INF5071 – Performance in Distributed Systems

Protocols with QoS Support

8/10 - 2008

Overview

- Per-packet QoS
 IP
- Per-flow QoS

-Resource reservation

- QoS Aggregates
 - -DiffServ, MPLS
 - -The basic idea of Network Calculus

Per-packet QoS

Internet Protocol version 4 (IPv4)

[RFC1349]

ToS

- □ Type of Service
 - D minimize delay
 - □ T maximize throughput
 - □ R maximize reliability
 - □ C minimize cost

PRE

- Precedence Field
 - Priority of the packet

Internet Protocol version 4 (IPv4)

[RFC2474]

of the form xxx000

Differentiated Services Codepoint xxxxx0 reserved for standardization xxxx11 reserved for local use xxxx01 open for local use, may be standardized later

Internet Protocol version 6 (IPv6)

Per-flow QoS

Resource Reservation

Resource Reservation

- Reservation is fundamental for reliable enforcement of QoS guarantees
 - per-resource data structure (information about all usage)
 - QoS calculations and resource scheduling may be done based on the resource usage pattern
 - reservation protocols
 - negotiate desired QoS
 - transfer information about resource requirements and usage
 - between the end-systems and all intermediate systems
 - reservation operation
 - calculate necessary amount of resources based on the QoS specifications
 - reserve resources according to the calculation (or reject request)
 - resource scheduling
 - enforce resource usage with respect to resource administration decisions

Resource Management Phases

Reservation Directions

- Sender oriented:
 - -sender (initiates reservation)
 - must know target addresses (participants)
 - in-scalable
 - good security

Reservation Directions

Receiver oriented:

-receiver (initiates reservation)

- needs advertisement before reservation
- must know "flow" addresses
- -sender
 - need not to know receivers
 - more scalable
 - in-secure

Per-flow QoS

Integrated Services

- Framework by IETF to provide individualized QoS guarantees to individual application sessions
- Goals:
 - efficient Internet support for applications which require service guarantees
 - fulfill demands of multipoint, real-time applications (like video conferences)
 - do not introduce new data transfer protocols
- In the Internet, it is based on IP (v4 or v6) and RSVP
 - RSVP Resource reSerVation Protocol
- Two key features
 - reserved resources the routers need to know what resources are available (both free and reserved)
 - call setup (admission call) reserve resources on the whole path from source to destination

- Admission call:
 - traffic characterization and specification
 - one must specify the traffic one will transmit on the network (Tspec)
 - one must specify the requested QoS (Rspec – reservation specification)
 - signaling for setup
 - send the Tspec and Rspec to all routers
 - per-element admission test
 - each router checks whether the requests specified in the R/Tspecs can be fulfilled
 - if YES, accept; reject otherwise

- IntServ introduces two new services enhancing the Internet's traditional best effort:
 - guaranteed service
 - guaranteed bounds on delay and bandwidth
 - for applications with real-time requirements
 - controlled-load service
 - "a QoS closely to the QoS the same flow would receive from an unloaded network element" [RFC 2212], i.e., similar to best-effort in networks with limited load
 - no quantified guarantees, but packets should arrive with "a very high percentage"
 - for applications that can adapt to moderate losses, e.g., real-time multimedia applications

- Both service classes use token bucket to police a packet flow:
 - packets need a token to be forwarded
 - each router has a b-sized bucket with tokens: if bucket is empty, one must wait
 - new tokens are generated at a rate r and added: if bucket is full (little traffic), the token is deleted
 - the token generation rate r serves to limit the long term average rate
 - the bucket size b serves to limit the maximum burst size

- Today implemented
 - -in every router
 - —for every operating system (its signaling protocol RSVP is even switched on by default in Windows!)
- ... and not used
- Arguments
 - -too much overhead
 - -too large memory requirements
 - -too inflexible
 - "net neutrality" argument
 - -no commercial model

QoS Aggregates

Protocols

- IntServ and RSVP provide a framework for per-flow QoS, but they ...
 - -... give complex routers
 - much information to handle
 - -... have scalability problems
 - set up and maintain per-flow state information
 - periodically PATH and RESV messages overhead
 - ... specify only a predefined set of services
 - new applications may require other flexible services

⇒ DiffServ [RFC 2475] tries to be both scalable and flexible

- ISPs favor DiffServ
- Basic idea
 - -multicast is not necessary
 - -make the core network simple support to many users
 - implement more complex control operations at the edge
 - aggregation of flows –
 reservations for a group of flows, not per flow
 - thus, avoid scalability problems on routers with many flows
 - -do not specify services or service classes
 - instead, provide the functional components on which services can be built
 - thus, support flexible services

- Two set of functional elements:
 - edge functions: packet classification and traffic conditioning
 - core function: packet forwarding
- At the edge routers, the packets are tagged with a DS-mark (differentiated service mark)
 - uses the type of service field (IPv4) or the traffic class field (IPv6)
 - different service classes (DS-marks) receive different service
 - subsequent routers treat the packet according to the DS-mark
 - classification:
 - incoming packet is classified (and steered to the appropriate marker function) using the header fields
 - the DS-mark is set by marker
 - once marked, forward

