
September 10, 2010

INF5071 – Performance in Distributed Systems

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Motivation
  In a distributed system, the performance of every single machine is

important
－  poor performance of one single node might be sufficient to “kill” the system (not

better than the weakest)

  Managing the server side machines are challenging
－  a large number of concurrent clients
－  shared, limited amount of resources
－  strict bandwidth and latency requirements

  We will see examples where simple, small changes improve performance
－  decrease the required number of machines
－  increase the number of concurrent clients
－  improve resource utilization
－  enable timely delivery of data

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Overview

  Server examples

  Resources, real-time, “continuous” media streams, …

  (CPU) Scheduling

  Next time, memory and storage

Server Examples

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

(Video) Server Product Examples
1) Real server, VXtreme, Starlight, Netscape Media Server,
 MS MediaServer, Apple Darwin, Move Networks, MS Smooth Streaming …

user level server

standard
OS

all standard HW

RTP
HTTP

RTSP

2) IBM Mediastreamer,
 Oracle Video Cartridge, N-Cube,…

user level layer

scalable, RT-aware OS,
RT OS, or

OS derivation

custom/special HW

ATM, analog, …
DSM CC, private

3) SGI/Kassena Media Base,
 SUN Media Center,
 IBM VideoCharger, …

user level server

RT
extensions

selected
 standard HW

RTP
RTSP

standard
OS

MM
FS

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

user

kernel

server

Real Server
  User space implementation
－  one control server
－  several protocols
－  several versions of data

in same file
－  adapts to resources

  Several formats, e.g.,
－  Real’s own
－  MPEG-2 version with

“stream thinning”
(dropped with REAL)

－  MPEG4, QT, …

  Does not support
－  Quality-of-Service
－  load leveling

tr
ac

k
1

tr
ac

k
2

in
de

x

request

IP

UDP

RTP/
RTCP

Real’s
protocol

TCP

1 2 3

ba
ck

pr
es

su
re

fe
ed

ba
ck

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Torrent-like HTTP streaming
  For load-balancing and scaling

multiple servers, taking the best
from several worlds….

  Downloads segments

  Tracker manages information
about segment locations

  The user contacts the tracker
for segment locations

  Users send HTTP GET requests to
download video segments

Data object:

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Torrent-like HTTP streaming

playout time

quality

 Move use
2 second segments
－  coded in on2`s VP7 (but other

formats could be used)
－  a 2-hour move contains 3600 segments

  To support adaptation to
available resources, each
segment is coded
in many quality levels

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

IBM VideoCharger

“IBM® Content Manager VideoCharger delivers
high-quality audio and video streams over
corporate intranet or the Internet.

It provides users the latest standard formats,
including MPEG-4 and Apple QuickTime 6,
and does not require that the file be downloaded
or saved before being played.

Effective 07/15/09,
IBM withdrew Content Manager VideoCharger
from marketing.”

 http://www-01.ibm.com/software/data/videocharger/

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

VSD
with
EDF

IBM VideoCharger
  May consist of one

machine only, or …
  … several Advanced

Interactive eXecutive
(AIX) machines

  Servers
－  control
－  data

  Lightly modified
existing components
－  OS AIX4/5L
－  virtual shared disks

(guaranteed disk I/Os)
  Special components
－  TigerShark MMFS

(buffers, data rate,
prefetching, codec, ...)

－  stream filters, control
server, APIs, …

control

AI
X

SP
2

cr
os

sb
ar

 s
w

itc
h

specific
control server

RTSP

RTP encrypt filter

TigerShark
MMFS

 VSD

 UDP

 IP

distributed computing
environment RPC

video stream API

mlib API

DESCRIBE
SETUP
PLAY
TEARDOWN

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

n4x media hubs:
•  Intel 860 Chip Set
•  Intel 1.5 GHz Xeon CPU
•  Up to 2 GB Rambus Memory
•  Five 64 bit 66Mhz PCI slots
•  “Special” PCI slot (HIB board)
•  nHIO hypercube I/O

nCUBE
  Original research from Cal Tech/Intel (‘83)
  Bought by C-COR in Jan. 05 (~90M$)

