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Distribution — Part I
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| Distribution

* Why does distribution matter?
— Digital replacement of earlier methods

= What can be distributed?

A
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| Distribution Network Approaches
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= Wide-area network = Local Distribution network
backbones — Wired
— FDM/WDM » HFC (Hybrid Fiber Coax - cable)

» ADSL (Asymmetric Digital Subscriber Line)

— 10GB Ethernet » EPON (Ethernet Based Passive Optical

— ATM Networks)
— SONET — Wireless
o IEEE 802.11
e WiMax
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I Delivery Systems Developments




| Delivery Systems Developments

Several Programs
or Timelines

Saving network resources:
Stream scheduling

H//!

Network &




| From Broadcast to True Media-on-Demand

Broadcast (No-VoD) : et
Traditional, no control

Pay-per-view (PPV)
Paid specialized service

Quasi Video On Demand (Q-VoD)
Distinction into interest groups
Temporal control by group change

Near Video On Demand (N-VoD)
Same media distributed in regular time intervals
Simulated forward / backward

True Video On Demand (T-VoD)

Full control for the presentation, VCR capabilities
Bi-directional connection

é//‘/"f“‘/\‘l ..—
‘\@L University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [ . research laboratory |



| Optimized delivery scheduling

Background/Assumption:
Performing all delivery steps for each user wastes resources
Scheme to reduce (network & server) load needed

Terms
Stream: a distinct multicast stream at the server
Channel: allocated server resources for one stream
Segment: non-overlapping pieces of a video

Combine several user requests to one stream

Mechanisms

Type I: Delayed on-demand delivery
Type II: Prescheduled delivery
Type III: Client-side caching
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Type I:
Delayed On Demand Delivery




I Optimized delivery scheduling

O Delayed On Demand De“very [Dan, Sitaram, Shahabuddin 1994]
— Collecting requests
—Joining requests

Central server

— Batching
» Delayed response
» Collect requests for same title
e Batching Features
= Simple decision process
= Can consider popularity
» Drawbacks
= Obvious service delays
= Limited savings

1st client 2nd client 3rd client
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I Optimized delivery scheduling

= Delayed On Demand Delivery
— Collecting requests
—Joining requests

Central server

— Batching

» Delayed response «\W

—Content Insertion

» E.g. advertisement loop
— Piggybacking

e “Catch-up streams”

» Display speed variations

multicast

—Typical
» Penalty on the user experience

° Sing|e point of failure 1st client 2nd client  3rd client
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| Graphics Explained

leaving faster than playback speed

position in movie (offset)

leaving slower than playback speed

>
time
= Y - the current position in the movie
— the temporal position of data within the movie that is leaving the server

= X - the current actual time

&
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| Piggybacking

[Golubchik, Lui, Muntz 1995]

= Save resources by joining streams
—Server resources
—Network resources

= Approach

— Exploit limited user perception
—Change playout speed
» Up to +/- 5% are considered acceptable
* Only minimum and maximum speed make sense

—i.e. playout speeds
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Piggybackin

>

slow

“——fast

position in movie (offset)

T T time

Request arrival
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position in movie (offset)
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Adaptive Piggybackin

>

position in movie (offset)

time

P1

[Aggarwal, Wolf, Yu 1996]
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Performance

60

50

Percentage of savings in BW

A [Drawing after Aggarwal, Wolf and Yu (1996)]

— Original piggybacking
—— Greedy odd-even merging

—— Optimize for every arrival, “snapshot”

v

0 100 200 300 400 500
Interarrival Time in seconds
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Type I1:
Prescheduled Delivery




| Optimized delivery scheduling

" Prescheduled Delivery
—No back-channel
—Non-linear transmission
— Client buffering and re-ordering
—Video segmentation

—Examples
» Staggered broadcasting, Pyramid b., Skyscraper b., Fast b., Pagoda
b., Harmonic b., ...
—Typical
» Good theoretic performance
» High resource requirements
» Single point of failure
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Optimized delivery scheduling
Movie Q’@

1 begin broadcasting
2
3
4 v
end 111111 |1l1l1]1
Cut into segments 2 2 2 2 2
Central server
3 3 3 3
& 1 G
4
— AR 111|111 ]1]|1]1]1
—[ > 5 5 5 5 2 2 2 2 2
B 3 3 3 3 3 3 3
[ 7 A 4 4 4
Reserve channels for segments 11|11 1f1|{1]1]1(1
Determine a transmission schedule 2 2 2 2 2
3 3 3 3
3rd client | 4 4 4
S
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| Prescheduled Delivery

