
October 1, 2010

INF5071 – Performance in Distributed Systems

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Overview

  Memory management
－ caching
－ copy free data paths

  Storage management
－ disks
－ scheduling
－ placement
－ file systems
－ multi-disk systems
－ …

Memory Management

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Why look at a passive resource?

Lack of space (or bandwidth) can delay applications
 e.g., the dining philosophers would die because the
 spaghetti-chef could not find a parking lot

“Dying philosophers problem”

Pa
rk

in
g

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Delivery Systems

Network

bus(es)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

file system communication
system

application

user space

kernel space

bus(es)

Delivery Systems

  several disk-to-memory transfers

  several in-memory data movements
 and context switches

Memory Caching

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Memory Caching

communication
system

application

disk network card

expensive

file system

buffer cache

caching possible

How do we manage a cache?
  how much memory to use?
  how much data to prefetch?
  which data item to replace?
  …

vs.

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Is Caching Useful in a High-Rate Scenario?

  High rate data may need lots of memory for caching…

  Tradeoff: amount of memory, algorithms complexity, gain, …

  Cache only frequently used data – how?
(e.g., first (small) parts of a movie, allow “top-ten” only, …)

Buffer vs. Rate 160 Kbps
(e.g., MP3)

1.4 Mbps
(e.g., uncompressed CD)

3.5 Mbps
(e.g., average DVD video)

100 Mbps
(e.g., uncompressed HDTV)

100 MB 85 min 20 s 9 min 31 s 3 min 49 s 8 s

1 GB 14 hr 33 min 49 s 1 hr 37 min 31 s 39 min 01 s 1 min 20 s

16 GB 133 hr 01 min 01 s 26 hr 00 min 23 s 10 hr 24 min 09 s 21 min 20 s

32 GB 266 hr 02 min 02 s 52 hr 00 min 46 s 20 hr 48 min 18 s 42 min 40 s

128 GB 1064 hr 08 min 08 s 208 hr 03 min 04 s 83 hr 13 min 12 s 2 hr 50 min 40 s

Largest Dell Servers in 2004/2008 –
and all is NOT used for caching

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Need For Application-Specific Algorithms?

  Most existing systems use an LRU-variant
－  keep a sorted list (most recently used at the head)
－  replace last element in list
－  insert new data elements at the head
－  if a data element is re-accessed (e.g., new client or rewind),

move back to the end of the list

  Extreme example – video frame playout:
LRU buffer

longest time

since access shortest time

since access

play video (7 frames): 1 2 3 4 5 6 7

rewind and restart playout at 1: 7 6 5 4 3 2 1

playout 2: 1 7 6 5 4 3 2

playout 3: 2 1 7 6 5 4 3

playout 4: 3 2 1 7 6 5 4

In this case, LRU replaces
the next needed frame. So
the answer is in many cases
YES…

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

“Classification” of Mechanisms
  Block-level caching consider (possibly unrelated) set of blocks
－  each data element is viewed upon as an independent item
－  usually used in “traditional” systems
－  e.g., FIFO, LRU, LFU, CLOCK, …

－  multimedia (video) approaches:
•  Least/Most Relevant for Presentation (L/MRP)
•  …

  Stream-dependent caching consider (parts of) a stream object as a whole
－  related data elements are treated in the same way
－  research prototypes in multimedia systems
－  e.g.,

•  BASIC
•  DISTANCE
•  Interval Caching (IC)
•  Generalized Interval Caching (GIC)
•  Split and Merge (SAM)
•  SHR

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Least/Most Relevant for Presentation (L/MRP)

  L/MRP is a buffer management mechanism for a single
interactive, continuous data stream

－  adaptable to individual multimedia applications

－  preloads units most relevant for presentation from disk

－  replaces units least relevant for presentation

－  client pull based architecture

Server

request

Homogeneous
stream e.g.,
MJPEG video

Client Buffer

request

Continuous Presentation Units (COPU)
e.g., MJPEG video frames

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

current
presentation point

Least/Most Relevant for Presentation (L/MRP)

  Relevance values are calculated with respect to current playout of the
multimedia stream

•  presentation point (current position in file)
•  mode / speed (forward, backward, FF, FB, jump)

•  relevance functions are configurable

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

COPUs – continuous object presentation units

COPU number
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

relevance value

1.0

0

0.8

0.6

0.4

0.2

X referenced

X history

playback direction

12
13

14
15 16 17 18 19

25
24

23
22

X skipped

16 18

20

22

24

26

20
21

26

10
11

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

loaded frames

  Global relevance value
－  each COPU can have more than one relevance value

•  bookmark sets (known interaction points)

•  several viewers (clients) of the same

－ = maximum relevance for each COPU

Least/Most Relevant for Presentation (L/MRP)

... ...

0

1

Relevance

Bookmark-Set Referenced-Set History-Set

100 101 102 103 99 98

current
presentation

point S1

91 92 93 94 90 89 95 96 97 104 105 106

current
presentation

point S2

global relevance value

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Least/Most Relevant for Presentation (L/MRP)

  L/MRP …
  … gives “few” disk accesses (compared to other schemes)
  … supports interactivity
  … supports prefetching

  … targeted for single streams (users)
  … expensive (!) to execute

(calculate relevance values for all COPUs each round)

  Variations:
－ Q-L/MRP – extends L/MRP with multiple streams and changes prefetching

mechanism (reduces overhead) [Halvorsen et. al. 98]

－ MPEG-L/MRP – gives different relevance values for different MPEG frames
[Boll et. all. 00]

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Interval Caching (IC)
  Interval caching (IC) is a caching strategy for streaming servers

－  caches data between requests for same video stream –
based on playout intervals between requests

－  following requests are thus served from the cache filled by preceding stream

－  sort intervals on length, buffer requirement is data size of interval

－  to maximize cache hit ratio (minimize disk accesses) the shortest intervals are
cached first

Video clip 1

S11

Video clip 1

S11 S12

Video clip 1

S12 S11 S13

Video clip 2

S22 S21

Video clip 3

S33 S31 S32 S34

I11 I12

I21

I31 I32 I33

: I32 I33 I21 I11 I31 I12

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Generalized Interval Caching (GIC)
  Interval caching (IC) does not work for short clips
－  a frequently accessed short clip will not be cached

  GIC generalizes the IC strategy
－ manages intervals for long video objects as IC
－  short intervals extend the interval definition

•  keep track of a finished stream for a while after its termination
•  define the interval for short stream as the length between the new stream

and the position of the old stream if it had been a longer video object
•  the cache requirement is, however, only the real requirement

－  cache the shortest intervals as in IC

Video clip 1

S11 S12

I11
C11

S11

Video clip 2

S22 S21

I21

I11 < I21
 GIC caches I11 before I21

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Generalized Interval Caching (GIC)
  Open function:

 form if possible new interval with previous stream;
 if (NO) {exit} /* don’t cache */
 compute interval size and cache requirement;
 reorder interval list; /* smallest first */
 if (not already in a cached interval) {
 if (space available) {cache interval}
 else if (larger cached intervals exist
 and sufficient memory can be released) {
 release memory from larger intervals;
 cache new interval;
 }
 }

  Close function
 if (not following another stream) {exit} /* not served from cache */
 delete interval with preceding stream;
 free memory;
 if (next interval can be cached in released memory) {
 cache next interval
 }

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

wasted buffering

LRU vs. L/MRP vs. IC Caching

 What kind of caching strategy is best (VoD streaming)?
－ caching effect

movie X

S5 S4 S2 S1 S3

Memory (L/MRP):

