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Overview 

  Memory management 
－ caching 
－ copy free data paths 

  Storage management 
－ disks 
－ scheduling 
－ placement 
－ file systems 
－ multi-disk systems 
－ … 



Memory Management 
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Why look at a passive resource? 

Lack of space (or bandwidth) can delay applications 
 e.g., the dining philosophers would die because the  
    spaghetti-chef could not find a parking lot 

“Dying philosophers problem” 
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rk

in
g 



INF5071,  Carsten Griwodz & Pål Halvorsen University of Oslo 

Delivery Systems 

Network 

bus(es) 
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file system communication  
system 

application 

user space 

kernel space 

bus(es) 

Delivery Systems 

  several disk-to-memory transfers 

  several in-memory data movements 
    and context switches 



Memory Caching 
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Memory Caching 

communication  
system 

application 

disk network card 

expensive 

file system 

buffer cache 

caching possible 

How do we manage a cache? 
  how much memory to use? 
  how much data to prefetch? 
  which data item to replace? 
  … 

vs.  
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Is Caching Useful in a High-Rate Scenario? 

  High rate data may need lots of memory for caching… 

  Tradeoff: amount of memory, algorithms complexity, gain, … 

  Cache only frequently used data – how? 
(e.g., first (small) parts of a movie, allow “top-ten” only, …) 

Buffer vs. Rate 160 Kbps 
(e.g., MP3) 

1.4 Mbps  
(e.g., uncompressed CD) 

3.5 Mbps  
(e.g., average DVD video) 

100 Mbps  
(e.g., uncompressed HDTV) 

100 MB 85 min 20 s 9 min 31 s 3 min 49 s 8 s 

1 GB 14 hr 33 min 49 s 1 hr 37 min 31 s 39 min 01 s 1 min 20 s 

16 GB 133 hr 01 min 01 s 26 hr 00 min 23 s 10 hr 24 min 09 s 21 min 20 s 

32 GB 266 hr 02 min 02 s 52 hr 00 min 46 s 20 hr 48 min 18 s 42 min 40 s 

128 GB 1064 hr 08 min 08 s 208 hr 03 min 04 s 83 hr 13 min 12 s 2 hr 50 min 40 s 

Largest Dell Servers in 2004/2008 –  
and all is NOT used for caching 
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Need For Application-Specific Algorithms? 

  Most existing systems use an LRU-variant 
－  keep a sorted list (most recently used at the head) 
－  replace last element in list 
－  insert new data elements at the head 
－  if a data element is re-accessed (e.g., new client or rewind),  

move back to the end of the list 

  Extreme example – video frame playout: 
LRU buffer 

longest time  

since access shortest time  

since access 

play video (7 frames): 1 2 3 4 5 6 7 

rewind and restart playout at 1: 7 6 5 4 3 2 1 

playout 2: 1 7 6 5 4 3 2 

playout 3: 2 1 7 6 5 4 3 

playout 4: 3 2 1 7 6 5 4 

In this case, LRU replaces  
the next needed frame. So  
the answer is in many cases  
YES… 
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“Classification” of Mechanisms 
  Block-level caching consider (possibly unrelated) set of blocks 
－  each data element is viewed upon as an independent item 
－  usually used in “traditional” systems 
－  e.g., FIFO, LRU, LFU, CLOCK, … 

－  multimedia (video) approaches: 
•  Least/Most Relevant for Presentation (L/MRP) 
•  … 

  Stream-dependent caching consider (parts of) a stream object as a whole 
－  related data elements are treated in the same way  
－  research prototypes in multimedia systems 
－  e.g., 

•  BASIC 
•  DISTANCE 
•  Interval Caching (IC) 
•  Generalized Interval Caching (GIC) 
•  Split and Merge (SAM) 
•  SHR 
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Least/Most Relevant for Presentation (L/MRP) 

  L/MRP is a buffer management mechanism for a single 
interactive, continuous data stream  

－  adaptable to individual multimedia applications  

－  preloads units most relevant for presentation  from disk 

－  replaces units least relevant for presentation   

－  client pull based architecture  

Server 

request 

Homogeneous 
stream e.g., 
MJPEG video 

Client Buffer 

request 

Continuous Presentation Units (COPU) 
e.g., MJPEG video frames 
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current  
presentation point  

Least/Most Relevant for Presentation (L/MRP) 

  Relevance values are calculated with respect to current playout of the 
multimedia stream  

•  presentation point (current position in file) 
•  mode / speed (forward, backward, FF, FB, jump) 

•  relevance functions are configurable 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

COPUs – continuous object presentation units  

COPU number 
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

relevance value 

1.0 

0 

0.8 

0.6 

0.4 

0.2 

X referenced 

X history 

playback direction 

12 
13 

14 
15 16 17 18 19 

25 
24 

23 
22 

X skipped 

16 18 

20 

22 

24 

26 
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21 

26 

10 
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loaded frames 

  Global relevance value 
－  each COPU can have more than one relevance value 

•  bookmark sets (known interaction points) 

•  several viewers (clients) of the same  

－ = maximum relevance for each COPU 

Least/Most Relevant for Presentation (L/MRP) 

... ... 

0 

1 

Relevance 

Bookmark-Set Referenced-Set History-Set 

100 101 102 103 99 98 

current  
presentation  

point S1 

91 92 93 94 90 89 95 96 97 104 105 106 

current  
presentation  

point S2 

global relevance value 
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Least/Most Relevant for Presentation (L/MRP) 

  L/MRP … 
  … gives “few” disk accesses (compared to other schemes) 
  … supports interactivity  
  … supports prefetching 

  … targeted for single streams (users) 
  … expensive (!) to execute  

(calculate relevance values for all COPUs each round) 

  Variations: 
－ Q-L/MRP – extends L/MRP with multiple streams and changes prefetching 

mechanism (reduces overhead) [Halvorsen et. al. 98] 

－ MPEG-L/MRP – gives different relevance values for different MPEG frames 
[Boll et. all. 00] 
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Interval Caching (IC) 
  Interval caching (IC) is a caching strategy for streaming servers 

－  caches data between requests for same video stream –  
based on playout intervals between requests 

－  following requests are thus served from the cache filled by preceding stream 

－  sort intervals on length, buffer requirement is data size of interval 

－  to maximize cache hit ratio (minimize disk accesses) the shortest intervals are 
cached first 

Video clip 1 

S11 

Video clip 1 

S11 S12 

Video clip 1 

S12 S11 S13 

Video clip 2 

S22 S21 

Video clip 3 

S33 S31 S32 S34 

I11 I12 

I21 

I31 I32 I33 

: I32 I33 I21 I11 I31 I12 
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Generalized Interval Caching (GIC) 
  Interval caching (IC) does not work for short clips 
－  a frequently accessed short clip will not be cached 

  GIC generalizes the IC strategy 
－ manages intervals for long video objects as IC 
－  short intervals extend the interval definition   

•  keep track of a finished stream for a while after its termination 
•  define the interval for short stream as the length between the new stream 

and the position of the old stream if it had been a longer video object 
•  the cache requirement is, however, only the real requirement 