A

position
in movie

time

restart T
times

= Arrivals are not relevant
— users can start viewing at each interval start

&
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| Staggered Broadcasting

V4
Jumpiforward
Continue
Pause/ 4 /
= >
~

time

[Almeroth, Ammar 1996]

>

position in movie (offset)

Phase offset
* Near Video-on-Demand
— Applied in real systems
— Limited interactivity is possible (jump, pause)
— Popularity can be considered — change phase offset
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| Pyramid Broadcasting

= Idea = Segment length
— Fixed number of HIGH-bitrate — Size of segment a:
channels C; with bitrate B len(a)=a'"" len(a,)
— Variable size segments 4, ... a, — o iS |ilmitec|
— One segment repeated per — o>1 to build a pyramid
channel

— a<B/m for sequential viewing

— Segment length is growing — a=2.5 considered good value

exponentially

— Several movies per channel,
total of m movies (constant

bitrate 1) = Drawback
- Operatlon — Client buffers more than 50% of
— Client waits for the next the video
segment «, (On average % len — Client receives all channels
(d;) concurrently in the worst case

— Receives following segments as
soon as linearly possible
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I Pyramid Broadcasting

» Pyramid broadcasting with B=4, m=2, a=2

> Movie a
len(a4) = a-len(a3) =a’ -len(a2) = a’ - len(al)

time

time to play al back
at normal speed
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| Pyramid Broadcasting

» Pyramid broadcasting with B=4, m=2, a=2

> Movie a
len(a4) = a-len(a3) =a’ -len(a2) = a’ - len(al)

time

al a2 a3 a4 .
al Time to send a segment: len(a,)/B

(_A_\
Channels bandwidth \ﬂ
h | 1
for B normal speeds { Channe

Channel 2 | a2

Channel 3 a3

Sending several
channels in parallel Channel 4 a4

/f/\" A {{O‘,‘ ..—
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| Pyramid Broadcasting

» Pyramid broadcasting with B=4, m=2, a=2
> Movie a
len(a4) = a-len(a3) =a’ -len(a2) = a’ - len(al)

time
I 4 I > — ]
——
al a2z a3 ad al bl Segments of
\ / m different movies
v|¥
Channel 1 per channel:
Channel 2 | a2| b2 a&b
Channel 3 a3 b3
Channel 4 a4 b4
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| Pyramid Broadcasting

» Pyramid broadcasting with B=4, m=2, a=2

Channel 1
Channel 2
Channel 3

Channel

request for

a arrives

‘@[ University of Oslo

al
\ _/
v ¥

bl

a2

b2

a2

b2

a2

b2 | a2

b2

a2

b2

a2

b2

a2

b2

a2

b2

a2

b2

a2

b2

a3

b3

a3

b3

a3

b3

a3

b3

a3

b3

a4

b4

a4

b4

a4

client starts receiving and playing al
client starts receiving and playing a2

client starts receiving a3
client starts receiving a4

client starts playing a3
client starts playing a4
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Pyramid Broadcastin

» Pyramid broadcasting with B=4, m=2, a=2

al bl
\ _/
v|¥

Channel 1

Channel 2 a2| b2|a2| b2|a2| b2|a2| b2|a2| b2|a2|b2|a2|b2|a2|b2|a2|b2|a2| b2

Channel 3 a3 b3 a3 b3 a3 b3 a3 b3 a3 b3

Channel 4 a4 b4 a4 b4 a4

SER . . :
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| Pyramid Broadcasting

» Pyramid broadcasting with B=5, m=2, a=2.5

at\ /bl
Channel 1 ik
Channel 2 a2 | b2 a2 | b2 | a2 | b2| a2 | b2|a2|b2| a2 | b2|a2| b2| a2 | b2
Channel 3 a3 b3 a3 b3 a3 b3
Channel 4 a4 b4

> In the Internet: choose m=1
»Less bandwidth at the client and in multicast trees

»>At the cost of multicast addresses
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I Skyscraper Broadcasting

[Hua, Sheu 1997]

* Idea
— Fixed size segments
— More than one segment per channel
— Channel bandwidth is playback speed
— Segments in a channel keep order
.....II“

— Channel allocation series

e 1,2255121225255252 ...
— Client receives at most 2 channels
— Client buffers at most 2 segments

