
Protocols

October 01, 2010

INF5071 – Performance in Distributed Systems

Quality-of-Service

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Quality–of–Service (QoS)

! Different semantics or classes of QoS:
−determines reliability of offered service
−utilization of resources

max

reserved A

reserved B

time

re
so

ur
ce

s

unused
available resources

reserved C

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Quality–of–Service (QoS)

! Best effort QoS:
− system tries its best to give a good performance
− no QoS calculation (could be called no effort QoS)

" simple – do nothing

QoS may be violated ! unreliable service

! Deterministic guaranteed QoS:
− hard bounds
− QoS calculation based on upper bounds (worst case)
− premium better name!!??

" QoS is satisfied even in the worst case ! high reliability

over-reservation of resources ! poor utilization and unnecessary service rejects
QoS values may be less than calculated hard upper bound

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Quality–of–Service (QoS)

! Statistical guaranteed QoS:
− QoS values are statistical expressions (served with some probability)
− QoS calculation based on average (or some other statistic or stochastic

value)

" resource capabilities can be statistically multiplexed ! more granted
requests

QoS may be temporarily violated ! service not always 100 % reliable

! Predictive QoS:
− weak bounds
− QoS calculation based previous behavior of imposed workload

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Quality–of–Service
! Applicability: QoS support

− A dream of early network researchers
(lots of research topics)

− Guarantees that distributed systems work as promised

Prof. Domenico Ferrari
CRATOS - Università Cattolica del Sacro Cuore, Piacenca, Italy

Until 1995 leader of the Tenet Group
ftp://tenet.berkeley.edu/pub/tenet

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Quality–of–Service
! Applicability: QoS support

− A dream of early network researchers
(lots of research topics)

− Guarantees that distributed systems work as promised

! QoS doesn’t exist?
− IP doesn’t support QoS
− Equality is the Internet’s mantra

(do you listen to the net neutrality debate?)

− Violates Internet philosophy
(shunned by the gurus)

Network neutrality: a principle for user access networks
• ISPs cannot impose limitations on users (customers)
• ISPs cannot treat anybody in a preferred manner
• consequently: no QoS

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Quality–of–Service
! Applicability: QoS support

− A dream of early network researchers
(lots of research topics)

− Guarantees that distributed systems work as promised

! QoS doesn’t exist?
− IP doesn’t support QoS
− Equality is the Internet’s mantra

(do you listen to the net neutrality debate?)

− Violates Internet philosophy
(shunned by the gurus)

Network neutrality: a principle for user access networks
• ISPs cannot impose limitations on users (customers)
• ISPs cannot treat anybody in a preferred manner
• consequently: no QoS

Industry demands QoS
Industry does not care about principles

End user want service guarantees
End users do not care about principles

if in doubt: build own network - see Google

Protocols
without QoS Support

October 01, 10

INF 5071 – Performance in Distributed Systems

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Overview

Fairness to download applications

Fairness to download applications

Sustain application quality
after streaming start

Achieve low latency

Defining application for good Internet behaviour

Total download time

Interactive applications

Download applications

On-demand streaming applications

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Requirements for Continuous and Interactive Media

! Acceptable delay

−Seconds in asynchronous on-demand applications

−Milliseconds in synchronous interpersonal communication

! Acceptable jitter

−Milliseconds at the application level

−Tolerable buffer size for jitter compensation

−Delay and jitter include retransmission, error-correction, ...

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Requirements for Continuous Media

! Acceptable synchronity

− Intra-media: time between successive packets must be
conveyed to receiver

− Inter-media: different media played out at matching times

! Acceptable continuity

−Streams must be displayed in sequence

−Streams must be displayed at acceptable, consistent quality

−

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Requirements for Download

! Acceptable delay

− receive file as soon as possible

! Acceptable fairness

− competing streams should get the same amount of resources

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Basic Techniques

Reservation

BufferingScaling

Real-time packet re-ordering

Loss detection and compensationRetransmission

Forward error correction
Stream switching

Fate-sharing and route-sharingTime-stamped packets

Multiplexing
BufferingSmoothing

Synchronity

Continuity

Delay and jitter

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Non–QoS vs. QoS Approaches
! Internet without network QoS support

− Internet applications must cope with networking problems
• Application itself or middleware
• "Cope with" means either …