Memory (IC):

loaded page frames

global relevance values

I1 I2 I3 I4

4 streams from disk,
1 from cache

2 streams from disk,
3 from cache

Memory (LRU): 4 streams from disk,
1 from cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

LRU vs. L/MRP vs. IC Caching

 What kind of caching strategy is best (VoD streaming)?
－ caching effect (IC best)
－ CPU requirement

LRU

for each I/O request
 reorder LRU chain

L/MRP

for each I/O request
 for each COPU
 RV = 0
 for each stream
 tmp = rel (COPU, p, mode)
 RV = max (RV, tmp)

IC

for each block consumed
 if last part of interval
 release memory element

In-Memory Copy
Operations

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

In Memory Copy Operations

communication
system

application

disk network card

expensive

file system

expensive

#bytes

tim
e

copy: switch:
 - save and restore state
 - switch between user and kernel mode
 - possible cache/TLB flush
 - …

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

file system communication
system

application

user space

kernel space

bus(es)

data_pointer data_pointer

Basic Idea of Zero–Copy Data Paths

A lot of research has been performed in this area!!!!
BUT, what is the status of commodity operating systems?

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Content Download

file system communication
system

application

user space

kernel space

bus(es)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Content Download: read / send

application

kernel

page cache socket buffer

application
buffer

read send

copy copy

DMA transfer DMA transfer

  2n copy operations
  2n system calls

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Content Download: mmap / send

application

kernel

page cache socket buffer

mmap send

copy

DMA transfer DMA transfer

  n copy operations
  1 + n system calls

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Content Download: sendfile

application

kernel

page cache socket buffer

sendfile

gather DMA transfer

append descriptor

DMA transfer

  0 copy operations
  1 system calls

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Content Download: Results

UDP TCP

  Tested transfer of 1 GB file on Linux 2.6
  Both UDP and TCP

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Streaming

file system communication
system

application

user space

kernel space

bus(es)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Streaming: read / send

application

kernel

page cache socket buffer

application buffer

read send

copy copy

DMA transfer DMA transfer

  2n copy operations
  2n system calls

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Streaming: read / writev

application

kernel

page cache socket buffer

application buffer

read writev

copy copy

DMA transfer DMA transfer

  3n copy operations
  2n system calls

copy

 Previous solution: one less copy per packet

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Streaming: mmap / send

application

kernel

page cache socket buffer

application buffer

mmap uncork

copy

DMA transfer DMA transfer

  2n copy operations (but different costs of header and data)

  1 + 4n system calls

copy

send send cork

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Streaming: mmap / writev

application

kernel

page cache socket buffer

application buffer

mmap writev

copy

DMA transfer DMA transfer

  2n copy operations
  1 + n system calls

copy

 Previous solution: three more calls per packet

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Streaming: sendfile

application

kernel

page cache socket buffer

application buffer

DMA transfer

  n copy operations
  4n system calls

gather DMA transfer

append descriptor

copy

uncork sendfile send cork

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Streaming: Results

  Tested streaming of 1 GB file on Linux 2.6
  RTP over UDP

TCP sendfile
(content download)

Compared to not sending an RTP header
over UDP, we get an increase of 29%
(additional send call)

More copy operations and system calls required
 potential for improvements

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Enhanced Streaming: mmap / msend

application

kernel

page cache socket buffer

application buffer

DMA transfer

  n copy operations
  1 + 4n system calls

gather DMA transfer

append descriptor

copy

msend allows to send data from an
mmap’ed file without copy

mmap uncork send send cork msend

copy

DMA transfer

 Previous solution: one more copy per packet

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Enhanced Streaming: mmap / rtpmsend

application

kernel

page cache socket buffer

application buffer

DMA transfer

  n copy operations
  1 + n system calls

gather DMA transfer

append descriptor

copy

mmap uncork msend send cork rtpmsend

RTP header copy integrated into
msend system call

 previous solution: three more calls per packet

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Enhanced Streaming: mmap / krtpmsend

application

kernel

page cache socket buffer

application buffer

DMA transfer

  0 copy operations
  1 system call

gather DMA transfer

append descriptor

copy

krtpmsend

 previous solution: one more call per packet

An RTP engine in the kernel
adds RTP headers

rtpmsend

RTP engine

 previous solution: one more copy per packet

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Enhanced Streaming: rtpsendfile

application

kernel

page cache socket buffer

application buffer

DMA transfer

  n copy operations
  n system calls

gather DMA transfer

append descriptor

copy

rtpsendfile

 existing solution: three more calls per packet

uncork sendfile send cork

RTP header copy integrated into
sendfile system call

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Enhanced Streaming: krtpsendfile

application

kernel

page cache socket buffer

application buffer

DMA transfer

  0 copy operations
  1 system call

gather DMA transfer

append descriptor

copy

krtpsendfile

 previous solution: one more call per packet

An RTP engine in the kernel
adds RTP headers

rtpsendfile

RTP engine

 previous solution: one more copy per packet

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Enhanced Streaming: Results

  Tested streaming of 1 GB file on Linux 2.6
  RTP over UDP

mmap based mechanisms sendfile based mechanisms

Storage: Disks

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disks

  Two resources of importance

－ storage space

－ I/O bandwidth

  Several approaches to manage data on disks:

－ specific disk scheduling and appropriate buffers

－ optimize data placement

－ replication / striping

－ prefetching

－ combinations of the above

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Mechanics of Disks

Platters
circular platters covered with
magnetic material to provide
nonvolatile storage of bits

Tracks
concentric circles on a
single platter

Sectors
segment of the track circle –
usually each contains 512 bytes –
separated by non-magnetic gaps.
The gaps are often used to identify
beginning of a sector

Cylinders
corresponding tracks on the different
platters are said to form a cylinder

Spindle
of which the platters
rotate around

Disk heads
read or alter the
magnetism (bits) passing
under it. The heads are
attached to an arm
enabling it to move
across the platter surface

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Specifications
  Some existing (Seagate) disks today:

Barracuda 180 Cheetah 36 Cheetah X15

Capacity (GB) 181.6 36.4 73.4

Spindle speed (RPM) 7200 10.000 15.000

#cylinders 24.247 9.772 18.479

average seek time (ms) 7.4 5.7 3.6

min (track-to-track) seek (ms) 0.8 0.6 0.2

max (full stroke) seek (ms) 16 12 7

average latency 4.17 3 2

internal transfer rate (Mbps) 282 – 508 520 – 682 609 – 891

disk buffer cache 16 MB 4 MB 8 MB

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Access Time

  How do we retrieve data from disk?
－ position head over the cylinder (track) on which the block

(consisting of one or more sectors) are located
－ read or write the data block as the sectors move under the

head when the platters rotate

  The time between the moment issuing a disk request
and the time the block is resident in memory is called
disk latency or disk access time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

 + Rotational delay

 + Transfer time

 Seek time

Disk access time =

 + Other delays

Disk platter

Disk arm

Disk head

block x
in memory

I want
block X

Disk Access Time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Access Time: Seek Time

  Seek time is the time to position the head
－  the heads require a minimum amount of time to start and stop moving

the head
－  some time is used for actually moving the head –

roughly proportional to the number of cylinders traveled

－  Time to move head:

~ 10x - 20x

x

1 N
Cylinders Traveled

Time

“Typical” average:
 10 ms → 40 ms
 7.4 ms (Barracuda 180)
 5.7 ms (Cheetah 36)
 3.6 ms (Cheetah X15)

number of tracks
seek time constant
fixed overhead

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Access Time: Rotational Delay