－  cache the shortest intervals as in IC  

Video clip 1 

S11 S12 

I11 
C11 

S11 

Video clip 2 

S22 S21 

I21 

I11 < I21 
 GIC caches I11 before I21 
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Generalized Interval Caching (GIC) 
  Open function: 

 form if possible new interval with previous stream; 
 if (NO) {exit} /* don’t cache */ 
 compute interval size and cache requirement; 
 reorder interval list; /* smallest first */     
 if (not already in a cached interval) { 
  if (space available) {cache interval} 
  else if (larger cached intervals exist 
  and sufficient memory can be released) { 
   release memory from larger intervals; 
   cache new interval; 
  }   
 }   

  Close function 
 if (not following another stream) {exit} /* not served from cache */
 delete interval with preceding stream; 
 free memory; 
 if (next interval can be cached in released memory) { 
  cache next interval 
 } 
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wasted buffering 

LRU  vs.  L/MRP  vs.  IC  Caching 

 What kind of caching strategy is best (VoD streaming)? 
－ caching effect 

movie X 

S5 S4 S2 S1 S3 

Memory (L/MRP): 

Memory (IC): 

loaded page frames 

global relevance values 

I1 I2 I3 I4 

4 streams from disk,  
1 from cache 

2 streams from disk,  
3 from cache 

Memory (LRU): 4 streams from disk,  
1 from cache 
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LRU  vs.  L/MRP  vs.  IC  Caching 

 What kind of caching strategy is best (VoD streaming)? 
－ caching effect (IC best)  
－ CPU requirement 

LRU 

for each I/O request 
    reorder LRU chain 

L/MRP 

for each I/O request 
    for each COPU 
        RV = 0 
        for each stream  
            tmp = rel ( COPU, p, mode ) 
            RV = max ( RV, tmp ) 

IC 

for each block consumed 
    if last part of interval 
        release memory element 



In-Memory Copy 
Operations 
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In Memory Copy Operations 

communication  
system 

application 

disk network card 

expensive 

file system 

expensive 

#bytes 

tim
e 

copy: switch: 
  - save and restore state 
  - switch between user and kernel mode 
  - possible cache/TLB flush 
  - …  
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file system communication  
system 

application 

user space 

kernel space 

bus(es) 

data_pointer data_pointer 

Basic Idea of Zero–Copy Data Paths 



A lot of research has been performed in this area!!!! 
BUT, what is the status of commodity operating systems? 
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Content Download 

file system communication  
system 

application 

user space 

kernel space 

bus(es) 
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Content Download: read / send 

application 

kernel 

page cache socket buffer 

application 
buffer 

read send 

copy copy 

DMA transfer DMA transfer 

  2n copy operations 
  2n system calls 
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Content Download: mmap / send 

application 

kernel 

page cache socket buffer 

mmap send 

copy 

DMA transfer DMA transfer 

  n copy operations 
  1 + n  system calls 
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Content Download: sendfile 

application 

kernel 

page cache socket buffer 

sendfile 

gather DMA transfer 

append descriptor 

DMA transfer 

  0  copy operations 
  1  system calls 
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Content Download: Results 

UDP TCP 

  Tested transfer of 1 GB file on Linux 2.6 
  Both UDP and TCP 
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Streaming 

file system communication  
system 

application 

user space 

kernel space 

bus(es) 
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Streaming: read / send 

application 

kernel 

page cache socket buffer 

application buffer 

read send 

copy copy 

DMA transfer DMA transfer 

  2n copy operations 
  2n system calls 
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Streaming: read / writev 

application 

kernel 

page cache socket buffer 

application buffer 

read writev 

copy copy 

DMA transfer DMA transfer 

  3n copy operations 
  2n system calls 

copy 

 Previous solution: one less copy per packet 
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Streaming: mmap / send 

application 

kernel 

page cache socket buffer 

application buffer 

mmap uncork 

copy 

DMA transfer DMA transfer 

  2n copy operations (but different costs of header and data) 

  1 + 4n system calls 

copy 

send send cork 
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Streaming: mmap / writev 

application 

kernel 

page cache socket buffer 

application buffer 

mmap writev 

copy 

DMA transfer DMA transfer 

  2n copy operations 
  1 + n system calls 

copy 

 Previous solution: three more calls per packet 
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Streaming: sendfile 

application 

kernel 

page cache socket buffer 

application buffer 

DMA transfer 

  n copy operations 
  4n system calls 

gather DMA transfer 

append descriptor 

copy 

uncork sendfile send cork 
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Streaming: Results 

  Tested streaming of 1 GB file on Linux 2.6 
  RTP over UDP 

TCP sendfile  
(content download) 

Compared to not sending an RTP header  
over UDP, we get an increase of 29% 
(additional send call) 

More copy operations and system calls required 
 potential for improvements 
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Enhanced Streaming: mmap / msend 

application 

kernel 

page cache socket buffer 

application buffer 

DMA transfer 

  n copy operations 
  1 + 4n system calls 

gather DMA transfer 

append descriptor 

copy 

msend allows to send data from an 
mmap’ed file without copy 

mmap uncork send send cork msend 

copy 

DMA transfer 

 Previous solution: one more copy per packet 
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Enhanced Streaming: mmap / rtpmsend 

application 

kernel 

page cache socket buffer 

application buffer 

DMA transfer 

  n copy operations 
  1 + n system calls 

gather DMA transfer 

append descriptor 

copy 

mmap uncork msend send cork rtpmsend 

RTP header copy integrated into 
msend system call 

 previous solution: three more calls per packet  
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Enhanced Streaming: mmap / krtpmsend 

application 

kernel 

page cache socket buffer 

application buffer 

DMA transfer 

  0 copy operations 
  1 system call 

gather DMA transfer 

append descriptor 

copy 

krtpmsend 

 previous solution: one more call per packet 

An RTP engine in the kernel  
adds RTP headers 

rtpmsend 

RTP engine 

 previous solution: one more copy per packet 
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Enhanced Streaming: rtpsendfile 

application 

kernel 

page cache socket buffer 

application buffer 

DMA transfer 

  n copy operations 
  n system calls 

gather DMA transfer 

append descriptor 

copy 

rtpsendfile 

 existing solution: three more calls per packet  

uncork sendfile send cork 

RTP header copy integrated into 
sendfile system call 
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Enhanced Streaming: krtpsendfile 

application 

kernel 

page cache socket buffer 

application buffer 

DMA transfer 

  0 copy operations 
  1 system call 

gather DMA transfer 

append descriptor 

copy 

krtpsendfile 

 previous solution: one more call per packet 

An RTP engine in the kernel 
adds RTP headers 

rtpsendfile 

RTP engine 

 previous solution: one more copy per packet 
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Enhanced Streaming: Results 

  Tested streaming of 1 GB file on Linux 2.6 
  RTP over UDP 

mmap based mechanisms sendfile based mechanisms 



Storage: Disks 
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Disks  

  Two resources of importance 

－ storage space 

－ I/O bandwidth 

  Several approaches to manage data on disks: 

－ specific disk scheduling and appropriate buffers  

－ optimize data placement 

－ replication / striping 

－ prefetching 

－ combinations of the above 
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Mechanics of Disks 

Platters 
circular platters covered with  
magnetic material to provide  
nonvolatile storage of bits 

Tracks 
concentric circles on a 
single platter 

Sectors 
segment of the track circle –  
usually each contains 512 bytes – 
separated by non-magnetic gaps. 
The gaps are often used to identify 
beginning of a sector 