! … “adapt to” which must deal with TCP-like service variations
! … “don’t care about” which is considered “unfair” and cannot work with TCP

! Internet with network QoS support
− Application must specify their needs
− Internet infrastructure must change – negotiation of QoS parameters
− Routers need more features

• Keep QoS-related information
• Identify packets as QoS-worthy or not
• Treat packets differently keep routing consistent

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP/IP protocol stack
$ Has only 4 (5) layers
$ IP is central - nothing must compete

with IP at the network layer
$ There is no QoS support
$ Routing is transparent for the

application
$ Transport-unrelated functions are

application-layer tasks

Protocols for Non–QoS Approaches

Transport Layer

Application Layer

Network Layer

Physical & Link Layer Various
$ Not a concern

No flexibility – IP is THE protocol
$ IPv4
$ IPv6

Limited flexibility
$ UDP
$ TCP
$ New developments

Complete freedom
$ Compatibility is an application

issue

INF5071, Autumn 2008, Carsten Griwodz & Pål Halvorsen

Transport Protocol Features

TCPUDP SCTPDCCP
Connection-oriented service
Connectionless service
Ordered

Reliable
Unordered

Unreliable
With congestion control
Without congestion control
Multicast support
Multihoming support

X X X
X

X X

X X X
X X

X X X
X X X

X
X X

X

Partially Ordered X

Partially Reliable X

Interactive applications

INF5071, Autumn 2008, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Interactive applications

! Main examples today
−Multiplayer games
−Audio streams

• Audio conferencing, IP telephony

−Signaling
• RTSP for video stream control, SIP for 3G telephone dialing, ...

! Others
−Remote surgery
−Robot control
−Sensing

• Sensing voice, temperatures, movement, light, ...

−Bank transactions
− ...

Application Average payload
size (byte)

Packet interarrival
time (ms)

Bandwidth requirements
(bps)

Anarchy Online 93 909 1757

Counterstrike 142 81 19764

Skype 111 30 37906

CASA (radar control) 175 7287 269

Windows remote desktop 111 318 4497

MPEG-2 streaming 1460 3 ~4200000

NUS – September 2007, Andreas Petlund•University of Oslo

Thin stream applications

! Analysis of traces for several applications show
thin-stream properties
! Small packets
! High packet interarrival-time

iAD @ UiO University of Oslo

Based on real-world observations

Average RTT allows for a satisfactory user
experience (in theory).!

Maximum measured RTT!

When loss occurs and retransmissions must be
made to recover, application-layer latencies reach
critical levels.  
Result: degraded user experience.!

Highest observed
application-layer latency:
67 seconds!!

The traffic patterns match multiple scenarios,  
here an Anarchy Online (FunCom) example:!

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Problem: TCP is made for fast download!

Greedy streams:!
TCP retransmission mechanisms are optimised for high throughput!
(high packet frequency). Thus, the retransmission mechanisms need
frequent feedback (ACKs) to be effective.!

Thin streams:!
When the throughput is application-limited (low packet frequency, small
packets), we often experience very high latencies upon packet loss.!

iAD @ UiO University of Oslo

Thin stream TCP enhancements

If, and only if, a thin stream is detected by the kernel, we apply
three modifications to TCP (explained in hidden slides at the
end):

!  Modified exponential backoff

!  Faster fast retransmit

!  Redundant data bundling

which all are sender based, standard compliant (tested on
MacOs, Linux, Windows and BSD)

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Dynamic triggering!

Mechanisms are automatically triggered
only if thin streams (small and few packets)
are detected.!

Thin-o-meter!

Activate!

All modifications are sender-side only: 
No need to update all clients. !

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Retransmission time-out (RTO) will
double for each consecutive loss.!

We use linear timeouts (LT) for
thin streams!

Result:  
Avoids the extreme latencies
observed in the Anarchy Online
trace.!

Modified Timeouts and exp. backoff!

1 5 9 3 7

1

3

15

13

11

9

7

5

number of retransmissions

RT
O

 m
ul

tip
lie

r

exponential
backoff

modified
backoff

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Fast retransmit with thin-streams!

–  Thin streams often
have < 1 packet per
RTT 

–  Before 3 dupACKs
has arrived, a
timeout will already
have triggered a
retransmission  

–  When thin streams
are detected, we
trigger a FR after
one dupACK!