  Time for the disk platters to rotate so the first of the
required sectors are under the disk head

head here

block I want

Average delay is 1/2 revolution

“Typical” average:
 8.33 ms (3.600 RPM)
 5.56 ms (5.400 RPM)

 4.17 ms (7.200 RPM)
 3.00 ms (10.000 RPM)
 2.00 ms (15.000 RPM)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Access Time: Transfer Time

  Time for data to be read by the disk head, i.e., time it takes the
sectors of the requested block to rotate under the head

  Transfer rate =

  Transfer time = amount of data to read / transfer rate

  Example – Barracuda 180:
406 KB per track x 7.200 RPM ≈ 47.58 MB/s

  Example – Cheetah X15:
316 KB per track x 15.000 RPM ≈ 77.15 MB/s

  Transfer time is dependent on data density and rotation speed
  If we have to change track, time must also be added for

moving the head

amount of data per track
time per rotation

Note:
one might achieve these
transfer rates reading
continuously on disk,
but time must be added
for seeks, etc.

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Access Time: Other Delays

  There are several other factors which might introduce
additional delays:
－ CPU time to issue and process I/O
－ contention for controller
－ contention for bus
－ contention for memory
－ verifying block correctness with checksums (retransmissions)
－ waiting in scheduling queue
－ ...

  Typical values: “0”
(maybe except from waiting in the queue)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Throughput

  How much data can we retrieve per second?

  Throughput =

  Example:
for each operation we have
 - average seek - average rotational delay
 - transfer time - no gaps, etc.

－  Cheetah X15 (max 77.15 MB/s)
4 KB blocks 0.71 MB/s
64 KB blocks 11.42 MB/s

－  Barracuda 180 (max 47.58 MB/s)
4 KB blocks 0.35 MB/s
64 KB blocks 5.53 MB/s

data size
 transfer time (including all)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Block Size
  The block size may have large effects on performance
  Example:

assume random block placement on disk and sequential file access
－ doubling block size will halve the number of disk accesses

•  each access take some more time to transfer the data, but the total
transfer time is the same (i.e., more data per request)

•  halve the seek times
•  halve rotational delays are omitted

－  e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)
for Cheetah X15 typically an average of:
  3.6 ms is saved for seek time
  2 ms is saved in rotational delays
  0.026 ms is added per transfer time

－  increasing from 2 KB to 64 KB saves ~96,4 % when reading 64 KB

} saving a total of 5.6 ms
when reading 4 KB (49,8 %)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Amount of data read per operation (KB)
E

ffi
ci

en
cy

 in
 %

 o
f m

ax
. t

hr
ou

gh
pu

tBlock Size
  Thus, increasing block size

can increase performance
by reducing seek times and
rotational delays
(figure shows calculation on some older device)

  But, blocks spanning several
tracks still introduce latencies…

  … and a large block size
is not always best
－  small data elements may

occupy only a fraction of the
block (fragmentation)

  Which block size to use therefore
depends on data size and data reference patterns

  The trend, however, is to use large block sizes as new technologies appear
with increased performance – at least in high data rate systems

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Writing and Modifying Blocks
  A write operation is analogous to read operations

－ must add time for block allocation

－  a write operation may has to be verified – must wait another rotation and
then read the block to see if it is the block we wanted to write

－  Total write time ≈ read time (+ time for one rotation)

  Cannot modify a block directly:

－  read block into main memory

－ modify the block

－ write new content back to disk

－  (verify the write operation)

－  Total modify time ≈ read time + time to modify + write time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Controllers
  To manage the different parts of the disk, we use a disk

controller, which is a small processor capable of:

－  controlling the actuator moving the head to the desired track

－  selecting which platter and surface to use

－  knowing when right sector is under the head

－  transferring data between main memory and disk

  New controllers acts like small computers themselves

－  both disk and controller now has an own buffer reducing disk access time

－  data on damaged disk blocks/sectors are just moved to spare room at
the disk – the system above (OS) does not know this, i.e., a block may
lie elsewhere than the OS thinks

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Efficient Secondary Storage Usage
  Must take into account the use of secondary storage
－  there are large access time gaps, i.e., a disk access will probably

dominate the total execution time
－  there may be huge performance improvements if we reduce the number

of disk accesses
－  a “slow” algorithm with few disk accesses will probably outperform a

“fast” algorithm with many disk accesses

  Several ways to optimize
－  block size - 4 KB
－  file management / data placement - various
－  disk scheduling - SCAN derivate
－ multiple disks - a specific RAID level
－  prefetching - read-ahead prefetching
－ memory caching /replacement algorithms - LRU variant
－ …

Disk Scheduling

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Scheduling – I
  Seek time is the dominant factor of total disk I/O time

  Let operating system or disk controller choose which request
to serve next depending on the head’s current position and
requested block’s position on disk (disk scheduling)

  Note that disk scheduling ≠ CPU scheduling
－  a mechanical device – hard to determine (accurate) access times
－  disk accesses cannot be preempted – runs until it finishes
－  disk I/O often the main performance bottleneck

  General goals
－  short response time
－  high overall throughput
－  fairness (equal probability for all blocks to be accessed in the same time)

  Tradeoff: seek and rotational delay vs. maximum response time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Scheduling – II

  Several traditional (performance oriented) algorithms
－ First-Come-First-Serve (FCFS)
－ Shortest Seek Time First (SSTF)
－ SCAN (and variations)
－ Look (and variations)
－ …

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

First–Come–First–Serve (FCFS)
FCFS serves the first arriving request first:
  Long seeks
  “Short” average response time

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24

8

21

7

2

14

12

Note:
the lines only indicate some
time – not exact amount

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Shortest Seek Time First (SSTF)
SSTF serves closest request first:
  short seek times
  longer maximum seek times – may even lead to starvation

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24 8 21 7 2 14 12

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

SCAN
SCAN (elevator) moves head edge to edge and serves requests on the way:
  bi-directional
  compromise between response time and seek time optimizations

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24 8 21 7 2 14 12

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

SCAN vs. FCFS

  Disk scheduling
makes a
difference!

  In this case, we
see that SCAN
requires much less
head movement
compared to FCFS
(37 vs. 75 tracks/cylinders)

cylinder number
1 5 10 15 20 25

tim
e

tim
e

12 incoming requests (in order of arrival): 14 2 7 21 8 24

FCFS

SCAN

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

C–SCAN
Circular-SCAN moves head from edge to edge
  serves requests on one way – uni-directional
  improves response time (fairness)

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24 8 21 7 2 14 12

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

SCAN vs. C–SCAN

  Why is C-SCAN in average better in reality than SCAN when
both service the same number of requests in two passes?
－ modern disks must accelerate (speed up and

down) when seeking
－  head movement formula:

SCAN C-SCAN

bi-directional uni-directional

requests: n
avg. dist: 2x
total cost:

requests: n
avg. dist: x
total cost:

cylinders traveled

tim
e

number of cylinders
seek time constant
fixed overhead

if n is large:

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

LOOK and C–LOOK
LOOK (C-LOOK) is a variation of SCAN (C-SCAN):
  same schedule as SCAN
  does not run to the edges
  stops and returns at outer- and innermost request
  increased efficiency
  SCAN vs. LOOK example:

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24

8

21

7

2

14

12

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

V–SCAN(R)
  V-SCAN(R) combines SCAN (or LOOK) and SSTF
－  define an R-sized unidirectional SCAN window, i.e., C-SCAN, and use SSTF

outside the window

－  Example: V-SCAN(0.6)
•  makes a C-SCAN window over 60 % of the cylinders
•  uses SSTF for requests outside the window

－  V-SCAN(0.0) equivalent with SSTF
－  V-SCAN(1.0) equivalent with C-SCAN

－  V-SCAN(0.2) is supposed to be an appropriate configuration

cylinder number
1 5 10 15 20 25

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

END of This WEEK!!