Cylinders 
corresponding tracks on the different  
platters are said to form a cylinder 

Spindle 
of which the platters  
rotate around 

Disk heads 
read or alter the 
magnetism (bits) passing 
under it. The heads are 
attached to an arm 
enabling it to move 
across the platter surface 
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Disk Specifications 
  Some existing (Seagate) disks today: 

Barracuda 180 Cheetah 36 Cheetah X15 

Capacity (GB) 181.6 36.4 73.4 

Spindle speed (RPM) 7200 10.000 15.000 

#cylinders 24.247 9.772 18.479 

average seek time (ms) 7.4 5.7 3.6  

min (track-to-track) seek (ms)  0.8 0.6 0.2 

max (full stroke) seek (ms) 16 12 7 

average latency 4.17 3 2 

internal transfer rate (Mbps) 282 – 508  520 – 682 609 – 891  

disk buffer cache 16 MB 4 MB 8 MB 
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Disk Access Time 

  How do we retrieve data from disk? 
－ position head over the cylinder (track) on which the block 

(consisting of one or more sectors) are located 
－ read or write the data block as the sectors move under the 

head when the platters rotate 

  The time between the moment issuing a disk request 
and the time the block is resident in memory is called 
disk latency  or disk access time 
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     +  Rotational delay 

     +   Transfer time  

         Seek time   

Disk access time = 

     +   Other delays  

Disk platter  

Disk arm 

Disk head 

block x 
in memory 

I want 
block X 

Disk Access Time 
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Disk Access Time: Seek Time 

  Seek time is the time to position the head 
－  the heads require a minimum amount of time to start and stop moving 

the head 
－  some time is used for actually moving the head –  

roughly proportional to the number of cylinders traveled 

－  Time to move head: 

~ 10x - 20x   

x 

1 N 
Cylinders Traveled 

Time 

“Typical” average:  
 10 ms → 40 ms 
 7.4 ms (Barracuda 180)
 5.7 ms (Cheetah 36) 
 3.6 ms (Cheetah X15) 

number of tracks 
seek time constant 
fixed overhead 
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Disk Access Time: Rotational Delay 

  Time for the disk platters to rotate so the first of the 
required sectors are under the disk head 

head here 

block I want 

Average delay is 1/2 revolution 

“Typical” average:  
   8.33 ms  (3.600 RPM) 
   5.56 ms  (5.400 RPM) 

    4.17 ms  (7.200 RPM) 
    3.00 ms  (10.000 RPM) 
    2.00 ms  (15.000 RPM) 
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Disk Access Time: Transfer Time 

  Time for data to be read by the disk head, i.e., time it takes the 
sectors of the requested block to rotate under the head 

  Transfer rate = 

  Transfer time = amount of data to read / transfer rate 

  Example – Barracuda 180: 
406 KB per track x 7.200 RPM ≈ 47.58 MB/s 

  Example – Cheetah X15: 
316 KB per track x 15.000 RPM ≈ 77.15 MB/s 

  Transfer time is dependent on data density and rotation speed 
  If we have to change track, time must also be added for 

moving the head 

amount of data per track 
time per rotation 

Note: 
one might achieve these 
transfer rates reading 
continuously on disk, 
but time must be added 
for seeks, etc. 
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Disk Access Time: Other Delays 

  There are several other factors which might introduce 
additional delays: 
－ CPU time to issue and process I/O 
－ contention for controller 
－ contention for bus 
－ contention for memory 
－ verifying block correctness with checksums (retransmissions) 
－ waiting in scheduling queue 
－ ... 

  Typical values: “0”  
(maybe except from waiting in the queue) 
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Disk Throughput 

  How much data can we retrieve per second? 

  Throughput = 

  Example: 
for each operation we have 
    - average seek   - average rotational delay 
    - transfer time   - no gaps, etc. 

－  Cheetah X15 (max 77.15 MB/s) 
4 KB blocks  0.71 MB/s 
64 KB blocks  11.42 MB/s 

－  Barracuda 180 (max 47.58 MB/s)  
4 KB blocks  0.35 MB/s 
64 KB blocks  5.53 MB/s 

data size  
 transfer time (including all) 
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Block Size  
  The block size may have large effects on performance 
  Example: 

assume random block placement on disk and sequential file access  
－ doubling block size will halve the number of disk accesses 

•  each access take some more time to transfer the data, but the total 
transfer time is the same (i.e., more data per request) 

•  halve the seek times  
•  halve rotational delays are omitted 

－  e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)  
for Cheetah X15  typically an average of: 
  3.6 ms is  saved  for seek time 
  2 ms is  saved  in rotational delays 
  0.026 ms is added  per transfer time  

－  increasing from 2 KB to 64 KB saves ~96,4 % when reading 64 KB 

} saving a total of 5.6 ms  
when reading 4 KB (49,8 %) 
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  Thus, increasing block size  

can increase performance  
by reducing seek times and  
rotational delays 
(figure shows calculation on some older device) 

  But, blocks spanning several  
tracks still introduce latencies… 

  … and a large block size  
is not always best 
－  small data elements may  

occupy only a fraction of the  
block (fragmentation) 

  Which block size to use therefore  
depends on data size and data reference patterns 

  The trend, however, is to use large block sizes as new technologies appear 
with increased performance – at least in high data rate systems 
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Writing and Modifying Blocks 
  A write operation is analogous to read operations 

－ must add time for block allocation 

－  a write operation may has to be verified – must wait another rotation and 
then read the block to see if it is the block we wanted to write 

－  Total write time ≈ read time (+ time for one rotation) 

  Cannot modify a block directly: 

－  read block into main memory 

－ modify the block 

－ write new content back to disk 

－  (verify the write operation) 

－  Total modify time  ≈ read time + time to modify + write time 
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Disk Controllers 
  To manage the different parts of the disk, we use a disk 

controller, which is a small processor capable of: 

－  controlling the actuator moving the head to the desired track 

－  selecting which platter and surface to use 

－  knowing when right sector is under the head 

－  transferring data between main memory and disk 

  New controllers acts like small computers themselves 

－  both disk and controller now has an own buffer reducing disk access time 

－  data on damaged disk blocks/sectors are just moved to spare room at 
the disk – the system above (OS) does not know this, i.e., a block may 
lie elsewhere than the OS thinks    
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Efficient Secondary Storage Usage 
  Must take into account the use of secondary storage 
－  there are large access time gaps, i.e., a disk access will probably 

dominate the total execution time 
－  there may be huge performance improvements if we reduce the number 

of disk accesses 
－  a “slow” algorithm with few disk accesses will probably outperform a 

“fast” algorithm with many disk accesses 

  Several ways to optimize ..... 
－  block size   - 4 KB  
－  file management / data placement   - various 
－  disk scheduling   - SCAN derivate 
－ multiple disks   - a specific RAID level 
－  prefetching   - read-ahead prefetching 
－ memory caching /replacement algorithms  - LRU variant 
－ … 



Disk Scheduling 
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Disk Scheduling – I 
  Seek time is the dominant factor of total disk I/O time 

  Let operating system or disk controller choose which request  
to serve next depending on the head’s current position and 
requested block’s position on disk (disk scheduling) 

  Note that disk scheduling ≠ CPU scheduling 
－  a mechanical device – hard to determine (accurate) access times 
－  disk accesses cannot be preempted – runs until it finishes 
－  disk I/O often the main performance bottleneck 