Sender Receiver

X

1

ACK 1
2

dupACK 1
4

dupACK 1
5

dupACK 1
FR 2

Timeout

3

FR 2

iAD @ UiO University of Oslo

Redundant Data Bundling

 Network

sender receiver
re

tr
an

sm
is

si
on

 q
ue

ue

ENHANCEMENT:
Bundle all unacknowledged packets with each new
transmission

A
C

K

!  if a packet is lost, there is a large chance
that it will arrive bundled with the next
packet.

!  the following ACK will acknowledge both
segments.

!  TCP standard compatible.

  introduces inherent redundancy.
  but sends no extra packets.

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Results: VoIP audio clips!
Played over Skype on a lossy connection (using TCP fallback).!

No modifications!

Using thin-stream  
modifications!

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Results: VoIP audio clips!
Played over Skype on a lossy connection (using TCP fallback).!

No modifications!

Using thin-stream  
modifications!

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Results: VoIP audio clips!
Played over Skype on a lossy connection (using TCP fallback).!

No modifications!

Using thin-stream  
modifications!

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo University of Oslo

Results: Game packets UiO – MA, USA!

RTT: 100!
IAT: 200!
PS: 100!
Loss: 5%!Available in!

2.6.34 Linux
Kernel!

(unmodified) TCP New Reno:!
Exponential increase in latency
with each subsequent
retransmission.!

Thin-stream modifications:!
Keep latency low, also
when loss occurs!

Replayed Anarchy Online traffic between Oslo, Norway and Worchester, MA, USA:!

INF5071, Pål Halvorsen & Carsten Griwodz University of Oslo

Results: Skype data trace analysis!

Transport layer delay Application layer delay

NUS – September 2007, Andreas Petlund•University of Oslo

Thin stream mechanism applicability

! From the properties we have discussed, we can derive
four “classes” of streams

Small Packets Large Packets

High IA

Low IA

Typical thin stream
RDB, retrans, backoff

Rare
RDB

FTP, HTTP
Thick

Rare
faster retransmit, backoff

INF5071, Autumn 2008, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Interactive Applications

! Summary
− Interactive applications require low latency
−Current interactive applications generate

Thin Streams

−Our options
• use UDP,

fix problems in the application
• use TCP or SCTP,

live with high latency
• use TCP or SCTP,

fix problems in the protocol

Download Applications

Bandwidth sharing problem

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Friendliness:
The definition of good Internet behavior

! TCP Congestion Control

! TCP limits sending rate as a function of perceived
network congestion
− little traffic – increase sending rate
−much traffic – reduce sending rate

! Congestion algorithm has three major “components”:
−additive-increase, multiplicative-decrease (AIMD)
− slow-start
− reaction to timeout events

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control
 sender receiver Initially, the CONGESTION WINDOW

is 1 MSS (message segment size)

ro
un

d
1

ro
un

d
2

ro
un

d
3

ro
un

d
4

sent packets
per round
(congestion window)

time

16

8

4

2

1

Then, the size increases by 1 for each
received ACK (until threshold
ssthresh is reached or an ACK is
missing)

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control

16

8

4

2

1

Normally, the threshold is 65 K

sent packets
per round

(congestion window)

time

40

20

10

5

80

15

30

25

35

75

55

45

50

65

60

70

Losing a single packet (TCP Tahoe):
$ threshold drops to halve CONGESTION WINDOW
$ CONGESTION WINDOW back to 1

Losing a single packet (TCP Reno):
$ threshold drops to halve CONGESTION WINDOW
$ CONGESTION WINDOW back to new threshold

ssthresh

ssthresh

50%

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control

sent packets
per round

(congestion window)

time

40

20

10

5

80

15

30

25

35

75

55

45

50

65

60

70
ssthresh

ssthresh

Multiplicative decrease

Sl
ow

-s
ta

rt
 p

ha
se

Congestion avoidance
phase

Multiplicative Decrease
Performed when loss is detected in

slow-phase and in congestion
avoidance phase

Additive Increase
One more segments sent after 1

RTT without loss in
congestion avoidance phase

Slow Start
TCP will always return to a slow start when a packet loss

is detected by timeout (instead of duplicate ACKs).
That means that it starts from scratch with only
one segment per RTT, then 2, then 4, etc.