= Operation
— Client waits for the next segment aft
— Receive following segments as soon as linearly possible
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I Skyscraper Broadcasting

Channel 1 |_a1 | a1 al al al al al al

Channel 2 a2 | a3 | a2 | a3 | a2 | a3 | a2 | a3

Channel 3 a4 | a5 a5. | a4 | a5 | a4 | a5

rets T T3 o T Taori
|

request for a arrives

@ --— -
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I Skyscraper Broadcasting

time

» time
Channel 1 al |_al | a1 | a1 | a1 | a1l | a1l | al
Channel 2 | a2 | a3 |_a2 | a3 | a2 | a3 | a2 | a3
Channel 3 | a4 | a5 | a4 | a5 as_| a4 | a5

vt [T oT o Tom o

T

request for a arrives

‘g@‘ University of Oslo

al

a2

a3

a4
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| Other Pyramid Techniques

* Fast Broadcasting

—Many more, smaller segments
» Similar to previous

» Sequences of fixed-sized segments
instead of different sized segments

[Juhn, Tseng 1998]

—Channel allocation series
» Exponential series: 1,2,4,8,16,32,64, ...

—Segments in a channel keep order
—Shorter client waiting time for first segment
—Channel bandwidth is playback speed

— Client must receive all channels

— Client must buffer 50% of all data
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time

I Fast Broadcasting

+ > time
Channel 1 | a1 afl al %1 all| al| a1 afl al| allall al| atl| al| a1 a1

— - :
Channel 2 | a2] a3 | a2 a3| a2|a3|a2|a3|a2|a3|a2|a3|a2|a3|a2|as

channel 3 [T sz o] s] s o] o] s o] ] 5 s 7]

Channel 4 A i efs] ] o] ] 3
|

request for a arrives
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IFast Broadcasting

time
: » time
- : : :
Channel 1 |at|al|al|al|a&l|al|allal|al|al|allallal|al|allal

Channel 2 | a2| a3| a2| a3| a2 | a3|a2|a3| a2| a3| a2| a3| a2| a3| a2| a3

Channel 3
Channel 4

request for a arrives

al| a2 | a3
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| Pagoda Broadcasting

= Pagoda Broadcasting

—Channel allocation series
» 1,3,5,15,25,75,125
—Segments are not broadcast linearly
— Consecutive segments appear on pairs of channels

— Client must receive up to 7 channels
» For more channels, a different series is needed !

— Client must buffer 45% of all data

[Paris, Carter, Long 1999]

—Based on the following

» Segment 1 — needed every round

» Segment 2 — needed at least every 2" round
» Segment 3 — needed at least every 3 round
» Segment 4 — needed at least every 4t round
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Pagoda Broadcastin

Cl |a1|at|at|ar|at|at|at|at|at|at|al|al|al|al|atlat

C2 | 513313 'a5 22| 44| 42| a5| a2 | a4| a2| a5| a2 | a4 | a2 | a5

request for a arrives
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Pagoda Broadcastin

time

»

» time
Cl al| al|al|al|al|al|al|{al|al|al|al|al|al| al| al| al

C2 a2 | a4 | a2 | a5| a2| a4 | a2| a5| a2| a4 | a2| a5| a2| a4 | a2 | a5

€3 [ sl s vl ] e ] ] s
4 a] e | s| . vl il s
|

request for a arrives
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| Harmonic Broadcasting

u Idea [Juhn, Tseng 1997]

— Fixed size segments

— One segment repeated per channel

— Later segments can be sent at lower bitrates
— Receive all other segments concurrently

— Harmonic series determines bitrates
Bitrate(a,) = Playout-rate(a;)/i
Bitrates 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, ...

* Consideration
— Size of a, determines client start-up delay
— Growing number of segments allows smaller a,
— Required server bitrate grows very slowly with number of segments

= Drawback
— Client buffers about 37% of the video for >=20 channels
— (Client must re-order small video portions)
— Complex memory cache for disk access necessary
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' Harmonic Broadcasting

time

Cl— at al al al al al al al

C2
C3 a2 a2 a2 a2

e
C5 T
request for a arrives

e Y --—
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I Harmonic Broadcasting

time
al a2
Cl— at al
C2
C 3§: a2 a2

C4
C5

T

request for a 3

‘q@‘ University of Oslo

WSS

al

a2
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\I Harmonic Broadcasting

time
Cl— al al al al al al al al
C2—_
C3 a2 a a2 a2
C 4\‘ a2 a3
C5
Read al and consume concurrently ©

request for a arrives

Read rest of a2 and consume concurrently ®

al

a3

Consumes 15t segment faster than it is received !!!
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| Harmonic Broadcasting: Bugfix