  General goals 
－  short response time 
－  high overall throughput  
－  fairness (equal probability for all blocks to be accessed in the same time) 

  Tradeoff: seek and rotational delay vs. maximum response time 
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Disk Scheduling – II 

  Several traditional (performance oriented) algorithms 
－ First-Come-First-Serve (FCFS) 
－ Shortest Seek Time First (SSTF) 
－ SCAN (and variations) 
－ Look (and variations) 
－ … 
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First–Come–First–Serve (FCFS) 
FCFS serves the first arriving request first: 
  Long seeks 
  “Short” average response time 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 

8 

21 

7 

2 

14 

12 

Note: 
the lines only indicate some 
time – not exact amount 
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Shortest Seek Time First (SSTF) 
SSTF serves closest request first: 
  short seek times 
  longer maximum seek times – may even lead to starvation 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 8 21 7 2 14 12 
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SCAN 
SCAN (elevator) moves head edge to edge and serves requests on the way: 
  bi-directional 
  compromise between response time and seek time optimizations  

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 8 21 7 2 14 12 
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SCAN vs. FCFS 

  Disk scheduling 
makes a 
difference! 

  In this case, we  
see that SCAN 
requires much less 
head movement 
compared to FCFS 
(37 vs. 75 tracks/cylinders) 

cylinder number 
1 5 10 15 20 25 

tim
e 

tim
e 

12 incoming requests (in order of arrival): 14 2 7 21 8 24 

FCFS 

SCAN 
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C–SCAN 
Circular-SCAN moves head from edge to edge 
  serves requests on one way – uni-directional 
  improves response time (fairness)  

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 8 21 7 2 14 12 
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SCAN vs. C–SCAN 

  Why is C-SCAN in average better in reality than SCAN when 
both service the same number of requests in two passes? 
－ modern disks must accelerate (speed up and  

down) when seeking 
－  head movement formula:  

SCAN C-SCAN 

bi-directional uni-directional 

requests: n 
avg. dist: 2x 
total cost:  

requests: n 
avg. dist: x 
total cost: 

cylinders traveled 

tim
e 

number of cylinders 
seek time constant 
fixed overhead 

if n is large: 
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LOOK and C–LOOK 
LOOK (C-LOOK) is a variation of SCAN (C-SCAN): 
  same schedule as SCAN 
  does not run to the edges 
  stops and returns at outer- and innermost request 
  increased efficiency  
  SCAN vs. LOOK example: 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 

8 

21 

7 

2 

14 

12 
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V–SCAN(R) 
  V-SCAN(R) combines SCAN (or LOOK) and SSTF 
－  define an R-sized unidirectional SCAN window, i.e., C-SCAN, and use SSTF 

outside the window 

－  Example: V-SCAN(0.6)  
•  makes a C-SCAN window over 60 % of the cylinders 
•  uses SSTF for requests outside the window  

－  V-SCAN(0.0) equivalent with SSTF 
－  V-SCAN(1.0) equivalent with C-SCAN 

－  V-SCAN(0.2) is supposed to be an appropriate configuration 

cylinder number 
1 5 10 15 20 25 
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END of This WEEK!! 

 NOW is the time to stop!!!! 
… and start next time! 
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What About Time-Dependent Media? 

  Suitability of classical algorithms  
－ minimal disk arm movement (short seek times) 
－ but, no provision of time or deadlines 
 generally not suitable 

  For example, a media server requires 
－ support for both periodic and aperiodic 

•  never miss deadline due to aperiodic requests 
•  aperiodic requests must not starve 

－ support multiple streams 

－ buffer space and efficiency tradeoff? 
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Real-Time Disk Scheduling 

  Traditional algorithms have no provision of time or 
deadlines  

 Real–time algorithms targeted for real–time 
applications with deadlines 

  Several proposed algorithms 
－  earliest deadline first (EDF) 
－  SCAN-EDF 
－  shortest seek and earliest deadline by ordering/value (SSEDO / SSEDV) 
－  priority SCAN (PSCAN) 
－  ... 
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Earliest Deadline First (EDF) 
EDF serves the request with nearest deadline first 

  non-preemptive (i.e., an arriving request with a shorter deadline must wait) 

  excessive seeks  poor throughput 

tim
e 

cylinder number 
1 5 10 15 20 25 

12,5 

incoming requests (<block, deadline>, in order of arrival): 

14,6 2,4 7,7 21,1 8,2 24,3 

scheduling 
queue 

12,5 14,6 2,4 7,7 21,1 8,2 24,3 
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SCAN–EDF 
SCAN-EDF combines SCAN and EDF: 
  the real-time aspects of EDF 
  seek optimizations of SCAN 
  especially useful if the end of the period is the 

deadline (some equal deadlines) 

  algorithm: 
－  serve requests with earlier 

deadline first (EDF) 
－  sort requests with same 

deadline after track location 
(SCAN) 

tim
e 

cylinder number 
1 5 10 15 20 25 

2,3 

incoming requests (<block, deadline>, in order of arrival): 

14,1 9,3 7,2 21,1 8,2 24,2 

scheduling 
queue 

2,3 14,1 9,3 7,2 21,1 8,2 24,2 16,1 16,1 

Note: 
similarly, we can combine EDF 
with C-SCAN, LOOK or C-LOOK 
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Stream Oriented Disk Scheduling 
  Streams often have soft deadlines and tolerate some slack due to buffering, 

i.e., pure real-time scheduling is inefficient and unnecessary 

 Stream oriented algorithms targeted for streaming continuous media data 
requiring periodic access, e.g., a frame every 40ms: 

  Several algorithms proposed: 
－  group sweep scheduling (GSS) 
－  mixed disk scheduling strategy 
－  contiguous media file system (CMFS) 
－  lottery scheduling 
－  stride scheduling 
－  batched SCAN (BSCAN) 
－  greedy-but-safe EDF (GS_EDF) 
－  bubble up 
－  … 

frame i frame i+1 frame i+4 frame i+2 frame i+3 
time 
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Group Sweep Scheduling (GSS) 
GSS combines Round-Robin (RR) and SCAN 

  requests are serviced in rounds (cycles)  

  principle: 
－  divide S active streams into G groups 
－  service the G groups in RR order 
－  service each stream in a group in C-SCAN order  
－  playout can start at the end of the group 

  special cases: 
－  G = S: RR scheduling 
－  G = 1: SCAN scheduling 

  tradeoff between buffer space and disk arm movement 
－  try different values for G giving minimum buffer requirement while remaining 

efficient enough to reach the deadlines 
－  a large G  smaller groups, more arm movements 
－  a small G  larger groups, less arm movements 
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Group Sweep Scheduling (GSS) 
GSS example: streams A, B, C and D  g1:{A,C} and g2:{B,D} 
  RR group schedule 
  C-SCAN block schedule within a group 

tim
e 

cylinder number 
1 5 10 15 20 25 

A2 A1 A3 B2 B3 B1 C1 C2 C3 D3 D1 D2 

g1 

A2 

C1 

A1 

A3 

B2 

B3 

B1 

C2 

C3 

D3 

D1 

D2 

g2 

g1 

g2 

g1 

g2 

{A,C} 

{B,D} 

{C,A} 

{B,D} 

{A,C} 

{B,D} 
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Mixed Media Oriented Disk Scheduling 