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Friendliness:
The definition of good Internet behavior

A TCP connection’s
throughput is bounded

$ wmax - maximum retransmission
 window size

$ RTT - round-trip time

The TCP send rate limit is

In case of loss in an RTT:

In case of no loss:

Congestion windows size
changes

$ AIMD algorithm
$ additive increase, multiple

decrease

TCP is said to be fair
$ Streams that share a path will reach an equal share
That’s not generally true
$ Disadvantage for long-distance traffic ! bigger RTT

% higher loss probability per RTT
% slower recovery

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Friendliness:
The definition of good Internet behavior

A TCP connection’s
throughput is bounded

$ wmax - maximum retransmission
 window size

$ RTT - round-trip time

The TCP send rate limit is

TCP is said to be fair
$ Streams that share a path will reach an equal share
That’s not generally true
$ Disadvantage for long-distance traffic ! bigger RTT

% higher loss probability per RTT
% slower recovery

By
te

s/
se

co
nd

RTT/ms

Example:
TCP throughput when
the Window Scaling options
is not used

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

! A protocol is TCP-friendly if

− Colloquial: Its long-term average throughput is not bigger than TCP’s

− Formal: Its arrival rate is at most some constant over the square root
of the packet loss rate

! Thus, if the rule is not violated …

… TCP-friendly protocols may …

$ …probe for available bandwidth faster than TCP

$ …adapt to bandwidth changes more slowly than TCP

$ …use different equations or statistics, i.e., not AIMD

$ …not use slow start (i.e., don’t start with w=0)

TCP Friendliness:
The definition of good Internet behavior

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives

! Why alternatives?
− Improve throughput and variance

• Early TCP implementations did little to minimize network congestion

• Every indication of a packet loss forces
reduction of the congestion window threshold
to 50% of the last congestion window size

• But …
! … what else to conclude from the loss?
! … which packets to retransmit?

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Some TCP Congestion Control Alternatives
! Original TCP

− not in use

! TCP Tahoe
! TCP Reno
! TCP New-Reno

− standard TCP headers

! TCP SACK (Selective Acknowledgements)
! TCP FACK (Forward Acknowledgements)

− must use a TCP option
− RFC 2018 “TCP Selective Acknowledgment Options”

! TCP Westwood+
− use bandwidth estimate for congestion events

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives

• TCP/IP Header Format for TCP Tahoe, Reno and New Reno

Destination Address
Source address

Time to live Protocol Header checksum
Identification D M Fragment offset

Version IHL Type of service Total lengthPRE ToS

Data

Options
Source port Destination port

Sequence number
Piggyback acknowledgement

THL

THL – TCP header length
U: URG – urgent
A: ACK – acknowledgement
P: PSH – push
R: RST – reset
S: SYN – sync
F: FIN – finalize

F Advertised windowSRPAUunused
Checksum Urgent pointer

IP header

TCP header

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

THL F Advertised windowSRPAUunused

TCP Congestion Control Alternatives

• TCP/IP Header Format for TCP SACK and FACK

Destination Address
Source address

Time to live Protocol Header checksum
Identification D M Fragment offset

Version IHL Type of service Total lengthPRE ToS

Data

Options
Source port Destination port

Sequence number
Piggyback acknowledgement

Checksum Urgent pointer

IP header

TCP header5 SACK opt. len. Left edge 1st block, bits 31-16
Left edge 1st block, bits 15-0 Right edge 1st block, bits 31-16
Right edge 1st block, bits 15-0 Left edge 2nd block, bits 31-16
Left edge 2nd block, bits 15-0

Right edge last block, bits 15-0

…
…

5 SACK opt. len.
Left edge 1st block

Right edge 1st block

Right edge last block
…

Left edge: first sequence number of a
block of received packet after a lost
packet

Right edge: first sequence number
AFTER that block

Only 40 bytes TCP options allowed,
therefore never more than 4 blocks
reported at once

Sequence number of packet that
triggered ACK must be in first block
unless it is in the sequence number
field

Always use as many blocks as possible

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Congestion Control Alternatives
Feature Original

TCP Tahoe Reno New-
Reno SACK FACK

Retransmission
strategy

Go back-n Retransmit lost packet,
continue after last sent

By SACK blk

Slow start No Yes Yes Yes Yes Yes

Congestion
avoidance

No Yes Yes Yes Yes Yes

Fast retransmit No Yes Yes Yes Yes Yes

Fast recovery No No Yes (3 duplicate ACKs)

