≥h digits with destination
− local tables at each node (neighbor maps)
− route digit by digit: 4*** 42** 42A* 42AD
− neighbor links in levels

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Routing and Location
 Suffix routing [tech report 2001]

− Router at hth hop shares suffix of length ≥h digits with destination
− Example: 5324 routes to 0629 via

5324 2349 1429 7629 0629

 Tapestry routing
− Cache pointers to all copies
− Caches are soft-state
− UDP Heartbeat and TCP timeout to verify route availability
− Each node has 2 backup neighbors
− Failing primary neighbors are kept for some time (days)
− Multiple root nodes possible, identified via hash functions

• Search value in a root if its hash is that of the root
• Choosing a root node

 Choose a random address
 Route towards that address
 If no route exists, choose deterministically, a surrogate

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Routing and Location
 Object location
− Root responsible for storing object’s location (but not the

object)
− Publish / search both routes incrementally to root

 Locates objects
− Object: key/value pair

• E.g. filename/file
− Automatic replication of keys
− No automatic replication of values

 Values
− May be replicated
− May be stored in erasure-coded fragments

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tapestry

Insert(, key K, value V)V#K
#addr 1
#addr 2
…

(#K,●)
(#K,●)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tapestry
V

(#K,●)
(#K,●)

#K
#addr 1
#addr 2
…

?K

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

●

caching

result

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tapestry
V

(#K,●)
(#K,●)

●

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tapestry
V

(#K,●)
(#K,●)

●

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

Move(, key K, value V)

V

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tapestry

(#K,●)
(#K,●)

●

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

V

(#K,●)

(#K,●)

●
Stays wrong
till timeout

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Tapestry Assessment
 Scalability, fairness, load balancing

− Distributed index(es) of arbitrary size
− Limited physical locality of key access by caching and nodeId selection
− Variable lookup costs
− Independent of content scalability

 Content location
− Search by hash key: limited ways to formulate queries
− All indexed files are reachable
− Not restricted to file location

 Failure resilience
− No single point of failure
− Several possibilities for backup routes
− Caching of key resolutions
− Use of hash values with several salt values

Comparison

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Comparison

In mobile tapestryBy neighbor listPhysical
locality

At least log(#nodes) routing
table size

Log(#nodes) x (2b – 1)
routing table size

Log(#nodes)
routing table size

Routing
information

Variable lookup costApprox. log(#nodes)
lookup cost

Log(#nodes)
lookup cost

Lookup cost

No single point of failure
Several backup route
Alternative hierarchies

No single point of
failure
Several backup route

No resilience in
basic version

Additional
successor lists
provide resilience

Failure
resilience

TapestryPastryChord

ApplicationsApplications

Streaming in Peer-to-peer networks

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Peer-to-peer network

Promise

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Promise
 Video streaming in Peer-to-Peer systems

− Video segmentation into many small segments
− Pull operation
− Pull from several sources at once

 Based on Pastry and CollectCast

 CollectCast
− Adds rate/data assignment
− Evaluates

• Node capabilities
• Overlay route capabilities

− Uses topology inference
• Detects shared path segments - using ICMP similar to traceroute
• Tries to avoid shared path segments
• Labels segments with quality (or goodness)

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Promise
[Hafeeda et. al. 03]

Receiver

active sender

active sender

standby senderactive sender

Thus, Promise is a multiple sender to one receiver P2P media
streaming system which 1) accounts for different capabilities,
2) matches senders to achieve best quality, and 3) dynamically
adapts to network fluctuations and peer failure

Each active sender:
• receives a control packet specifying which data segments, data rate, etc.,
• pushes data to receiver as long as no new control packet is received

standby sender

The receiver:
• sends a lookup request
 using DHT
• selects some active
 senders, control packet
• receives data as long as
 no errors/changes occur
• if a change/error is
 detected, new active
 senders may be selected

SplitStream

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

SplitStream

 Video streaming in Peer-to-Peer systems
−Uses layered video
−Uses overlay multicast
−Push operation
−Build disjoint overlay multicast trees

 Based on Pastry

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

SplitStream

Source: full quality movie

Stripe 2

Stripe 1

[Castro et. al. 03]Each node:
• joins as many multicast trees as there are stripes (K)
• may specify the number of stripes they are willing to act as
 router for, i.e., according to the amount of resources available

Each movie is split into K stripes and each
stripe is multicasted using a separate three

Thus, SplitStream is a multiple sender to multiple receiver P2P system which
distributes the forwarding load while respecting each node’s resource limitations,
but some effort is required to build the forest of multicast threes

INF5071, Autumn 2007, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Some References
 M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream:

High-bandwidth multicast in a cooperative environment", SOSP'03, Lake Bolton, New York,
October 2003

 Mohamed Hefeeda, Ahsan Habib, Boyan Botev, Dongyan Xu, Bharat Bhargava, "Promise:
Peer-to-Peer Media Streaming Using Collectcast", ACM MM’03, Berkeley, CA, November 2003

 Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications”, ACM SIGCOMM’01

 Ben Y. Zhao, John Kubiatowicz and Anthony Joseph, “Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing”, UCB Technical Report CSD-01-1141, 1996

 John Kubiatowicz, “Extracting Guarantees from Chaos”, Comm. ACM, 46(2), February 2003
 Antony Rowstron and Peter Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems”, Middleware’01, November 2001