  One server scales from 1 to 256 machines,
2n, n ∈ [0, 8], using a hypercube architecture

  Why a hypercube?
－  video streaming is a switching problem
－  hypercube is a high performance scalable switch
－  no content replication and true linear scalability
－  integrated adaptive routing provides resilience

  Highlights
－  scales from 5,000 to 500,000 clients
－  exceeds 60,000 simultaneous streams
－  6,600 simultaneous streams at 2 - 4 Mbps each

(26 streams per machine if n = 8)

  Special components
－  boards with integrated components
－  TRANSIT operating system
－  n4 HAVOC (1999)

•  Hypercube And Vector Operations Controller
•  ASIC-based hypercube technology

－  n4x nHIO (2002)
•  nCUBE Hypercube I/O controller (8X performance/price)

memory PCI bus

configurable
interface

8 hypercube
 connectors

vector processor SCSI ports

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Content striped across
all disks in the n4x server

  Disks connected to All MediaHubs
－  Each title striped across all MediaHUBs
－  Streaming Hub reads content

from all disks in the video server

  Automatic load balancing
－  Immune to content usage pattern
－  Same load if same or different title
－  Each stream’s load spread over all nodes

  RAID Sets distributed across MediaHubs
－  Immune to a MediaHUB failure
－  Increasing reliability

  Only 1 copy of each title ever needed
－  Lots of room for expanded content,

network-based PVR or HDTV content

nCUBE: Naturally load-balanced

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Small Video Server Comparison

Real, Move,… VideoCharger nCUBE

standard HW selected HW special HW

each machine its
own storage, or NFS

shared disk access,
replication

for load leveling and fault tolerance

shared disk access,
no replication

single OS image cluster machines
using switch

cluster machines
using wired cube

user space server user space server
and loadable kernel

modules

server in both kernel
and user space

available and
frequently used

still available,
but withdrawn from
marketing june 2009

????

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Funcom’s Anarchy Online
  World-wide massive multiplayer

online roleplaying game

－  client-server
•  point-to-point TCP connections

•  virtual world divided into many regions
•  one or more regions are managed by one machine

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Funcom’s Anarchy Online

  To scale, a new instance of a
region may be created
－  players do not interact with all

other players – only a subset
－  dynamic region-of-interest

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Blizzard: World of Warcraft

  To scale
－  many copies of the world,

choose one…
－  one world does not influence

another
－  players do not interact with all

other players – only a subset

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

EVE online

  One SINGLE, SHARED world
  Client-server model with proxies

  300.000 users, 56.000 concurrent
－ 150.000 database entries per day
－ 400.000 random I/O per second

☺  everyone in the same (virtual) location
can interact

☹  large lags in popular areas
☹  have had player limitations in popular areas
☹  couple incidents of memory problems

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Small Comparison: Video vs. Games

Video Games
Many users, lots of hardware

few (VCR) interactions highly interactive

replication possible replication changes user
perception

high bandwidth
per stream

hardly any bandwidth
per stream

Bottleneck:
I/O bandwidth

Bottleneck:
computation

Hardware:
special or standard

Hardware:
standard

OS:
special or standard

OS:
standard

Server Structures

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

(Video) Server Components & Switches

storage device

network attachment

memory management

file system

storage management

controller

switch

switch

switch

switch

switch

IP, …

RPC in application, …

NFS, …

AFS, CODA, …

distributed OS, …

Disk arrays (RAID), …

IBM TigerShark switch

IBM VideoCharger

switched network

switch

HP, DEC, Novell, …

HP, DEC, Novell,
Move, MS Smooth Streaming….

switched network

switch

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Server Topology – I

  Single server
－  easy to implement
－  scales poorly

  Partitioned server
－  users divided into groups
－  content : assumes equal groups
－  location : store all data on all servers
－  load imbalance

 Network

 Network

 Network

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Server Topology – II

  Externally switched servers
－  use network to make server pool
－ manages load imbalance

(control server directs requests)
－  still data replication problems
－  (control server doesn’t need to be a

physical box - distributed process)
－  include also P2P and hierarchical

structure

  “Fully” switched server
－  server pool
－  storage device pool
－  additional hardware costs
－  e.g., Oracle, Intel, IBM

 Network

data

data

data

control

 Network

data

data
control

I/O
switch

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

  Pull model:
－  client sends several requests
－  deliver only small part of data
－  fine-grained client control
－  favors high interactivity
－  suited for editing, searching, etc.