Stay in f. rec. No No No Yes Yes Consider gaps

In flight packet
estimation

By TCP sequence number By 1st
SACK blk

Cong. window
halving

Immediately Linear
decrease

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Simulation results

0

250

500

750

1000

0,100 5,075 10,050 15,025 20,000

Sequence number development
S

eq
ue

nc
e

nu
m

be
r

(s
eg

m
en

t n
um

be
r)

Time (s)

TCP New Reno
SACK TCP
FACK TCP

Lossy transfer with small delays (link: 500kbps, 105ms delay):

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+
! Very recent
! Developed for wireless networks with many losses

− Losses in wireless networks are often non-congestion losses:
corruption losses

! Side effect
− Less unfair against long round-trip times

! Implemented in Linux
− With SACK extensions

! Procedure
− TCP Westwood uses ACK packets
− provide a bandwidth estimate

! “Faster recovery”
− After loss indication by a triple-ACK go into faster recovery

• Use bandwidth estimate to set new congestion window size and new slow
start threshold

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+
 sender receiver

DUPACKs

new RTTmin

Reno ssthresh

time

4

2

1

3

6

5

7

Westwood
ssthresh

estimate number of bytes
sent in this RTT.
Uses average difference of
time(sent) and time(ack’d)
for every packet
for this RTT

estimate bytes that can be
sent per time unit (e.g. second)

estimate number of bytes
sent in this RTT.

ssthresh = in case of loss,
get a minimum of bytes that have
been supported per RTT

loss!
estimate good drop

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

Se
qu

en
ce

 n
um

be
r

in
 s

eg
m

en
ts

/1
00

50 ms Westwood

50 ms Reno

200 ms Reno

200 ms Westwood

Time (sec)

0 50 100 150 200
0

50

100

150

200

(approximation of a perf. eval. figure)

Smaller difference between streams having short and long RTTs

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

TCP senders TCP receivers

bottleneck link:
packet loss

limited bandwidth

Uniformly distributed errors at the
bottleneck link: 0.5% loss

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

TCP Westwood+

Westwood

TCP Reno TCP SACK

Th
ro

ug
hp

ut
 (

M
bi

t/
s)

Speed of the bottleneck link (Mbit/s)

Uniformly distributed errors at the
bottleneck link: 0.5% loss

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7

(approximation of a perf. eval. figure)

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Datagram Congestion Control Protocol (DCCP)

! Transport Protocol
−Offers unreliable delivery
−Low overhead like UDP
−Applications using UDP can easily change to this new

protocol
−Uses ACKs and ECN

! Accommodates different congestion control
−Congestion Control IDs (CCIDs)

• Add congestion control schemes on the fly
• Choose a congestion control scheme
• TCP-friendly Rate Control (TFRC) is included

−Half-Connection
• Data Packets sent in one direction

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Datagram Congestion Control Protocol (DCCP)

! Congestion control is pluggable
− One proposal is TCP-Friendly Rate Control (TFRC)

• Equation-based TCP-friendly congestion control
• Receiver sends rate estimate and loss event history
• Sender uses models of SACK TCP to compute send rate

Steady state TCP
send rate

Loss probability

Number of packets ack’d by
one ACK

Retransmission timeout

Padhye’s TCP New Reno estimation formula

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Datagram Congestion Control Protocol (DCCP)

0

100

200

300

400

0.005 0.01 0.05 0.1 0.2

b = 1
tRTO = 3 RTT

200 ms
100 ms
50 ms
25 ms

Pa
ck

et
s

pe
r

se
co

nd

Packet loss rate

INF5071, Carsten Griwodz & Pål HalvorsenUniversity of Oslo

Download applications
! Loss is worst …

− … because it must be corrected
− … because it must be interpreted as congestion, and
− TCP-friendliness demands that bandwidth consumption is reduced

! Non-QoS problem
− Transport layer can share bandwidth only fairly
− End-users can tweak this: performance isolation

! Other TCP variants that you find in Linux …
− BIC
− CUBIC
− Vegas
− High-speed TCP
− Fast TCP
− H-TCP
− …

! … and in Windows 7
 Default (BSD)
 Compound TCP