* Delayed Harmonic Broadcasting
—Wait until a, is fully buffered
— All segments will be completely cached before playout
—Fixes the bug in Harmonic Broadcasting

[By Paris, Long, ...]

or

= Cautious Harmonic Broadcasting

—Wait an additional a, time
— Starts the harmonic series with a, instead of a;,
—Fixes the bug in Harmonic Broadcasting
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| Prescheduled Delivery Evaluation

* Techniques
— Video segmentation
— Varying transmission speeds
— Re-ordering of data
— Client buffering

= Advantage
— Achieves server resource reduction

* Problems
— Tends to require complex client processing
— May require large client buffers

— Is incapable (or not proven) of working with user interactivity
» Current research to work with VCR controls

— Guaranteed bandwidth required

/f/\" A {{O‘,‘ ..—
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Type I11I:
Client Side Caching




| Optimized delivery scheduling

* Client Side Caching
—On-demand delivery
— Client buffering
—Multicast complete movie
—Unicast start of movie for latecomers (patch)

" Examples
—Stream Tapping, Patching, Hierarchical Streaming Merging,

= Typical
—Considerable client resources
—Single point of failure
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| Optimized delivery scheduling

= Patching

[Hua, Cai, Sheu 1998,
also as Stream Tapping Carter, Long 1997]

Central server

1st client 2nd client

= Server resource optimization is possible
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I Optimized delivery scheduling

full stream

>

position in movie (offset)

request arrival time

- /
'

(patch) window size
restart time of full stream
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Optimized delivery scheduling

= 4

o

7 full stream

&=

) :

o interdeparture .

> : .

3 time

S A

=

c

O

=

(D '0' .0‘ .0‘. ’0‘

8- '.‘0 . "‘o .‘.0
Q‘Q”‘ 0.‘" .0’.‘. .0’.‘

Ao’ Ao’ >

interarrival time
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| Optimized delivery scheduling

| t
N n
= -
O ®

h

O
@ =
S 7
2 =
e\ _____ s _ /L] o)
k= C
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S i R el il 4 el O
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= o
D O
o Y—
o o
| -
)
o
— mm e = - — — —'b’— — ’CL. — — 7’ * — — —'v’ — — —'o’— E
R -
prd

/ .
Concurrent Concurrent patch Total number of
full streams streams concurrent streams

The average number of patch streams is constant if the
arrival process is a Poisson process
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| Optimized delivery scheduling

>
>

position in movie (offset)

. *
b — e o o oy’ e - = —
* - - -

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
Number of concurrent streams

Compare the numbers of streams

Shown patch streams are just examples
But always: patch end times on the edge of a triangle
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hgtimized delivery scheduling

>
>

position in movie (offset)

Number of concurrent streams

time

S . . .
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Optimized delivery scheduling

>

position in movie (offset)

T, (S — — -—em e mm mm == = —
54 654
o o
"
% 0 o
* * *
¥ o o
— e - — o — ) —-— e — — o — —
* - g
G .
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id
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Number of concurrent streams
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timized delivery scheduling

>

position in movie (offset)

e — — — —-— - — — - - - — —-— - —
(S Q C *
* * > *
0 * * 0
& Q o o
_.‘:' ——— — o = ——— -}’_ ——— _‘\0'-
o > o > o 0 0
o * > * > * *
* O o O o O O
< * * * * * *
0 > 0 > 0 0
o o o o o o
Q > > S * * Q * 0 g
* * * * * * > Q * Q
o o o o o o R o o R
0 0 0 0 0 0 > > 0 >
> > > > > > > > > >

Number of concurrent streams
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| Optimized delivery scheduling

= Minimization of server load
= Minimum average number of concurrent streams

= Depends on

—F

movie length

expected interarrival time

patching window size

cost of unicast stream at server

cost of multicast stream at server

setup cost of unicast stream at server
setup cost of multicast stream at server
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| Optimized delivery scheduling