  Push model
－  client sends one request
－  streaming delivery
－  favors capacity planning
－  suited for retrieval, download,

playback, etc.

server client

server client

Data Retrieval

Resources and Real-Time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Resources
  Resource:

“A resource is a system entity required by a task for manipulating data”
[Steimetz & Nahrstedt 95]

  Characteristics:
－ active: provides a service,

e.g., CPU, disk or network adapter
－ passive: system capabilities required by active resources,

e.g., memory

－ exclusive: only one process at a time can use it,
e.g., CPU
－ shared: can be used by several concurrent processed,

e.g., memory

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Deadlines and Real-Time
  Deadline:

“A deadline represents the latest acceptable time for the presentation of the
processing result”

－  Hard deadlines:
•  must never be violated system failure

－  Soft deadlines:
•  in some cases, the deadline might be missed, but …

  not too frequently
  not by much time

•  result still may have some (but decreasing) value

  Real-time process:
“A process which delivers the results of the processing in a given time-span”

  Real-time system:
“A system in which the correctness of a computation depends not only on
obtaining the result, but also upon providing the result on time”

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Admission and Reservation
  To prevent overload, admission may be performed:
－  schedulability test:

•  “are there enough resources available for a new stream?”
•  “can we find a schedule for the new task without disturbing the existing workload?”
•  a task is allowed if the utilization remains < 1

  yes – allow new task, allocate/reserve resources
  no – reject

  Resource reservation is analogous to booking (asking for resources)
－  pessimistic

•  avoid resource conflicts making worst-case reservations
•  potentially under-utilized resources
•  guaranteed QoS

－  optimistic
•  reserve according to average load
•  high utilization
•  overload may occur

－  “perfect”
•  must have detailed knowledge about resource requirements of all processes
•  too expensive to make/takes much time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Real-Time Support
  The operating system manages local resources

(CPU, memory, disk, network card, busses, ...)

  In a real-time scenario, support is needed for
－  timely processing
－  high-rate, timely I/O

  This means support for proper …
－  scheduling –

high priorities for time-restrictive tasks
－  timer support –

clock with fine granularity and event scheduling with high accuracy
－  kernel preemption –

avoid long periods where low priority processes cannot be interrupted
－  efficient memory management –

prevent code and data for real-time programs from being paged out
(replacement)

－  fast switching –
both interrupts and context switches should be fast

Timeliness

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

  Start presenting data (e.g., video playout) at t1

  Consumed bytes (offset)
－  variable rate
－  constant rate

  Must start retrieving
data earlier
－ Data must arrive before

consumption time
－ Data must be sent

before arrival time
－ Data must be read from

disk before sending time

Timeliness: Streaming

t1

time

consume function

arrive function

send function
read function

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

  Need buffers to hold data between the functions,
e.g., client B(t) = A(t) – C(t), i.e., ∀ t : A(t) ≥ C(t)

  Latest start of data arrival
is given by
min[B(t,t0,t1) ; ∀ t B(t,t0,t1) ≥ 0],
i.e., the buffer must at all
times t have more data to
consume

Timeliness: Streaming

time
t1

consume function

arrive function

t 0

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

file system communication
system

application

  “Continuous Media” and “continuous streams” are ILLUSIONS
－  retrieve data in blocks from disk

－  transfer blocks from file
system to application

－  send packets to communication system

－  split packets into appropriate MTUs

－  ... (intermediate nodes)
－  ... (client)

 different optimal sizes

－  pseudo-parallel processes
(run in time slices)

 need for scheduling
(to have timing and
appropriate resource allocation)

Timeliness: Streaming

(CPU) Scheduling

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Scheduling
  A task is a schedulable entity

(a process/thread executing a job, e.g.,
a packet through the communication
system or a disk request through the file system)

  In a multi-tasking system, several
tasks may wish to use a resource
simultaneously