 NOW is the time to stop!!!!
… and start next time!

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

What About Time-Dependent Media?

  Suitability of classical algorithms
－ minimal disk arm movement (short seek times)
－ but, no provision of time or deadlines
 generally not suitable

  For example, a media server requires
－ support for both periodic and aperiodic

•  never miss deadline due to aperiodic requests
•  aperiodic requests must not starve

－ support multiple streams

－ buffer space and efficiency tradeoff?

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Real-Time Disk Scheduling

  Traditional algorithms have no provision of time or
deadlines

 Real–time algorithms targeted for real–time
applications with deadlines

  Several proposed algorithms
－  earliest deadline first (EDF)
－  SCAN-EDF
－  shortest seek and earliest deadline by ordering/value (SSEDO / SSEDV)
－  priority SCAN (PSCAN)
－  ...

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Earliest Deadline First (EDF)
EDF serves the request with nearest deadline first

  non-preemptive (i.e., an arriving request with a shorter deadline must wait)

  excessive seeks poor throughput

tim
e

cylinder number
1 5 10 15 20 25

12,5

incoming requests (<block, deadline>, in order of arrival):

14,6 2,4 7,7 21,1 8,2 24,3

scheduling
queue

12,5 14,6 2,4 7,7 21,1 8,2 24,3

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

SCAN–EDF
SCAN-EDF combines SCAN and EDF:
  the real-time aspects of EDF
  seek optimizations of SCAN
  especially useful if the end of the period is the

deadline (some equal deadlines)

  algorithm:
－  serve requests with earlier

deadline first (EDF)
－  sort requests with same

deadline after track location
(SCAN)

tim
e

cylinder number
1 5 10 15 20 25

2,3

incoming requests (<block, deadline>, in order of arrival):

14,1 9,3 7,2 21,1 8,2 24,2

scheduling
queue

2,3 14,1 9,3 7,2 21,1 8,2 24,2 16,1 16,1

Note:
similarly, we can combine EDF
with C-SCAN, LOOK or C-LOOK

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Stream Oriented Disk Scheduling
  Streams often have soft deadlines and tolerate some slack due to buffering,

i.e., pure real-time scheduling is inefficient and unnecessary

 Stream oriented algorithms targeted for streaming continuous media data
requiring periodic access, e.g., a frame every 40ms:

  Several algorithms proposed:
－  group sweep scheduling (GSS)
－  mixed disk scheduling strategy
－  contiguous media file system (CMFS)
－  lottery scheduling
－  stride scheduling
－  batched SCAN (BSCAN)
－  greedy-but-safe EDF (GS_EDF)
－  bubble up
－  …

frame i frame i+1 frame i+4 frame i+2 frame i+3
time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Group Sweep Scheduling (GSS)
GSS combines Round-Robin (RR) and SCAN

  requests are serviced in rounds (cycles)

  principle:
－  divide S active streams into G groups
－  service the G groups in RR order
－  service each stream in a group in C-SCAN order
－  playout can start at the end of the group

  special cases:
－  G = S: RR scheduling
－  G = 1: SCAN scheduling

  tradeoff between buffer space and disk arm movement
－  try different values for G giving minimum buffer requirement while remaining

efficient enough to reach the deadlines
－  a large G smaller groups, more arm movements
－  a small G larger groups, less arm movements

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Group Sweep Scheduling (GSS)
GSS example: streams A, B, C and D g1:{A,C} and g2:{B,D}
  RR group schedule
  C-SCAN block schedule within a group

tim
e

cylinder number
1 5 10 15 20 25

A2 A1 A3 B2 B3 B1 C1 C2 C3 D3 D1 D2

g1

A2

C1

A1

A3

B2

B3

B1

C2

C3

D3

D1

D2

g2

g1

g2

g1

g2

{A,C}

{B,D}

{C,A}

{B,D}

{A,C}

{B,D}

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Mixed Media Oriented Disk Scheduling

  Applications may require both RT and NRT data –
desirable to have all on same disk

  Several algorithms proposed:
－ Felini’s disk scheduler
－ Delta L
－ Fair mixed-media scheduling (FAMISH)
－ MARS scheduler
－ Cello
－ Adaptive disk scheduler for mixed media workloads (APEX)
－ …

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

MARS Disk Scheduler

  Massively-parallel And Real-time Storage (MARS) scheduler
supports mixed media on a single system
－  a two-level scheduling
－  round-based

－  top-level:
1 NRT queue and n (1) RT queue
(SCAN, but “future” GSS, SCAN-EDF, or…)

－  use deficit RR fair queuing to assign
quantums to each queue per round –
divides total bandwidth among queues

－  bottom-level:
select requests from queues according to
quantums, use SCAN order

－ work-conserving
(variable round times, new round starts immediately)

…

deficit round robin fair queuing
job selector

NRT RT

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Cello and APEX
  Cello and APEX are similar to MARS, but slightly different in

bandwidth allocation and work conservation

－  Cello has
•  three queues: deadline (EDF), throughput intensive best effort (FCFS),

interactive best effort (FCFS)
•  static proportional allocation scheme for bandwidth
•  FCFS ordering of queue requests in lower-level queue
•  partially work-conserving:

extra requests might be added at the end of the class
independent scheduler, but constant rounds

－  APEX
•  n queues
•  uses token bucket for traffic shaping (bandwidth allocation)
•  work-conserving:

adds extra requests if possible to a batch & starts extra batch between
ordinary batches

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Cello
  Cello is part of the Symphony FS supporting mixed media
－  two-level scheduling
－  round-based

－  top-level: n (3) service classes (queues)
•  deadline (= end-of-round) real-time (EDF)
•  throughput intensive best effort (FCFS)
•  interactive best effort (FCFS)

－  divides total bandwidth among queues
according to a static proportional allocation scheme
(equal to MARS’ job selector)

－  bottom-level: class independent scheduler (FCFS)
•  select requests from queues according to BW share
•  sort requests from each queue in SCAN order when transferred

－  partially work-conserving
(extra requests might be added at the end of the class
independent scheduler if space, but constant rounds)

deadline RT throughput intensive
best-effort

interactive
best-effort

3
1

2
7

8
4

2 1 2

sort each queue in SCAN order when transferred

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Adaptive Disk Scheduler for Mixed Media Workloads

  APEX is another mixed media scheduler
－  two-level, round-based scheduler similar to Cello and MARS

－  uses token bucket for traffic shaping
(bandwidth allocation)

－  the batch builder select requests in
FCFS order from the queues based on
number of tokens – each queue must
sort according to deadline
(or another strategy)

－ work-conserving
•  adds extra requests if possible to a batch
•  starts extra batch between ordinary batches

Request Distributor/
Queue Scheduler

Queue/Bandwidth
Manager

...