  Applications may require both RT and NRT data – 
desirable to have all on same disk 

  Several algorithms proposed: 
－ Felini’s disk scheduler 
－ Delta L 
－ Fair mixed-media scheduling (FAMISH) 
－ MARS scheduler 
－ Cello  
－ Adaptive disk scheduler for mixed media workloads (APEX)  
－ … 
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MARS Disk Scheduler 

  Massively-parallel And Real-time Storage (MARS) scheduler 
supports mixed media on a single system 
－  a two-level scheduling 
－  round-based 

－  top-level:  
1 NRT queue and n (1) RT queue 
(SCAN, but “future” GSS, SCAN-EDF, or…) 

－  use deficit RR fair queuing to assign  
quantums to each queue per round –  
divides total bandwidth among queues  

－  bottom-level:  
select requests from queues according to  
quantums, use SCAN order 

－ work-conserving 
(variable round times, new round starts immediately) 

… 

deficit round robin fair queuing 
job selector 

NRT RT 
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Cello and APEX 
  Cello and APEX are similar to MARS, but slightly different in 

bandwidth allocation and work conservation 

－  Cello has 
•  three queues: deadline (EDF), throughput intensive best effort (FCFS), 

interactive best effort (FCFS) 
•  static proportional allocation scheme for bandwidth 
•  FCFS ordering of queue requests in lower-level queue 
•  partially work-conserving: 

extra requests might be added at the end of the class 
independent scheduler, but constant rounds 

－  APEX 
•  n queues 
•  uses token bucket for traffic shaping (bandwidth allocation)   
•  work-conserving:  

adds extra requests if possible to a batch & starts extra batch between 
ordinary batches 
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Cello 
  Cello is part of the Symphony FS supporting mixed media 
－  two-level scheduling 
－  round-based 

－  top-level: n (3) service classes (queues) 
•  deadline (= end-of-round) real-time (EDF) 
•  throughput intensive best effort (FCFS) 
•  interactive best effort (FCFS) 

－  divides total bandwidth among queues  
according to a static proportional allocation scheme 
(equal to MARS’ job selector) 

－  bottom-level: class independent scheduler (FCFS) 
•  select requests from queues according to BW share 
•  sort requests from each queue in SCAN order when transferred  

－  partially work-conserving 
(extra requests might be added at the end of the class 
independent scheduler if space, but  constant rounds) 

deadline RT throughput intensive 
best-effort 

interactive 
best-effort 

3 
1 

2 
7 

8 
4 

2 1 2 

sort each queue in SCAN order when transferred 
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Adaptive Disk Scheduler for Mixed Media Workloads 

  APEX is another mixed media scheduler 
－  two-level, round-based scheduler similar to Cello and MARS 

－  uses token bucket for traffic shaping 
(bandwidth allocation)   

－  the batch builder select requests in 
FCFS order from the queues based on  
number of tokens – each queue must  
sort according to deadline  
(or another strategy) 

－ work-conserving 
•  adds extra requests if possible to a batch 
•  starts extra batch between ordinary batches 

Request Distributor/ 
Queue Scheduler 

Queue/Bandwidth 
Manager 

... 

Batch Builder 
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APEX, Cello and C–LOOK Comparison 
  Results from Ketil Lund (2002) 

  Configuration: 
－  Atlas Quantum 10K 
－  data placement: random 
－  round time: 1 second 
－  block size: 64KB 

  6 video playbacks and up to 9 user queries 
－  Video data disk requests are assigned to a real-time queue 
－ User-query disk requests to a best-effort queue  

－  Bandwidth is shared 50/50 between real-time and best-effort queues 
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APEX, Chello and C–LOOK Comparison 

0 
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600 
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# User-query traces 

Average response time for user-query disk requests 

APEX 

Cello 

C-LOOK 

1 2 3 4 5 6 7 8 9 

APEX 0 0 0 0 0 0 0 0 0 

Cello 0 0 0 0 0 0 0 0 0 

C-LOOK 0 18 90 288 404 811 1271 2059 3266 

Deadline 
violations 
(video) 
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Schedulers today (Linux)? 
  NOOP 
－  FCFS with request merging 

  Deadline I/O 
－  C-SCAN based 
－  4 queues: elevator/deadline for read/write 

  Anticipatory 
－  same queues as in Deadline I/O 
－  delays decisions to be able to merge more requests  

(e.g., a streaming scenario) 

  Completely Fair Scheduler (CFQ) 
－  1 queue per process (periodic access, but priode depends on load) 
－  gives time slices and ordering according to priority level  

(real-time, best-effort, idle) 
－  work-conserving 
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User space vs. kernel space scheduling 
  Do all applications fully benefit 

from kernel space scheduling? 
 File tree traversals 
－  processing one file after another 
－  tar, zip, … 
－  recursive copy (cp -r) 
－  search (find) 
－  … 

  Only application knows access 
pattern 
－  use ioctl FIEMAP (FIBMAP)  

to retrieve extent locations 
－  sort in user space 
－  send I/O request according to 

sorted list 

 GNU/BSD Tar vs. QTAR 
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User space vs. kernel space scheduling 
  Do all applications fully benefit 

from kernel space scheduling? 
 File tree traversals 
－  processing one file after another 
－  tar, zip, … 
－  recursive copy (cp -r) 
－  search (find) 
－  … 

  Only application knows access 
pattern 
－  use ioctl FIEMAP (FIBMAP)  

to retrieve extent locations 
－  sort in user space 
－  send I/O request according to 

sorted list 

 GNU/BSD Tar vs. QTAR 



Data Placement  
on Disk 
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Data Placement on Disk  

  Disk blocks can be assigned to files many ways, and 
several schemes are designed for 

－ optimized latency 
－ increased throughput 

 access pattern dependent 



INF5071,  Carsten Griwodz & Pål Halvorsen University of Oslo 

Disk Layout 

  Constant angular velocity (CAV) disks 
－  equal amount of data in each track 

(and thus constant transfer time) 
－  constant rotation speed 

  Zoned CAV disks 
－  zones are ranges of tracks 
－  typical few zones 
－  the different zones have 

•  different amount of data  
•  different bandwidth  
•  i.e., more better on outer tracks 
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Disk Layout 
outer: 

inner: 

outer: 

inner: 

constant transfer rate  

variable  
transfer  
rate  

zoned disk 

non-zoned disk 
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Disk Layout 

  Cheetah X15.3 is a zoned CAV disk: 

Zone 
Cylinders per 

Zone 
Sectors per 

Track 
Zone Transfer 
Rate (MBps) 

Sectors per 
Zone Efficiency 

Formatted 
Capacity (MB) 

1 3544 672 890,98 19014912 77,2% 9735,635 

2 3382 652 878,43 17604000 76,0% 9013,248 

3 3079 624 835,76 15340416 76,5% 7854,293 

4 2939 595 801,88 13961080 76,0% 7148,073 

5 2805 576 755,29 12897792 78,1% 6603,669 

6 2676 537 728,47 11474616 75,5% 5875,003 

7 2554 512 687,05 10440704 76,3% 5345,641 

8 2437 480 649,41 9338880 75,7% 4781,506 

9 2325 466 632,47 8648960 75,5% 4428,268 

10 2342 438 596,07 8188848 75,3% 4192,690 

  Always place often used or high rate data on outermost tracks (zone 1) …!?  