Optimal patching window size

For identical multicast and
unicast setup costs

A, =2 F-A,

Servers cgn est% & Aength
And achieve ma

Patching
window size

</, University of Oslo

For different multicast and
unicast setup costs

INF5071, Carsten Griwodz & Pal Halvorsen [

S, +C,F
A, =[2- ‘A,
C
U

In { Al 7445 Mio $

Gthaey 3722 Mio $

patching

A-patching 375 Mio $

Based on prices by

Deutsche Telekom, IBM and
Real Networks from 1997

.research laboratory |



Pull-Patchin

= Combination

— adaptive segmented
HTTP streaming

— patching

playout time »\

A

lw ~. Central server
Q N

Unicast patch stream

multicast
cyclic
buffer
1st client 2nd client

5

2 full stream

o

Q2

>

g

£ &

5 &

= Q

8 &

% &

,.."".patch stream

request arrival

time

2. Request video

>

3. Receive multicast stream

~N
A. Multicast Server B. Client

4. Get patch stream

Web Servers

}ﬂ 3
N
o Tracker
;ﬂ
.ﬂ

1. Get video location and video meta data

AN
=
L

7N

7N

-
-

C. Patch Server System PU I I_ PatCh i ngj

«/F; University of Oslo

INF5071, Carsten Griwodz & Pal Halvorsen

[ simula.research laboratory |



Pull-Patchin

Experiment

— client joins 100 segments into
the stream

— 4 video layers

Results if ...
— ... enough resources (8 Mbps)

.
v

full stream

position in movie (offset)

0..
>

-~~~ patch stream

Segments

300

T P
yd
yd
P
250 /// .
//-
200 —
150 -
100 -
50 - multicast segment received ¢ |
patched segment received
partially patched segment received =
laytime
0 | | | | Ip y |
0 100 200 300 400 500 600
Time in seconds
Seconds
10 T T T T
8 segment received +
6 EW A playback deadline -
et i
g | HEEITE T y end patch stream ——
2 - -
0
-2 -
-4 | | | | .
0 50 100 150 200 250 300
Segments
Quality
T T T T T
4
2
0 50 100 150 200 250 300
Segments

INF5071, Carsten Griwodz & Pal Halvorsen
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Pull-Patchin

= Experiment

— client joins 100 segments into Qualty . . . . ,
the stream :
— 4 video layers 2 |
1
[ |
. 0 50 100 150 200 250 Segmgr?t%
" Results if ... 2 Mbps bandwidth
— ... enough resources
. . . . Qualit
— ... bandwidth limitations L ' ' ' '
N [
, I
. I
| I
0 50 100 150 200 250 Segm3e?1(t)s
4 Mbps bandwidth
Quality T T T T T
3 i
i I
I I
0 50 100 150 200 250 300
Segments

8 Mbps bandwidth
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| Pull-Patching

= Experiment

— client joins 100 segments into

the stream
— 4 video layers

= Results if ...
— ... enough resources

— ... bandwidth limitations

— ... loss
— (... delay and jitter)

= Pull-Patching works

— client side decisions
— overcomes traditional patching

limitations

— dynamic adaption
— loss and delay handling
— patch server scalability

Quality

4
3
2

1
||||
0

50 100 150 200

8 Mbps bandwidth, 3 % loss

Quality

250

|

[

300
Segments

4
3
2

1
||||
0

50 100 150 200

8 Mbps bandwidth, 1 % loss

250

0 50 100 150 200

8 Mbps bandwidth

‘@‘ University of Oslo
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250

300
Segments
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|HMSM

= Hierarchical Multicast Stream Merging

= Key ideas
—Each data transmission uses multicast

—Clients accumulate data faster than their playout rate
e multiple streams
 accelerated streams

—Clients are merged in large multicast groups
—Merged clients continue to listen to the same stream to the
end
* Combines
—Dynamic skyscraper
—Piggybacking
— Patching

[Eager, Vernon, Zahorjan 2001]
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| HMSM

= Always join the closest neighbour

= HMSM(n,1)
— Clients can receive up to n streams in parallel

= HMSM(n,e)
—Clients can receive up to n full-bandwidth streams in parallel
—but streams are delivered at speeds of e, where e « 1

= Basically
—HMSM(n,1) is another recursive application of patching

K ..—
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| HMSM(2,1)

HMSM(2,1): max 2 streams, 1 playout speed each
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HMSM(2,1

HMSM(2,1): max 2 streams, 1 playout speed each
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| HMSM(2,1)

>

position in movie (offset)

HMSM(2,1): max 2 streams,
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Client Side Caching Evaluation

= Techniques
— Video segmentation
— Parallel reception of streams
— Client buffering