Batch Builder

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

APEX, Cello and C–LOOK Comparison
  Results from Ketil Lund (2002)

  Configuration:
－  Atlas Quantum 10K
－  data placement: random
－  round time: 1 second
－  block size: 64KB

  6 video playbacks and up to 9 user queries
－  Video data disk requests are assigned to a real-time queue
－ User-query disk requests to a best-effort queue

－  Bandwidth is shared 50/50 between real-time and best-effort queues

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

APEX, Chello and C–LOOK Comparison

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9

R
es

po
ns

e
tim

e
(m

s)

User-query traces

Average response time for user-query disk requests

APEX

Cello

C-LOOK

1 2 3 4 5 6 7 8 9

APEX 0 0 0 0 0 0 0 0 0

Cello 0 0 0 0 0 0 0 0 0

C-LOOK 0 18 90 288 404 811 1271 2059 3266

Deadline
violations
(video)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Schedulers today (Linux)?
  NOOP
－  FCFS with request merging

  Deadline I/O
－  C-SCAN based
－  4 queues: elevator/deadline for read/write

  Anticipatory
－  same queues as in Deadline I/O
－  delays decisions to be able to merge more requests

(e.g., a streaming scenario)

  Completely Fair Scheduler (CFQ)
－  1 queue per process (periodic access, but priode depends on load)
－  gives time slices and ordering according to priority level

(real-time, best-effort, idle)
－  work-conserving

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

User space vs. kernel space scheduling
  Do all applications fully benefit

from kernel space scheduling?
 File tree traversals
－  processing one file after another
－  tar, zip, …
－  recursive copy (cp -r)
－  search (find)
－  …

  Only application knows access
pattern
－  use ioctl FIEMAP (FIBMAP)

to retrieve extent locations
－  sort in user space
－  send I/O request according to

sorted list

 GNU/BSD Tar vs. QTAR

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

User space vs. kernel space scheduling
  Do all applications fully benefit

from kernel space scheduling?
 File tree traversals
－  processing one file after another
－  tar, zip, …
－  recursive copy (cp -r)
－  search (find)
－  …

  Only application knows access
pattern
－  use ioctl FIEMAP (FIBMAP)

to retrieve extent locations
－  sort in user space
－  send I/O request according to

sorted list

 GNU/BSD Tar vs. QTAR

Data Placement
on Disk

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Data Placement on Disk

  Disk blocks can be assigned to files many ways, and
several schemes are designed for

－ optimized latency
－ increased throughput

 access pattern dependent

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Layout

  Constant angular velocity (CAV) disks
－  equal amount of data in each track

(and thus constant transfer time)
－  constant rotation speed

  Zoned CAV disks
－  zones are ranges of tracks
－  typical few zones
－  the different zones have

•  different amount of data
•  different bandwidth
•  i.e., more better on outer tracks

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Layout
outer:

inner:

outer:

inner:

constant transfer rate

variable
transfer
rate

zoned disk

non-zoned disk

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Layout

  Cheetah X15.3 is a zoned CAV disk:

Zone
Cylinders per

Zone
Sectors per

Track
Zone Transfer
Rate (MBps)

Sectors per
Zone Efficiency

Formatted
Capacity (MB)

1 3544 672 890,98 19014912 77,2% 9735,635

2 3382 652 878,43 17604000 76,0% 9013,248

3 3079 624 835,76 15340416 76,5% 7854,293

4 2939 595 801,88 13961080 76,0% 7148,073

5 2805 576 755,29 12897792 78,1% 6603,669

6 2676 537 728,47 11474616 75,5% 5875,003

7 2554 512 687,05 10440704 76,3% 5345,641

8 2437 480 649,41 9338880 75,7% 4781,506

9 2325 466 632,47 8648960 75,5% 4428,268

10 2342 438 596,07 8188848 75,3% 4192,690

  Always place often used or high rate data on outermost tracks (zone 1) …!?

  NO, arm movement is often more important than transfer time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Data Placement on Disk

  Contiguous placement stores disk blocks contiguously on disk

－ minimal disk arm movement reading the whole file (no intra-file seeks)

－  pros/cons
  head must not move between read operations - no seeks / rotational delays
  can approach theoretical transfer rate
  but usually we read other files as well (giving possible large inter-file seeks)

－  real advantage
•  do not have to pre-determine block (read operation) size

(whatever amount to read, at most track-to-track seeks are performed)

－  no inter-operation gain if we have unpredictable disk accesses

file A file B file C

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Data Placement on Disk
  Interleaved placement tries to store blocks from a file with a

fixed number of other blocks in-between each block

－ minimal disk arm movement reading the files A, B and C
(starting at the same time)

－  fine for predictable workloads reading multiple files

－  no gain if we have unpredictable disk accesses

  Non-interleaved (or even random) placement can be used for
highly unpredictable workloads

file A
file B

file C

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Data Placement on Disk
  Organ-pipe placement consider the ‘average’ disk head position
－  place most popular data where head is most often

－  center of the disk is in average “closest” to the head
－  but, a bit outward for zoned disks (modified organ-pipe)

disk:
innermost

outermost

head

bl
oc

k
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

bl
oc

k
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

organ-pipe: modified organ-pipe:
Note:
skew dependent on
 tradeoff between
 zoned transfer time
 and storage
 capacity vs.
 seek time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Unix/Linux Example: FFS, UFS, …

mode"
owner"

…"
Direct block 0"
Direct block 1"

…"
Direct block 10"
Direct block 11"
Single indirect"
Double indirect"
Triple indirect"

Data block"Data block"

Data block"Data block"

index"

Data block"Data block"

Data block"Data block"

index"

index"

index"index"

index"index"

Data block"Data block"

Data block"Data block"

index"
index" Data block"

inode" Flexible block size"
e.g. 4KB"

ca. 1000 entries"
per index block"

Data block"

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Linux Example: XFS, …, JFS, EXT4…
  Count-augmented address indexing in the extent sections

  Introduce a new inode structure

－  add counter field to original direct
entries –

•  direct points to a disk block

•  count indicated how many other
blocks is following the first block
(contiguously)

direct 0

direct 1

direct 2

…

direct 10

direct 11

triple indirect

single indirect

double indirect

attributes

count 0

count 1

count 2

…

count 10

count 11

data 3 data data

inode

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Windows Example: NTFS
  Each partition contains a master file table (MFT)
－  a linear sequence of 1 KB records
－  each record describes a directory or a file (attributes and disk addresses)

first 16 reserved for
NTFS metadata

info about data blocks

…data…

A file can be …

•  stored within the record (immediate file, < few 100 B)

•  represented by disk block addresses (which hold data):
 runs of consecutive blocks (<addr, no>, like extents)

•  use several records if more runs are needed

20 4

run 1

30 2

run 2

74 7

run 3

24 - base record

26 - first extension record

27 - second extension record

10 2

run 1

78 3

run k

MFT 27

2nd extension

MFT 26

1st extension

run 2, run 3, …, run k-1

Modern Disks:
Complicating Factors

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Complicating Factors
  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

  … but, new disks are more complex
－  hide their true layout, e.g.,

•  only logical block numbers
•  different number of surfaces, cylinders, sectors, etc.