- Note, however, that there are no "rules" for classification it is up to the network provider
- A metric function may be used to limit the packet rate:
 - the traffic profile may define rate and maximum bursts
 - if packets arrive too fast, the metric function assigns another marker function telling the router to delay or drop the packet

In core routers,

DS-marked packets are forwarded according to their per-hop behavior (PHB) associated with the DS-tag

- the PHB determines how the router resources are used and shared among the competing service classes
- the PHB should be based on the DS-tag only
 - no other state in the router
- traffic aggregation
 - packets with same DS-tag are treated equally
 - regardless of original source or final destination
- a PHB can result in different service classes receiving different performance
- performance differences must be observable and measurable to be able to monitor the system performance
- no specific mechanism for achieving these behaviors are specified

Currently, two PHBs are under active discussion

– expedited forwarding [RFC 3246]

- specifies a *minimum* departure rate of a class, i.e., a guaranteed bandwidth
- the guarantee is independent of other classes, i.e., enough resources must be available regardless of competing traffic

– assured forwarding [RFC 2597]

- divide traffic into four classes
- each class is guaranteed a minimum amount of resources
- each class are further partitioned into one of three "drop" categories (if congestion occur, the router drops packets based on "drop" value)

Multiprotocol Label Switching (MPLS)

- Multiprotocol Label Switching
 - Separate path determination from hop-by-hop forwarding
 - -Forwarding is based on labels
 - Path is determined by choosing labels
- Distribution of labels
 - -On application-demand
 - LDP label distribution protocol
 - -By traffic engineering decision
 - RSVP-TE traffic engineering extensions to RSVP

Multiprotocol Label Switching (MPLS)

- MPLS works above multiple link layer protocols
- Carrying the label
 - -Over ATM
 - Virtual path identifier or Virtual channel identifier
 - Maybe shim
 - -Frame Relay
 - data link connection identifier (DLCI)
 - Maybe shim
 - Ethernet, TokenRing, ...
 - Shim

Shim?

Multiprotocol Label Switching (MPLS)

Shim: the label itself

Routing using MPLS

MPLS Label Stack

QoS Aggregates

Network Calculus

- Guaranteed Service
 - An assured level of bandwidth
 - A firm end-to-end delay bound
 - No queuing loss for data flows that conform to a TSpec
- TSpec traffic specification
 - Describes how customer's traffic must be shaped in the worst case

Using network calculus to scale

Aggregation

- Less state in routers
 - One state for the aggregate
- -Share buffers in routers
 - Buffer size in routers depends on the TSpec's rates
- -Use scheduling to exploit differences in d_{max}
 - Schedule flows with low delay requirements first

Aggregation

Aggregation

Directions of Network QoS

[Liebeherr]

- Old-style QoS is dead
 - -ATM,IntServ, DiffServ, Service overlays didn't take hold
 - Causes?
 - No business case
 - Bothed standardization
 - Naïve implementations
 - No need
- Future QoS
 - Look for fundamental insights
 - Develop design principles
 - Develop analytical tools
 - Network calculus

[Crowcroft, Hand, Mortier, Roscoe, Warfield]

- Old-style QoS is dead
 - X.25 too little, too early
 - ATM too much, too late
 - IntServ too much, too early
 - DiffServ too little, too late
 - IP QoS not there
 - MPLS too isolated
- QoS through overlays can't work
- Future QoS
 - Single bit differentiation
 - Edge-based admission control
 - Micropayment

			-
1	Directio	Companies do provide QoS	
	[Liebeherr Old-style C - ATM, IntServ, DiffServ, Service c hold - Causes? • No bu • Bothe • Naïve • No ne	 AT&T MPLS Equant MPLS Cable and Wireless ATM MPLS TeliaSonera SDH WDM 	is dead , too early h, too late huch, too early ittle, too late here ated
	Future Qos – Look for – Develop (– Develop (• Netwo	 ATM Nortel MPLS SONET/SDH WDM 	erentiation dmission control t

Summary

- Timely access to resources is important for multimedia application to guarantee QoS – reservation might be necessary
- Many protocols have tried to introduce QoS into the Internet, but no protocol has yet won the battle...
 - often NOT only technological problems, e.g.,
 - scalability
 - flexibility
 - ...
 - but also economical and legacy reasons, e.g.,
 - IP rules everything must use IP to be useful
 - several administrative domains (how to make ISPs agree)
 - router manufacturers will not take the high costs (in amount of resources) for per-flow reservations
 - pricing

• ...

- What does it means for performance in distributed applications?
 - -QoS protocols
 - either not present
 - or used for traffic multiplexes
 - ⇒ Applications *must* adapt to bandwidth competition
 - either to generic competing traffic
 - or to traffic within a multiplex
 - ⇒ End-to-end QoS *can* be statistically guaranteed
 - Overprovisioning in access networks
 - Network calculus in long-distance networks