  A scheduler decides which task
that may use the resource,
i.e., determines order
by which requests are serviced,
using a scheduling algorithm

  Each active (CPU, disk, NIC) resource needs a scheduler
(passive resources are also “scheduled”, but in a slightly different way)

resource

requests

scheduler

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Scheduling
  Scheduling algorithm classification:
－  dynamic

•  makes scheduling decisions at run-time
•  flexible to adapt
•  considers only actual task requests and execution time parameters
•  large run-time overhead finding a schedule

－  static
•  makes scheduling decisions at off-line (also called pre-run-time)
•  generates a dispatching table for run-time dispatcher at compile time
•  needs complete knowledge of task before compiling
•  small run-time overhead

－  preemptive
•  currently executing tasks may be interrupted (preempted) by higher priority processes
•  the preempted process continues later at the same state
•  potential frequent contexts switching
•  (almost!?) useless for disk and network cards

－  non-preemptive
•  running tasks will be allowed to finish its time-slot (higher priority processes must wait)
•  reasonable for short tasks like sending a packet (used by disk and network cards)
•  less frequent switches

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Scheduling
  Preemption:
－  tasks waits for processing
－  scheduler assigns priorities
－  task with highest priority will be

scheduled first
－  preempt current execution if a higher priority

(more urgent) task arrives

－  real-time and best effort priorities
(real-time processes have higher priority
- if exists, they will run)

－  to kinds of preemption:
•  preemption points

  predictable overhead
  simplified scheduler accounting

•  immediate preemption
  needed for hard real-time systems
  needs special timers and

fast interrupt and context switch handling

resource

requests

scheduler preemption

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Scheduling
  Scheduling is difficult and takes time – RT vs NRT example:

process 1 process 2 process 3 process 4 process N RT process …

RT process

request

round-robin

process 1 process 2 process 3 process 4 process N …

RT process

request
priority,
non-preemtive

delay

RT process

delay

process 1 process 2 process 3 process 4 process N …

request
priority,
preemtive p 1 p 1 process 2 process 3 process 4 process N …

RT process

RT process p 1 process 2 process 3 process 4 process N …

only delay of switching and interrupts

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Scheduling in Linux
  Preemptive kernel
  Threads and processes used to be equal,

but Linux uses (in 2.6) thread scheduling

  SCHED_FIFO
－  may run forever, no timeslices
－  may use it’s own scheduling algorithm

  SCHED_RR
－  each priority in RR
－  timeslices of 10 ms (quantums)

  SCHED_OTHER
－  ordinary user processes
－  uses “nice”-values: 1≤ priority≤40
－  timeslices of 10 ms (quantums)

  Threads with highest goodness are selected first:
－  realtime (FIFO and RR):

goodness = 1000 + priority
－  timesharing (OTHER):

goodness = (quantum > 0 ? quantum + priority : 0)

  Quantums are reset when no ready
process has quantums left (end of epoch):
quantum = (quantum/2) + priority

1

2

...

98

99

1

2

...

98

99

default (20)

-20

-19

...

18

19

SCHED_FIFO

SCHED_RR

SCHED_OTHER

nice

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Scheduling in Linux
  The 2.6.23 kernel used the new

Completely Fair Scheduler (CFS)
－  address unfairness in desktop and server workloads

－  uses ns granularity, does not rely on jiffies or HZ details

－  uses extensible hierarchical scheduling classes

•  SCHED_FAIR (SCHED_NORMAL) – the CFS desktop scheduler – replace
SCHED_OTHER

  no run-queues, a tree-based timeline of future tasks

•  SCHED_BATCH – similar to SCHED_OTHER, but always assumes CPU
intensive workloads (actually new from 2.6.16)

•  sched_rt replaces SCHED_RR and SCHED_FIFO
  uses 100 run-queues

http://kerneltrap.org/node/8059

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Real-Time Scheduling
  Resource reservation
－ QoS can be guaranteed
－  relies on knowledge of tasks
－  no fairness
－  origin: time sharing operating systems
－  e.g., earliest deadline first (EDF) and rate monotonic (RM)

(AQUA, HeiTS, RT Upcalls, ...)