OS view real view

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Complicating Factors
  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

  … but, new disks are more complex
－  hide their true layout
－  transparently move blocks to spare cylinders

•  Seagate X15.3 - zone 1 - 10: (7,7,6,6,6,5,5,5,5,5)

•  e.g., due to bad disk blocks

OS view real view

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

  Constant angular
velocity (CAV) disks
－  constant rotation speed
－  equal amount of data in

each track
  thus, constant

transfer time

Complicating Factors

OS view real view

  Disk used to be simple devices and disk scheduling used to be
performed by OS (file system or device driver) only…

  … but, new disks are more complex
－  hide their true layout
－  transparently move blocks to spare cylinders
－  have different zones

  Zoned CAV disks
－  constant rotation speed
－  zones are ranges of tracks
－  typical few zones
－  the different zones have

different amount of data, i.e.,
more better on outer tracks

  thus, variable transfer time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Complicating Factors
  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

  … but, new disks are more complex
－  hide their true layout
－  transparently move blocks to spare cylinders
－  have different zones
－  head accelerates – most algorithms assume linear movement overhead

~ 10x - 20x

x

1 N
Cylinders Traveled

Time
(7 ms)

(0.2 ms)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Complicating Factors
  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

  … but, new disks are more complex
－  hide their true layout
－  transparently move blocks to spare cylinders
－  have different zones
－  head accelerates
－  on device (and controller) buffer caches may use read-ahead prefetching

disk
buffer disk

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Complicating Factors
  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

  … but, new disks are more complex
－  hide their true layout
－  transparently move blocks to spare cylinders
－  have different zones
－  head accelerates
－  on device (and controller) buffer caches may use read-ahead prefetching
－  gaps and checksums between each sector

track

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Complicating Factors
  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

  … but, new disks are more complex
－  hide their true layout
－  transparently move blocks to spare cylinders
－  have different zones
－  head accelerates
－  on device (and controller) buffer caches may use read-ahead prefetching
－  gaps and checksums between each sector

 “smart” with a build-in low-level scheduler (usually SCAN-derivate)
 we cannot fully control the device (black box)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Why Still Do Disk Related Research?

  If the disk is more or less a black box – why bother?

－ many (old) existing disks do not have the “new properties”

－  according to Seagate technical support:

“blocks assumed contiguous by the OS probably still will be
contiguous, but the whole section of blocks might be elsewhere”

 [private email from Seagate support]

－  delay sensitive requests

  But, the new disk properties should be taken into account
－  existing extent based placement is probably good
－ OS could (should?) focus on high level scheduling only

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Next Generation Disk Scheduling?
  Thus, due to the complicating factors…

(like head acceleration, disk buffer caches, hidden data layout, built-in “SCAN” scheduler,…)

… a server scheduler can be (???):

－  hierarchical high-level software scheduler
•  several top-level queues (at least RT & NRT)

•  process queues in rounds (RR)
  dynamic assignment of quantums
  work-conservation with variable round length

(full disk bandwidth utilization vs. buffer requirement)

•  only simple collection of requests according to
quantums in lowest level and forwarding to disk,
because ...

－  ...fixed SCAN scheduler in hardware (on disk)

  On-device programmable processors??

…

RT NRT

SCAN

EDF / FCFS

No sorting

Multiple Disks

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Parallel Access

  Disk controllers and busses manage several devices

  One can improve total system performance by replacing one
large disk with many small accessed in parallel

  Several independent heads can read simultaneously

Single disk: Two disks:
Note:
the single disk might be
faster, but as seek time and
rotational delay are the
dominant factors of total
disk access time, the two
smaller disks might operate
faster together performing
seeks in parallel...

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Client1 Client2 Client3 Client4 Client5

Server

Striping

  Another reason to use multiple disks is when one disk cannot
deliver requested data rate

  In such a scenario, one
might use several disks
for striping:
－  bandwidth disk: Bdisk
－  required bandwidth: Bconsume
－  Bdisk < Bconsume
－  read from n disks in parallel: n Bdisk > Bconsume

  Advantages
－  higher transfer rate compared to one disk

  Drawbacks
－  can’t serve multiple clients in parallel
－  positioning time increases

(i.e., reduced efficiency)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Interleaving (Compound Striping)
  Full striping usually not necessary today:
－  faster disks
－  better compression algorithms

  Interleaving lets each client be serviced
by only a set of the available disks

－ make groups

－  ”stripe” data in a way such that a consecutive
request arrive at next group

－  one disk group example:

Client1 Client2 Client3

Server

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Interleaving (Compound Striping)
  Divide traditional striping group into sub-groups, e.g.,

staggered striping

  Advantages
－ multiple clients can still be served in parallel
－ more efficient disks operations
－  potentially shorter response time

  Potential drawback/challenge
－  load balancing (all clients access same group)

X0,0 X0,1

X1,0 X1,1

X2,0 X2,1

X3,1 X3,0

X4,0 X4,1

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Mirroring
  Multiple disks might do come in the situation where all requests

are for one of the disks and the rest lie idle

  In such cases, it might make sense to have replicas of data on
several disks – if we have identical disks, it is called mirroring

  Advantages
－  faster response time
－  survive crashes – fault tolerance
－  load balancing by dividing the requests for the data on the same disks

equally among the mirrored disks

  Drawbacks
－  increases storage requirement
－ more expensive write operations

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Redundant Array of Inexpensive Disks
  The various RAID levels define different disk organizations to

achieve higher performance and more reliability
－  RAID 0 - striped disk array without fault tolerance (non-redundant)

－  RAID 1 - mirroring

－  RAID 2 - memory-style error correcting code (Hamming Code ECC)

－  RAID 3 - bit-interleaved parity

－  RAID 4 - block-interleaved parity
－  RAID 5 - block-interleaved distributed-parity

－  RAID 6 - independent data disks with two independent distributed parity schemes (P+Q redundancy)

－  RAID 10 - striped disk array (RAID level 0) whose segments are mirrored (level 1)

－  RAID 0+1 - mirrored array (RAID level 1) whose segments are RAID 0 arrays

－  RAID 03 - striped (RAID level 0) array whose segments are RAID level 3 arrays
－  RAID 50 - striped (RAID level 0) array whose segments are RAID level 5 arrays
－  RAID 53, 51, …

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Replication
  Replication is in traditional disk array systems often used for

fault tolerance (and higher performance in the new combined
RAID levels)

  Replication can also be used for
－  reducing hot spots
－  increase scalability
－  higher performance
－ …
－  and, fault tolerance is often a side effect

  Replication should
－  be based on observed load
－  changed dynamically as popularity changes

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

  DSR tries to balance load by dynamically replicating hot data
－  also known as dynamic policy for segment replication (DPSR)
－  assumes read only, VoD-like retrieval
－  predefines a load threshold for when to replicate a segment by examining

current and expected load
－  uses copyback streams

－  replicate when threshold is reached, but which segment and where??
•  tries to find a lightly loaded device, based on future load calculations
•  not necessarily segment that receives additional requests

(another segment may have more requests)
 replicates based on payoff factor p (replicate segment i with highest p):

0

0.1

0.2

0.3

0.4

0.5

0.6

Replica number

1
2
3
4
5
6
7

10

12

14

16

18

20

22

Replica number

1
2
3
4
5
6

this sum considers the number of
future viewers for this segment

number of viewers of replica j

weighting factor

factor for expected benefit
for additional copy

number of replicas
of segment i

Dynamic Segment Replication (DSR)

n = 10, w = 0.5

0

50

100

150

200

250

300

350

Replica number

1
2
3
4
5
6

n = 10, w = 1.5

€

pi =
1
ri
−
1
ri +1

⎛

⎝
⎜

⎞

⎠
⎟ n j
j=0

i−1

∑ wi− j−1

Heterogeneous Disks

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

File Placement
  A file might be stored on multiple disks, but how should one

choose on which devices?