  NO, arm movement is often more important than transfer time  
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Data Placement on Disk 

  Contiguous placement stores disk blocks contiguously on disk 

－ minimal disk arm movement reading the whole file (no intra-file seeks) 

－  pros/cons 
  head must not move between read operations - no seeks / rotational delays 
  can approach theoretical transfer rate  
  but usually we read other files as well (giving possible large inter-file seeks) 

－  real advantage 
•  do not have to pre-determine block (read operation) size  

(whatever amount to read, at most track-to-track seeks are performed) 

－  no inter-operation gain if we have unpredictable disk accesses 

file A file B file C 
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Data Placement on Disk 
  Interleaved placement tries to store blocks from a file with a 

fixed number of other blocks in-between each block  

－ minimal disk arm movement reading the files A, B and C 
(starting at the same time) 

－  fine for predictable workloads reading multiple files 

－  no gain if we have unpredictable disk accesses 

  Non-interleaved (or even random) placement can be used for 
highly unpredictable workloads 

file A 
file B 

file C 
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Data Placement on Disk 
  Organ-pipe placement consider the ‘average’ disk head position 
－  place most popular data where head is most often 

－  center of the disk is in average “closest” to the head 
－  but, a bit outward for zoned  disks (modified organ-pipe) 

disk: 
innermost 

outermost 

head 

bl
oc

k 
ac

ce
ss

 p
ro

ba
bi

lit
y 

cylinder number 

bl
oc

k 
ac

ce
ss

 p
ro

ba
bi

lit
y 

cylinder number 

organ-pipe: modified organ-pipe: 
Note: 
skew dependent on     
  tradeoff between  
   zoned transfer time  
    and storage 
     capacity  vs.  
       seek time 
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Unix/Linux Example: FFS, UFS, … 

mode"
owner"

…"
Direct block 0"
Direct block 1"

…"
Direct block 10"
Direct block 11"
Single indirect"
Double indirect"
Triple indirect"

Data block"Data block"

Data block"Data block"

index"

Data block"Data block"

Data block"Data block"

index"

index"

index"index"

index"index"

Data block"Data block"

Data block"Data block"

index"
index" Data block"

inode" Flexible block size"
e.g. 4KB"

ca. 1000 entries"
per index block"

Data block"
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Linux Example: XFS, …, JFS, EXT4… 
  Count-augmented address indexing in the extent sections 

  Introduce a new inode structure 

－  add counter field to original direct  
entries – 

•  direct points to a disk block 

•  count indicated how many other  
blocks is following the first block  
(contiguously) 

direct 0 

direct 1 

direct 2 

… 

direct 10 

direct 11 

triple indirect 

single indirect 

double indirect 

attributes 

count 0 

count 1 

count 2 

… 

count 10 

count 11 

data 3 data data 

inode 
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Windows Example: NTFS 
  Each partition contains a master file table (MFT) 
－  a linear sequence of 1 KB records 
－  each record describes a directory or a file (attributes and disk addresses) 

first 16 reserved for 
NTFS metadata 

info about data blocks 

…data… 

A file can be … 

•  stored within the record (immediate file, < few 100 B) 

•  represented by disk block addresses (which hold data): 
   runs of consecutive blocks (<addr, no>, like extents) 

•  use several records if more runs are needed 

20 4 

run 1 

30 2 

run 2 

74 7 

run 3 

24 - base record 

26 - first extension record 

27 - second extension record 

10 2 

run 1 

78 3 

run k 

MFT 27 

2nd extension 

MFT 26 

1st extension 

run 2, run 3, …, run  k-1 



Modern Disks: 
Complicating Factors 
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Complicating Factors 
  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 

  … but, new disks are more complex  
－  hide their true layout, e.g.,  

•  only logical block numbers 
•  different number of surfaces, cylinders, sectors, etc. 

OS view real view 
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Complicating Factors 
  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 

  … but, new disks are more complex   
－  hide their true layout 
－  transparently move blocks to spare cylinders 

•  Seagate X15.3 - zone 1 - 10: (7,7,6,6,6,5,5,5,5,5)  

•  e.g., due to bad disk blocks  

OS view real view 
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  Constant angular 
velocity (CAV) disks 
－  constant rotation speed 
－  equal amount of data in 

each track 
  thus, constant  

transfer time 

Complicating Factors 

OS view real view 

  Disk used to be simple devices and disk scheduling used to be 
performed by OS (file system or device driver) only… 

  … but, new disks are more complex   
－  hide their true layout 
－  transparently move blocks to spare cylinders 
－  have different zones 

  Zoned CAV disks 
－  constant rotation speed  
－  zones are ranges of tracks 
－  typical few zones 
－  the different zones have 

different amount of data, i.e., 
more better on outer tracks 

  thus, variable transfer time 
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Complicating Factors 
  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 

  … but, new disks are more complex   
－  hide their true layout 
－  transparently move blocks to spare cylinders 
－  have different zones 
－  head accelerates – most algorithms assume linear movement overhead 

~ 10x - 20x   

x 

1 N 
Cylinders Traveled 

Time 
(7 ms)   

(0.2 ms) 
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Complicating Factors 
  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 

  … but, new disks are more complex   
－  hide their true layout 
－  transparently move blocks to spare cylinders 
－  have different zones 
－  head accelerates 
－  on device (and controller) buffer caches may use read-ahead prefetching 

disk 
buffer disk 
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Complicating Factors 
  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 

  … but, new disks are more complex   
－  hide their true layout 
－  transparently move blocks to spare cylinders 
－  have different zones 
－  head accelerates 
－  on device (and controller) buffer caches may use read-ahead prefetching 
－  gaps and checksums between each sector 

track 
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Complicating Factors 
  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 

  … but, new disks are more complex   
－  hide their true layout 
－  transparently move blocks to spare cylinders 
－  have different zones 
－  head accelerates  
－  on device (and controller) buffer caches may use read-ahead prefetching 
－  gaps and checksums between each sector 

 “smart” with a build-in low-level scheduler (usually SCAN-derivate) 
 we cannot fully control the device (black box) 
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Why Still Do Disk Related Research? 

  If the disk is more or less a black box – why bother? 

－ many (old) existing disks do not have the “new properties” 

－  according to Seagate technical support: 

“blocks assumed contiguous by the OS probably still will be  
contiguous, but the whole section of blocks might be elsewhere” 

       [private email from Seagate support]  

－  delay sensitive requests 

  But, the new disk properties should be taken into account 
－  existing extent based placement is probably good 
－ OS could (should?) focus on high level scheduling only 
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Next Generation Disk Scheduling? 
  Thus, due to the complicating factors…  

(like head acceleration, disk buffer caches, hidden data layout, built-in “SCAN” scheduler,…) 

… a server scheduler can be (???): 

－  hierarchical high-level software scheduler 
•  several top-level queues (at least RT & NRT) 

•  process queues in rounds (RR)   
  dynamic assignment of quantums 
  work-conservation with variable round length 

(full disk bandwidth utilization vs. buffer requirement) 

•  only simple collection of requests according to  
quantums in lowest level and forwarding to disk,  
because ... 

－  ...fixed SCAN scheduler in hardware (on disk) 

  On-device programmable processors?? 