  Proportional share resource allocation
－  no guarantees
－  requirements are specified by a relative share
－  allocation in proportion to competing shares
－  size of a share depends on system state and time
－  origin: packet switched networks
－  e.g., Scheduler for Multimedia And Real-Time (SMART)

(Lottery, Stride, Move-to-Rear List, ...)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Earliest Deadline First (EDF)

  Preemptive scheduling based on dynamic task priorities

  Task with closest deadline has highest priority (dynamic)
 stream priorities vary with time

  Dispatcher selects the highest priority task

  Optimal: if any task schedule without deadline violations exits,
EDF will find it

  Assumptions:
－  requests for all tasks with deadlines are periodic
－  the deadline of a task is equal to the end on its period (starting of next)
－  independent tasks (no precedence)
－  run-time for each task is known and constant
－  context switches can be ignored

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Earliest Deadline First (EDF)

  Example:

Task A

Task B
time

Dispatching

deadlines

priority A > priority B

priority A < priority B

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Rate Monotonic (RM) Scheduling
  Classic algorithm for hard real-time systems with one CPU

[Liu & Layland ‘73]

  Pre-emptive scheduling based on static task priorities

  Optimal: no other algorithms with static task priorities can
schedule tasks that cannot be scheduled by RM

  Assumptions:
－  requests for all tasks with deadlines are periodic
－  the deadline of a task is equal to the end on its period (starting of next)
－  independent tasks (no precedence)
－  run-time for each task is known and constant
－  context switches can be ignored
－  any non-periodic task has no deadline

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

  Process priority based on task periods
－  task with shortest period gets

highest static priority
－  task with longest period gets

lowest static priority
－  dispatcher always selects task requests with highest priority

  Example:

Rate Monotonic (RM) Scheduling

pr
io

rit
y

period length

shortest period,
highest priority

longest period,
lowest priority

Task 1

p1

Dispatching

Task 2

p2 P1 < P2
 Task1 highest priority

Pi = period for task i

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

EDF Versus RM
  It might be impossible to prevent deadline misses in a strict, fixed priority system:

Task A

Task B

Fixed priorities,
A has priority, no dropping

Fixed priorities,
B has priority, no dropping

Fixed priorities,
A has priority, dropping

Fixed priorities,
B has priority, dropping

time

deadline miss

deadline miss

deadline miss

Earliest deadline first

deadlines

waste of time

waste of time

waste of time

Rate monotonic (as the first)
deadline miss

RM may give some
deadline violations
which is avoided by EDF

deadline miss

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

SMART (Scheduler for Multimedia And Real–Time applications)

  Designed for multimedia and real-time applications

  Principles

－  priority – high priority tasks should not suffer degradation due to
presence of low priority tasks

－  proportional sharing – allocate resources proportionally and distribute
unused resources (work conserving)

－  tradeoff immediate fairness – real-time and less competitive processes
(short-lived, interactive, I/O-bound, ...) get instantaneous higher shares

－  graceful transitions – adapt smoothly to resource demand changes

－  notification – notify applications of resource changes

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

  Tasks have…
－  urgency – an immediate real-time constraint, short deadline

(determine when a task will get resources)
－  importance – a priority measure

•  expressed by a tuple:
[priority p , biased virtual finishing time bvft]

•  p is static: supplied by user or assigned a default value

•  bvft is dynamic:
  virtual finishing time: measure for the degree to which the proportional

 share has been given
  bias: bonus for interactive and real-time tasks

  Best effort schedule based on urgency and importance
 find most important tasks integrating priorities and weighted fair queuing

– compare tuple:
T1 > T2 ⇔ (p1 > p2) ∨ (p1 = p2 ∧ bvft1 > bvft2)

 sort each group after urgency (EDF based sorting)
  iteratively select task from candidate set as long as schedule is feasible

(select the task with shortest deadline as long as it does not influence the deadline of tasks with higher importance)

SMART (Scheduler for Multimedia And Real–Time applications)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Evaluation of a Real-Time Scheduling

  Tests performed
－ by IBM (1993)
－ executing tasks with and without EDF
－ on an 57 MHz, 32 MB RAM, AIX Power 1