－  storage devices limited by both bandwidth and space

－ we have hot (frequently viewed) and cold (rarely viewed) files

－ we may have several heterogeneous storage devices

－  the objective of a file placement policy is to achieve maximum utilization
of both bandwidth and space, and hence, efficient usage of all devices
by avoiding load imbalance

•  must consider expected load and storage requirement

•  expected load may change over time

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Bandwidth-to-Space Ratio (BSR)
  BSR attempts to mix hot and cold as well as large and small

(multimedia) objects on heterogeneous devices
－  don’t optimize placement based on throughput or space only (use both!!)

－  BSR consider both required storage space and throughput requirement
(which is dependent on playout rate and popularity) to achieve a best
combined device utilization

media object:

bandwidth

sp
ac

e

may vary according
to popularity

disk
(no deviation):

disk
(deviation):

wasted space

disk
(deviation):

w
as

te
d

 b
an

dw
id

th

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Bandwidth-to-Space Ratio (BSR)
  The BSR policy algorithm:
－  input: space and bandwidth requirements

－  phase 1:
•  find a device to place the media object according to BSR
•  if no device, or stripe of devices, can give sufficient space or bandwidth,

then add replicas
－  phase 2:

•  find devices for the needed replicas
－  phase 3:

•  allocate expected load on replica devices according to BSR of the devices
－  phase 4:

•  if not enough resources are available, see if other media objects can delete replicas
according to their current workload

－  all phases may be needed adding a new media object or increasing the workload
– for decrease, only the reallocation in needed

  Popular, high data rate movies should be on high bandwidth disks

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Grouping
  Disk grouping is a technique to “stripe” (or fragment) data over

heterogeneous disks
－  groups heterogeneous physical disks to homogeneous logical disks
－  the amount of data on each disk (fragments) is determined so that the service

time (based on worst-case seeks) is equal for all physical disks in a logical disk
－  blocks for an object are placed (and read) on logical disks in a round-robin

manner – all disks in a group is activated simultaneously

disk 2

disk 3

disk 0

disk 1

logical disk 0

logical disk 1

X0,0

X0 X2

X1 X3

X2,0

X0,1 X2,1

X1,0 X3,0

X1,1 X3,1

X0,0

X0,1

X1,0

X1,1

X2,0

X2,1

X0 ready
for display

X1 ready
for display

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Staggered Disk Grouping
  Staggered disk grouping is a variant of disk grouping minimizing

memory requirement
－  reading and playing out differently
－  not all fragments of a logical block is needed at the same time
－  first (and largest) fragment on most powerful disk, etc.
－  read sequentially (must not buffer later segments for a long time)
－  start display when largest fragment is read

disk 2

disk 3

disk 0

disk 1

logical disk 0

logical disk 1

X0,0

X0 X2

X1 X3

X2,0

X0,1 X2,1

X1,0 X3,0

X1,1 X3,1

X0,0 X0,1

X1,0 X1,1

X2,0 X2,1

X0,0 ready
for display

X1,0 ready
for display

X2,0 ready
for display

X0,1 ready
for display

X1,1 ready
for display

X2,1 ready
for display

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Disk Merging
  Disk merging forms logical disks from capacity fragments of a physical disk
－  all logical disks are homogeneous
－  supports an arbitrary mix of heterogeneous disks (grouping needs equal groups)
－  starts by choosing how many logical disks the slowest device shall support

(e.g., 1 for disk 1 and 3) and calculates the corresponding number of more
powerful devices (e.g., 1.5 for disk 0 and 2 if these disks are 1.5 times better)

－  most powerful: most flexible (arbitrary mix of devices) and can be adapted to
zoned disks (each zone considered as a disk)

disk 2

disk 3

disk 0

disk 1

X0 X2,0

X1

X2,1 X3

X4

X0

X ready
for display

logical disk 0

X0

logical disk 1

X1

logical disk 3

X3

logical disk 2

X2

logical disk 4

X4

X1

X2

X3

X4

File Systems

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

File Systems

  Many examples of application specific storage systems

－  integrate several subcomponents (e.g., scheduling, placement, caching,
admission control, …)

－  often labeled differently: file system, file server, storage server, …
 accessed through typical file system abstractions

－  need to address applications distinguishing features:

•  soft real-time constraints (low delay, synchronization, jitter)

•  high data volumes (storage and bandwidth)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Classification
  General file systems: “support” for all applications

e.g.: file allocation table (FAT), windows NT file system (NTFS), extended file system
(Ext2/3/4), journaling file system (JFS), Reiser, fast file system (FFS), …

  Multimedia file systems: address multimedia requirements
－  general file systems with multimedia support e.g.: XFS, Minorca

－  exclusively streaming
e.g.: Video file server, embedded real-time file system (ERTFS), Shark, Everest,
continuous media file system (CMFS), Tiger Shark

－  several application classes
e.g.: Fellini, Symphony, (MARS & APEX schedulers)

  High-performance file systems: primarily for large data
operations in short time
e.g.: general parallel file system (GPFS), clustered XFS (CXFS), Frangipani, global file
system (GFS), parallel portable file system (PPFS), Examplar, extensible file system (ELFS)

  “Strange file systems”:
e.g., Google FS (BigTable), OceanStore, FAST, FUSE, …

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Example: Fellini Storage System
  Fellini (now CineBlitz)…

－  supports both real-time (with guarantees) and non-real-time by assigning resources for
both classes

－  SGI (IRIX Unix), Sun (Solaris), PC (WinNT & Win95)

  Admission control
－  deterministic (worst-case) to make hard guarantees

－  services streams in rounds

－  used (and available) disk BW is calculated using
•  worst-case

  seek (inner to outer)
  rotational delay (one round)
  settle (servicing latency) - transfer rate of inner track

•  Tperiod > total disk time = 2 x seek + Σ[blocksi x (rotation delay + settle)]

－  used (and available) buffer space is calculated using
•  buffer requirement per stream = 2 x rate x service round

－  a new client is admitted if enough free disk BW and buffer space
(additionally Fellini checks network BW)

－  new real-time clients are admitted first

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Example: Fellini Storage System

  Cache manager

－  pages are pinned (fixing) using a reference counter

－  replacement in three steps

1.  search free list

2.  search current buffer list (CBL) for the unused LRU file

3.  search in-use CBLs and assign priorities to replaceable buffers (not pinned)
according to reference distance (depending on rate, direction)

  sort (using Quicksort)

  replace buffer with highest weight

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Example: Fellini Storage System
  Storage manager
－  maintains free list with grouping contiguous blocks store blocks contiguously
－  uses C-SCAN disk scheduling
－  striping

•  distribute the total load
•  add fault-tolerance (parity data)

－  simple flat file system

  Application interface
－  non-real-time: more or less as in other file systems, except that when opening

one has an admittance check

－  real-time:
•  begin_stream (filename, mode, flags, rate)

•  retrieve_stream (id, bytes)

•  store_stream (id, bytes)

•  seek_stream (id, bytes, whence)

•  close_stream(id)

Discussion:
We have the Qs, you have the As!

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

DAS vs. NAS vs. SAN??

  Direct attached storage

  Network attached
storage
－  uses some kind of file-

based protocol to
attach remote devices
non-transparently

－  NFS, SMB, CIFS

  Storage area network
－  transparently attach

remote storage
devices

－  iSCSI (SCSI over TCP/
IP), iFCP (SCSI over
Fibre Channel),
HyperSCSI (SCSI over
Ethernet), ATA over
Ethernet

  How will the introduction of network
attached disks influence storage?