… 

RT NRT 

SCAN 

EDF / FCFS 

No sorting 



Multiple Disks 
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Parallel Access 

  Disk controllers and busses manage several devices 

  One can  improve total system performance by replacing one 
large disk with many small accessed in parallel 

  Several independent heads can read simultaneously 

Single disk: Two disks: 
Note: 
the single disk might be 
faster, but as seek time and 
rotational delay are the 
dominant factors of total 
disk access time, the two 
smaller disks might operate 
faster together performing 
seeks in parallel... 



INF5071,  Carsten Griwodz & Pål Halvorsen University of Oslo 

Client1 Client2 Client3 Client4 Client5 

Server 

Striping 

  Another reason to use multiple disks is when one disk cannot 
deliver requested data rate 

  In such a scenario, one  
might use several disks  
for striping: 
－  bandwidth disk: Bdisk 
－  required bandwidth: Bconsume 
－  Bdisk < Bconsume  
－  read from n disks in parallel: n Bdisk > Bconsume 

  Advantages 
－  higher transfer rate compared to one disk 

  Drawbacks 
－  can’t serve multiple clients in parallel 
－  positioning time increases  

(i.e., reduced efficiency) 
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Interleaving (Compound Striping) 
  Full striping usually not necessary today:   
－  faster disks 
－  better compression algorithms 

  Interleaving lets each client be serviced 
by only a set of the available disks 

－ make groups  

－  ”stripe” data in a way such that a consecutive  
request arrive at next group  

－  one disk group example: 

Client1 Client2 Client3 

Server 
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Interleaving (Compound Striping) 
  Divide traditional striping group into sub-groups, e.g.,  

staggered striping 

  Advantages 
－ multiple clients can still be served in parallel 
－ more efficient disks operations 
－  potentially shorter response time 

  Potential drawback/challenge 
－  load balancing (all clients access same group) 

X0,0 X0,1 

X1,0 X1,1 

X2,0 X2,1 

X3,1 X3,0 

X4,0 X4,1 
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Mirroring 
  Multiple disks might do come in the situation where all requests 

are for one of the disks and the rest lie idle 

  In such cases, it might make sense to have replicas of data on 
several disks – if we have identical disks, it is called mirroring 

  Advantages 
－  faster response time 
－  survive crashes – fault tolerance 
－  load balancing by dividing the requests for the data on the same disks 

equally among the mirrored disks  

  Drawbacks 
－  increases storage requirement 
－ more expensive write operations 
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Redundant Array of Inexpensive Disks 
  The various RAID levels define different disk organizations to 

achieve higher performance and more reliability 
－  RAID 0 - striped disk array without fault tolerance (non-redundant) 

－  RAID 1 - mirroring 

－  RAID 2 - memory-style error correcting code (Hamming Code ECC) 

－  RAID 3 - bit-interleaved parity 

－  RAID 4 - block-interleaved parity  
－  RAID 5 - block-interleaved distributed-parity 

－  RAID 6 - independent data disks with two independent distributed parity schemes (P+Q redundancy) 

－  RAID 10     - striped disk array (RAID level 0) whose segments are mirrored (level 1) 

－  RAID 0+1 -  mirrored array (RAID level 1) whose segments are RAID 0 arrays 

－  RAID 03  - striped (RAID level 0) array whose segments are RAID level 3 arrays  
－  RAID 50  - striped (RAID level 0) array whose segments are RAID level 5 arrays  
－  RAID 53, 51, … 
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Replication 
  Replication is in traditional disk array systems often used for 

fault tolerance (and higher performance in the new combined 
RAID levels) 

  Replication can also be used for  
－  reducing hot spots 
－  increase scalability  
－  higher performance 
－ … 
－  and, fault tolerance is often a side effect  

  Replication should  
－  be based on observed load 
－  changed dynamically as popularity changes 



INF5071,  Carsten Griwodz & Pål Halvorsen University of Oslo 

  DSR tries to balance load by dynamically replicating hot data 
－  also known as dynamic policy for segment replication (DPSR) 
－  assumes read only, VoD-like retrieval 
－  predefines a load threshold for when to replicate a segment by examining 

current and expected load 
－  uses copyback streams 

－  replicate when threshold is reached, but which segment and where?? 
•  tries to find a lightly loaded device, based on future load calculations 
•  not necessarily segment that receives additional requests 

(another segment may have more requests) 
 replicates based on payoff factor p (replicate segment i with highest p): 
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Heterogeneous Disks 
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File Placement  
  A file might be stored on multiple disks, but how should one 

choose on which devices? 

－  storage devices limited by both bandwidth and space 

－ we have hot (frequently viewed) and cold (rarely viewed) files 

－ we may have several heterogeneous storage devices 

－  the objective of a file placement policy is to achieve maximum utilization 
of both bandwidth and space, and hence, efficient usage of all devices  
by avoiding load imbalance  

•  must consider expected load and storage requirement 

•  expected load may change over time 
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Bandwidth-to-Space Ratio (BSR)  
  BSR attempts to mix hot and cold as well as large and small 

(multimedia) objects on heterogeneous devices 
－  don’t optimize placement based on throughput or space only (use both!!) 

－  BSR consider both required storage space and throughput requirement 
(which is dependent on playout rate and popularity) to achieve a best 
combined device utilization 

media object: 

bandwidth 

sp
ac

e 
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disk 
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Bandwidth-to-Space Ratio (BSR) 
  The BSR policy algorithm: 
－  input: space and bandwidth requirements 

－  phase 1:  
•  find a device to place the media object according to BSR 
•  if no device, or stripe of devices, can give sufficient space or bandwidth,  

then add replicas 
－  phase 2: 

•  find devices for the needed replicas 
－  phase 3: 

•  allocate expected load on replica devices according to BSR of the devices 
－  phase 4: 

•  if not enough resources are available, see if other media objects can delete replicas 
according to their current workload 

－  all phases may be needed adding a new media object or increasing the workload 
– for decrease, only the reallocation in needed 

  Popular, high data rate movies should be on high bandwidth disks 
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Disk Grouping 
  Disk grouping is a technique to “stripe” (or fragment) data over 

heterogeneous disks 
－  groups heterogeneous physical disks to homogeneous logical disks 
－  the amount of data on each disk (fragments) is determined so that the service 

time (based on worst-case seeks) is equal for all physical disks in a logical disk 
－  blocks for an object are placed (and read) on logical disks in a round-robin 

manner – all disks in a group is activated simultaneously 

disk 2 

disk 3 

disk 0 

disk 1 

logical disk 0 

logical disk 1 

X0,0 

X0 X2 

X1 X3 

X2,0 

X0,1 X2,1 

X1,0 X3,0 

X1,1 X3,1 

X0,0 

X0,1 

X1,0 

X1,1 

X2,0 

X2,1 

X0 ready 
for display 

X1 ready 
for display 
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Staggered Disk Grouping 
  Staggered disk grouping is a variant of disk grouping minimizing  

memory requirement 
－  reading and playing out differently 
－  not all fragments of a logical block is needed at the same time 
－  first (and largest) fragment on most powerful disk, etc. 
－  read sequentially (must not buffer later segments for a long time) 
－  start display when largest fragment is read 

disk 2 

disk 3 

disk 0 

disk 1 

logical disk 0 

logical disk 1 

X0,0 

X0 X2 

X1 X3 

X2,0 

X0,1 X2,1 
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X1,1 X3,1 

X0,0 X0,1 

X1,0 X1,1 

X2,0 X2,1 

X0,0 ready 
for display 

X1,0 ready 
for display 

X2,0 ready 
for display 

X0,1 ready 
for display 

X1,1 ready 
for display 

X2,1 ready 
for display 
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Disk Merging 
  Disk merging forms logical disks from capacity fragments of a physical disk  
－  all logical disks are homogeneous 
－  supports an arbitrary mix of heterogeneous disks (grouping needs equal groups) 
－  starts by choosing how many logical disks the slowest device shall support  