  Video playback program:
－ one real-time process

•  read compressed data
•  decompress data
•  present video frames via X server to user

－ process requires 15 timeslots of 28 ms each per second
 42 % of the CPU time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Evaluation of a Real-Time Scheduling

task number

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e)

several deadline
violations by the
non-real-time
scheduler

the real-time
scheduler reaches
all its deadlines

3 load processes
(competing with the video playback)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Evaluation of a Real-Time Scheduling

task number

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e)

Varied the number of load processes
(competing with the video playback)

NB! The EDF
scheduler kept
its deadlines

4 other
processes

16 other
processes

Only video process

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Evaluation of a Real-Time Scheduling

  Tests again performed
－ by IBM (1993)
－ on an 57 MHz, 32 MB RAM, AIX Power 1

  “Stupid” end system program:
－ 3 real-time processes only requesting CPU cycles
－ each process requires 15 timeslots of 21 ms each per second
 31.5 % of the CPU time each
 94.5 % of the CPU time required for real-time tasks

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Evaluation of a Real-Time Scheduling
1 load process
(competing with the
real-time processes)

task number

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e)

the real-time
scheduler reaches
all its deadlines

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Evaluation of a Real-Time Scheduling
16 load processes
(competing with the real-time processes)

task number

la
xi

ty
 (

re
m

ai
ni

ng
 t

im
e

to
 d

ea
dl

in
e)

Regardless of
other load, the
EDF-scheduler reach
its deadlines
(laxity almost equal
as in 1 load process
scenario)

process 1

process 2

process 3
NOTE: Processes are
scheduled in same
order

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Multicore
  So far, one single core…
 … multiple cores/CPUs

－  1 single queue
•  potential bottleneck?
 locking/contention on the

single queue

－ Multiple queues
•  potential bottleneck?
 load balancing

－  Load balancing
•  Linux checks every 200 ms
•  But where to place a new

process?
•  And where to wake up a

blocked process?

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Multicore: Work Stealing

 300.000 more steal attempts per second

  Scheduling mechanism in the Intel
Tread Building Block (TBB) framework

  LIFO queues (insert and remove from
beginning of queues)

  One master CPU
－  new processes are placed here
－  awaken processes are placed here

  If own queue is empty, STEAL:
－  select random CPUx

－  if CPUx queue not empty
•  steal from the back of the queue
•  place first in own queue

  Importance of process placement?
－  change CPU of where wake up a process
－  scatter-gather workload

(100 μs work per thread, 12500 iterations,
8 over 1 CPU speedup)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Future Chips: Intel’s Single-chip Cloud Computer (SCC)

  What does
introduction of
such processors
mean in terms of
scheduling?

P54C core

L1 cache

P54C core

L1 cache message
passing buffer

L2 cache

L2 cache

mesh
interface

unit

router

memory
controller

memory
controller

memory
controller

memory
controller

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Summary
  Resources need to be properly scheduled

  CPU is an important resource
  Many ways to schedule depending on workload

  Hierarchical, multi-queue priority schedulers have
existed a long time already, and newer ones usually
try to improve upon this idea

  Next week, memory and persistent storage

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Some References
1.  AMD, http://multicore.amd.com/en/Products
2.  C-COR, http://www.c-cor.com
3.  Haskin, R.L: “Tiger Shark--A scalable file system for multimedia”, IBM Journal of Research and

Development, Vol. 42, No. 2, 1997, p. 185
4.  IBM: http://www-306.ibm.com/software/data/videocharger/
5.  Intel, http://www.intel.com
6.  MPEG.org, http://www.mpeg.org/MPEG/DVD
7.  nCUBE, http://ncube.com (not available after Jan. 2005)
8.  Sitaram, D., Dan, A.: “Multimedia Servers – Applications, Environments, and Design”, Morgan Kaufmann

Publishers, 2000
9.  Tendler, J.M., Dodson, S., Fields, S.: “IBM e-server: POWER 4 System Microarchitecture”, Technical white

paper, 2001
10.  Tetzlaff, W., Flynn, R.: “Elements of Scalable Video Servers”, IBM Research Report 19871 (87884), 1994