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Mechanical Disks vs. Solid State Disks???
  How will the introduction of SSDs influence storage?

(numbers from 2008) Storage
capasity

(GB)

Average seek
time / latency

(ms)

Sustained
transfer

rate (MBps)

Interface
(Gbps)

Seagate Cheetah X15.6 (3.5 inch) 450 3.4
(track to track 0.2)

110 - 171 SAS (3)
FC (4)

Seagate Savvio 15K (2.5 inch) 73 2.9
(track to track 0.2)

29 - 112 SAS (3)

OCM Flash Media Core Series V2 250 < .2 - .3 up to 170 SATA (3)

Intel X25-E (extreme) 64 0.075 250 SATA (3)

Intel X25-M (mainstream) 160 0.085 250 SATA (3)

Mtron SSD Pro 7500 series 128 0.100 130 SATA (1.5)

Gigabyte GC-Ramdisk 4 0.000xxx GBps SATA (1.5)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Evolution: New Requirements
  Architectural considerations [Prashant Shenoy et al]:
－  integrated file system support for a variety of applications

－  modernizing the multimedia file system
•  server-independent
•  self managing
•  self healing
•  networked
•  disk processors

  Trend in research towards high-performance file systems
－  usually no timeliness guarantees, but performance is maximized

－  several build on multimedia file systems (Tiger Shark GPFS, XFS CXFS), but
have gained scalability while still supporting reservation

－  efficient support for operations like strided (non-continuous) I/O will be
increasingly important (edition, interactions, scalable streaming, non-linearity)

The End:
Summary

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Summary

  All resources needs to be scheduled

  Scheduling algorithms have to…
－ … be fair
－ … consider real-time requirements (if needed)
－ … provide good resource utilization
－ (… be implementable)

  Memory management is an important issue
－ caching
－ copying is expensive copy-free data paths

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Summary
  The main bottleneck is disk I/O performance due to disk

mechanics: seek time and rotational delays
(but in the future??)

  Much work has been performed to optimize disks performance

  Many algorithms trying to minimize seek overhead
(most existing systems uses a SCAN derivate)

  World today more complicated
－  both different media
－  unknown disk characteristics –

new disks are “smart”, we cannot fully control the device

  Disk arrays frequently used to improve the I/O capability

  Many existing file systems with various application specific
support

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Some References
1.  Halvorsen, P.: “Improving I/O Performance of Multimedia Servers”, Thesis for the Dr. Scient. degree at

University of Oslo, Unipub forlag, ISSN 1501-7710, No. 161, Oslo, Norway, August 2001
2.  Halvorsen, P., Dalseng, T.A., Griwodz, C.: Assessment of Data Path Implementations for Content Download

and Streaming, Proc. of 11th Int. Conf. on Distributed Mulrimedia Systems, Banff, Canada, September 2005
3.  Liu, C.L., Layland, J.W.: "Scheduling Algorithms for Multi-Programming in a Hard Real-Time Environment“,

Journal of the Association for Computing Machinery 20, 1 (January 1973): 40-61
4.  Nieh, J., Lam, M.S.: “The Design, Implementation and Evaluation of SMART: A Scheduler for Multimedia

Applications”, Proc. of 16th ACM Symp. on Operating System Principles (SOSP’97), St. Malo, France,
October 1997, pp. 184-197

5.  Plagemann, T., Goebel, V., Halvorsen, P., Anshus, O.: "Operating System Support for Multimedia Systems",
The Computer Communications Journal, Elsevier, Vol. 23, No. 3, February 2000, pp. 267-289

6.  Solomon, D.A., Russinovich, M.E.: “Inside Microsoft Windows2000”, 3rd edition, Microsoft Press, 2000
7.  Steinmetz, R., Nahrstedt, C.: “Multimedia: Computing, Communications & Applications”, Prentice Hall, 1995
8.  Tanenbaum, A.S.: “Modern Operating Systems” (2nd ed.), Prentice Hall, 2001
9.  Wolf, L.C., Burke, W., Vogt, C.: “Evaluation of a CPU Scheduling Mechanism for Multimedia Systems”,

Software - Practice and Experience, Vol. 26, No. 4, 1996, pp. 375 – 398
10.  Boll, S., Heinlein, C., Klas, W., Wandel, J.: “MPEG-L/MRP: Adaptive Streaming of MPEG Videos for

Interactive Internet Applications”, Proceedings of the 6th International Workshop on Multimedia
Information System (MIS’00), Chicago, USA, October 2000, pp. 104 - 113

11.  Halvorsen, P., Goebel, V., Plagemann, T.: “Q-L/MRP: A Buffer Management Mechanism for QoS Support in
a Multimedia DBMS”, Proceedings of 1998 IEEE International Workshop on Multimedia Database
Management Systems (IW-MMDBMS'98), Dayton, Ohio, USA, August 1998, pp. 162 – 171

12.  Moser, F., Kraiss, A., Klas, W.: “L/MRP: a Buffer Management Strategy for Interactive Continuous Data
Flows in a Multimedia DBMS”, Proceedings of the 21th VLDB Conference, Zurich, Switzerland, 1995

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Some References
1.  Advanced Computer & Network Corporation: “RAID.edu”, http://www.raid.com/04_00.html, 2002
2.  Halvorsen, P., Griwodz, C., Goebel, V., Lund, K., Plagemann, T., Walpole, J.: “Storage System Support for

Continuous-Media Applications” (part 1 & 2), DSonline, Vol. 5, No. 1 & 2, January/February 2004
3.  C. Martin, P.S. Narayan, B. Ozden, R. Rastogi, and A. Silberschatz, ``The Fellini Multimedia Storage

System,'' Journal of Digital Libraries , 1997, see also http://www.bell-labs.com/project/fellini/
4.  Plagemann, T., Goebel, V., Halvorsen, P., Anshus, O.: “Operating System Support for Multimedia Systems”,

Computer Communications, Vol. 23, No. 3, February 2000, pp. 267-289
5.  Shenoy, P., Goyal, P., Rao, S.S., Vin, H.M.: “Symphony: An Integrated Multimedia Files System”, MMCN’98,

San Jose, CA, USA, 1998, pp. 124 – 138 (also as CS-TR-97-09)
6.  Sitaram, D., Dan, A.: “Multimedia Servers – Applications, Environments, and Design”, Morgan Kaufmann

Publishers, 2000
7.  Zimmermann, R., Ghandeharizadeh, S.: “Continuous Display using Heterogeneous Disk-Subsystems”,

Proceedings of the 5th ACM International Multimedia Conference, Seattle, WA, November 1997
8.  Anderson, D. P., Osawa, Y., Govindan, R.:”A File System for Continuous Media”, ACM Transactions on

Computer Systems, Vol. 10, No. 4, Nov. 1992, pp. 311 - 337
9.  Elmasri, R. A., Navathe, S.: “Fundamentals of Database Systems”, Addison Wesley, 2000
10.  Garcia-Molina, H., Ullman, J. D., Widom, J.: “Database Systems – The Complete Book”, Prentice Hall, 2002
11.  Lund, K.: “Adaptive Disk Scheduling for Multimedia Database Systems”, PhD thesis, IFI/UniK, UiO
12.  Plagemann, T., Goebel, V., Halvorsen, P., Anshus, O.: “Operating System Support for Multimedia Systems”,

Computer Communications, Vol. 23, No. 3, February 2000, pp. 267-289
13.  Seagate Technology, http://www.seagate.com