(e.g., 1 for disk 1 and 3) and calculates the corresponding number of more 
powerful devices (e.g., 1.5 for disk 0 and 2 if these disks are 1.5 times better) 

－  most powerful: most flexible (arbitrary mix of devices) and can be adapted to 
zoned disks (each zone considered as a disk) 
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File Systems 
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File Systems 

  Many examples of application specific storage systems 

－  integrate several subcomponents (e.g., scheduling, placement, caching, 
admission control, …) 

－  often labeled differently: file system, file server, storage server, … 
 accessed through typical file system abstractions 

－  need to address applications distinguishing features: 

•  soft real-time constraints (low delay, synchronization, jitter) 

•  high data volumes (storage and bandwidth) 
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Classification 
  General file systems: “support” for all applications 

e.g.: file allocation table (FAT), windows NT file system (NTFS), extended file system 
(Ext2/3/4), journaling file system (JFS), Reiser, fast file system (FFS), …  

  Multimedia file systems: address multimedia requirements 
－  general file systems with multimedia support e.g.: XFS, Minorca 

－  exclusively streaming  
e.g.: Video file server, embedded real-time file system (ERTFS),  Shark, Everest,  
continuous media file system (CMFS), Tiger Shark 

－  several application classes  
e.g.: Fellini, Symphony, (MARS & APEX schedulers) 

  High-performance file systems: primarily for large data 
operations in short time 
e.g.: general parallel file system (GPFS), clustered XFS (CXFS), Frangipani, global file  
system (GFS), parallel portable file system (PPFS), Examplar, extensible file system (ELFS) 

  “Strange file systems”: 
e.g., Google FS (BigTable), OceanStore, FAST, FUSE, …  
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Example: Fellini Storage System 
  Fellini (now CineBlitz)…  

－  supports both real-time (with guarantees) and non-real-time by assigning resources for 
both classes 

－  SGI (IRIX Unix), Sun (Solaris), PC (WinNT & Win95) 

  Admission control 
－  deterministic (worst-case) to make hard guarantees 

－  services streams in rounds 

－  used (and available) disk BW is calculated using  
•  worst-case  

  seek (inner to outer) 
  rotational delay (one round) 
  settle (servicing latency) - transfer rate of inner track 

•  Tperiod > total disk time = 2 x seek + Σ[blocksi x (rotation delay + settle)]  

－  used (and available) buffer space is calculated using 
•  buffer requirement per stream = 2 x rate x service round  

－  a new client is admitted if enough free disk BW and buffer space  
(additionally Fellini checks network BW) 

－  new real-time clients are admitted first 
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Example: Fellini Storage System 

  Cache manager 

－  pages are pinned (fixing) using a reference counter 

－  replacement in three steps 

1.  search free list 

2.  search current buffer list (CBL) for the unused  LRU file 

3.  search in-use  CBLs and assign priorities to replaceable buffers (not pinned) 
according to reference distance (depending on rate, direction) 

  sort (using Quicksort) 

  replace buffer with highest weight 
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Example: Fellini Storage System 
  Storage manager 
－  maintains free list with grouping contiguous blocks  store blocks contiguously 
－  uses C-SCAN disk scheduling 
－  striping  

•  distribute the total load 
•  add fault-tolerance (parity data) 

－  simple flat file system 

  Application interface 
－  non-real-time: more or less as in other file systems, except that when opening 

one has an admittance check 

－  real-time:  
•  begin_stream (filename, mode, flags, rate) 

•  retrieve_stream (id, bytes) 

•  store_stream (id, bytes) 

•  seek_stream (id, bytes, whence) 

•  close_stream(id) 



Discussion: 
We have the Qs, you have the As! 
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DAS vs. NAS vs. SAN?? 

  Direct attached storage 

  Network attached 
storage 
－  uses some kind of file-

based protocol to 
attach remote devices 
non-transparently 

－  NFS, SMB, CIFS 

  Storage area network 
－  transparently attach 

remote storage 
devices 

－  iSCSI (SCSI over TCP/
IP), iFCP (SCSI over 
Fibre Channel), 
HyperSCSI (SCSI over 
Ethernet), ATA over 
Ethernet 

  How will the introduction of network  
attached disks influence storage? 
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Mechanical Disks vs. Solid State Disks??? 
  How will the introduction of SSDs influence storage? 

(numbers from 2008) Storage 
capasity 

(GB) 

Average seek 
time / latency 

(ms)  

Sustained 
transfer 

rate (MBps) 

Interface 
(Gbps) 

Seagate Cheetah X15.6 (3.5 inch) 450 3.4  
(track to track 0.2) 

110 - 171 SAS (3) 
FC (4) 

Seagate Savvio 15K (2.5 inch) 73 2.9  
(track to track 0.2) 

29 - 112 SAS (3) 

OCM Flash Media Core Series V2 250 < .2 - .3 up to 170 SATA (3) 

Intel X25-E (extreme) 64 0.075 250 SATA (3) 

Intel X25-M (mainstream) 160 0.085 250 SATA (3) 

Mtron SSD Pro 7500 series 128 0.100 130 SATA (1.5) 

Gigabyte GC-Ramdisk 4 0.000xxx GBps SATA (1.5) 
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Evolution: New Requirements 
  Architectural considerations [Prashant Shenoy et al]: 
－  integrated file system support for a variety of applications 

－  modernizing the multimedia file system 
•  server-independent 
•  self managing 
•  self healing 
•  networked  
•  disk processors 

  Trend in research towards high-performance file systems 
－  usually no timeliness guarantees, but performance is maximized 

－  several build on multimedia file systems (Tiger Shark  GPFS,  XFS  CXFS), but 
have gained scalability while still supporting reservation  

－  efficient support for operations like strided (non-continuous) I/O will be 
increasingly important  (edition, interactions, scalable streaming, non-linearity) 



The End: 
Summary 
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Summary 

  All resources needs to be scheduled 

  Scheduling algorithms have to… 
－ … be fair 
－ … consider real-time requirements (if needed) 
－ … provide good resource utilization 
－ (… be implementable) 

  Memory management is an important issue 
－ caching 
－ copying is expensive  copy-free data paths 
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Summary 
  The main bottleneck is disk I/O performance due to disk 

mechanics: seek time and rotational delays 
(but in the future??) 

  Much work has been performed to optimize disks performance 

  Many algorithms trying to minimize seek overhead 
(most existing systems uses a SCAN derivate) 

  World today more complicated  
－  both different media 
－  unknown disk characteristics –   

new disks are “smart”, we cannot fully control the device 

  Disk arrays frequently used to improve the I/O capability 

  Many existing file systems with various application specific  
support 
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