= Advantage

— Achieves server resource reduction
— Achieves True VoD behaviour

* Problems
— Optimum can not be achieved on average case
— Needs combination with prescheduled technique for high-popularity titles
— May require large client buffers
— Are incapable (or not proven) to work with user interactivity
o Guaranteed bandwidth required

T
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| Overall Evaluation

= Advantage
— Achieves server resource reduction

* Problems
—May require large client buffers
—Incapable (or not proven) to work with user interactivity
— Guaranteed bandwidth required

" Fixes
— Introduce loss-resistant codecs and partial retransmission
— Introduce proxies to handle buffering
—Choose computationally simple variations
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Zipf-distribution

The typical way or modeling access
probability



| Zipf distribution and features

= Popularity
— Estimate the popularity of movies (or any kind of product)
—Frequently used: Zipf distribution

z(i) =

0.16

probability

“f University of Oslo
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" DANGER

— Zipf-distribution of a
process

» can only be applied
while popularity doesn't
change

* is only an observed
property
* a subset of a Zipf-

distributed dataset is no
longer Zipf-distributed
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| Optimized delivery scheduling

" Optimum depends on popularity
— Estimate the popularity of movies
—Frequently used: Zipf distribution
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I Optimized delivery scheduling

" Problem
—Being Zipf-distributed is only an observed property
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| Optimized delivery scheduling

= Density function of the Zipf distribution

—Compared to real-world data
probability curves for 250 movie titles
|
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| Optimized delivery scheduling

* Conclusion
—Major optimizations possible
—Independent optimizations don't work

" Centralized systems problems
—Scalability is limited
—Minimum latency through distance
—Single point of failure

" Look at distributed systems
— Clusters
— Distribution Architectures

‘\@L University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [ . research laboratory |



Some References

—

Thomas D.C. Little and Dinesh Venkatesh: "Prospects for Interactive Video-on-Demand", IEEE Multimedia
1(3), 1994, pp. 14-24

Asit Dan and Dinkar Sitaram and Perwez Shahabuddin: "Scheduling Policies for an On-Demand Video
Server with Batching", IBM TR RC 19381, 1993

Rajesh Krishnan and Dinesh Venkatesh and Thomas D. C. Little: "A Failure and Overload Tolerance
Mechanism for Continuous Media Servers", ACM Multimedia Conference, November 1997, pp. 131-142

Leana Golubchik and John C. S. Lui and Richard R. Muntz: "Adaptive Piggybacking: A Novel Technique for
Data Sharing in Video-on-Demand Storage Servers", Multimedia Systems Journal 4(3), 1996, pp. 140-155

Charu Aggarwal, Joel Wolf and PhiIi%) S. Yu: “On Optimal Pig%yback Merging Policies for Video-on-
Demand Systems”, ACM SIGMETRICS Conference, Philadelphia, USA, 1996, pp. 200-209

Kevin Almeroth and Mustafa Ammar: "On the Use of Multicast Delivery to Provide a Scalable and
Interactive Video-on-Demand Service", IEEE JSAC 14(6), 1996, pp. 1110-1122

S. Viswanathan and T. Imielinski: "Metropolitan Area Video-on-Demand Service using Pyramid
Broadcasting", Multimedia Systems Journal 4(4), 1996, pp. 197--208

Kien A. Hua and Simon Sheu: "Skyscraper Broadcasting: A New Broadcasting Scheme for
Metropolitan Video-on-Demand Systems", ACM SIGCOMM Conference, Cannes, France, 1997, pp. 89-100

0. L. Juhn and L. Tsend: "Harmonic Broadcasting for Video-on-Demand Service", IEEE Transactions on
Broadcasting 43(3), 1997, pp. 268-271

11.  Carsten Griwodz and Michael Liepert and Michael Zink and Ralf Steinmetz: "Tune to Lambda Patching",
ACM Performance Evaluation Review 27(4), 2000, pp. 202-206

12.  Kien A. Hua and Yin Cai and Simon Sheu: "Patching: A Multicast Technique for True Video-on Demand
Services", ACM Multimedia Conference, Bristol, UK, 1998, pp. 191-200

13. Derek Eager and Mary Vernon and John Zahorjan: "Minimizin% Bandwidth Requirements for On-Demand
Data Delivery", Multimedia Information Systems Conference 1999

14.  Jehan-Francois Paris: http://www.cs.uh.edu/~paris/

—©00 N o O ~ W DN

«iF; University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [ .research laboratory |




