
Distribution – Part II

5 November 2010

INF5071 – Performance in distributed systems

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems
  Combine
－  Types I, II or III
－  Network of servers

  Server hierarchy
－  Autonomous servers
－  Cooperative servers
－  Coordinated servers

  “Proxy caches”
－  Not accurate …
－  Cache servers

•  Keep copies on behalf of a
remote server

－  Proxy servers
•  Perform actions on behalf of

their clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems
  Combine
－  Types I, II or III
－  Network of servers

  Server hierarchy
－  Autonomous servers
－  Cooperative servers
－  Coordinated servers

  “Proxy caches”
－  Not accurate …
－  Cache servers

•  Keep copies on behalf of a
remote server

－  Proxy servers
•  Perform actions on behalf of

their clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems
  Combine
－  Types I, II or III
－  Network of servers

  Server hierarchy
－  Autonomous servers
－  Cooperative servers
－  Coordinated servers

  “Proxy caches”
－  Not accurate …
－  Cache servers

•  Keep copies on behalf of a
remote server

－  Proxy servers
•  Perform actions on behalf of

their clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems

  Variations
－  Gleaning

•  Autonomous, coordinated possible
•  In komssys

－  Proxy prefix caching
•  Coordinated, autonomous possible
•  In Blue Coat (which was formerly Cacheflow, which was formerly Entera)

－  Periodic multicasting with pre-storage
•  Coordinated
•  The theoretical optimum

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gleaning
－  Webster’s Dictionary: from Late Latin glennare, of Celtic origin

1.  to gather grain or other produce left by reapers
2.  to gather information or material bit by bit

  Combine patching with caching ideas
－  non-conflicting benefits of caching and patching

  Caching
－  reduce number of end-to-end transmissions
－  distribute service access points
－  no single point of failure
－  true on-demand capabilities

  Patching
－  shorten average streaming time per client
－  true on-demand capabilities

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gleaning
  Combines

Patching & Caching ideas
－ Wide-area scalable
－  Reduced server load
－  Reduced network load
－  Can support standard clients

multicast

Unicast patch stream

Central server

1st client 2nd client

Join !

cyclic
buffer

Unicast Unicast

Proxy cache
Proxy cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Proxy Prefix Caching
  Split movie
－  Prefix
－  Suffix

  Operation
－  Store prefix in prefix cache

•  Coordination necessary!

－ On demand
•  Deliver prefix immediately
•  Prefetch suffix from central

server

  Goal
－  Reduce startup latency
－ Hide bandwidth limitations,

delay and/or jitter in backbone
－  Reduce load in backbone

Client

Unicast

Unicast

Central server

Prefix cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

MCache
  One of several Prefix Caching

variations
  Combines Batching and Prefix

Caching
－  Can be optimized per movie

•  server bandwidth
•  network bandwidth
•  cache space

－ Uses multicast
－ Needs non-standard clients

Central server

1st client 2nd client

Unicast Unicast

Prefix cache
Prefix cache

Batch
(multicast)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Periodic Multicasting with Pre–Storage
  Optimize storage and

network
－ Wide-area scalable
－ Minimal server load achievable
－  Reduced network load
－  Can support standard clients

  Specials
－  Can optimize network load per

subtree

  Negative
－  Bad error behaviour

1st client 2nd client

Central server
T
h
e
i

Assumed start
of the show

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Periodic Multicasting with Pre–Storage
  Optimize storage and

network
－ Wide-area scalable
－ Minimal server load achievable
－  Reduced network load
－  Can support standard clients

  Specials
－  Can optimize network load per

subtree

  Negative
－  Bad error behaviour

1st client 2nd client

Central server

T
h
e
i

T
h
e

T
h
e

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems

  Autonomous servers
－  Requires decision making on each proxy
－  Some content must be discarded
－  Caching strategies

  Coordinated servers
－  Requires central decision making
－  Global optimization of the system

  Cooperative servers
－  No quantitative research yet

Autonomous servers

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation
  Binary tree model allows
－  Allows analytical comparison of

•  Caching
•  Patching
•  Gleaning

  Considering
－  optimal cache placement per

movie
－  basic server cost
－  per-stream costs of storage,

interface card, network link
－ movie popularity according to

Zipf distribution

central server

optional

network link

cache server

0

0.08

0.16

0 20 40 80 10060re
la

tiv
e

pr
ob

ab
ili

ty
/x

/1

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation
  Example
－  500 different movies
－  220 concurrent active users
－  basic server: $25000
－  interface cost: $100/stream
－  network link cost: $350/stream
－  storage cost: $1000/stream

  Analytical comparison
  demonstrates potential of the approach
  very simplified

Caching
Caching
Unicast transmission 4664 Mio $

λ-Patching
No caching
Client side buffer
Multicast

375 Mio $

Gleaning
Caching
Proxy client buffer
Multicast

276 Mio $

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Caching Strategies

  FIFO: First-in-first-out
－  Remove the oldest object in the cache in favor of new objects

  LRU: Least recently used strategy
－ Maintain a list of objects
－ Move to head of the list whenever accessed
－  Remove the tail of the list in favor of new objects

  LFU: Least frequently used
－ Maintain a list distance between last two requests per object
－ Distance can be time or number of requests to other objects
－  Sort list: shortest distance first
－  Remove the tail of the list in favor of new objects

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Caching Strategies
  Considerations
－  limited uplink bandwidth

•  quickly exhausted
•  performance degrades immediately

when working set is too large for storage space

－  conditional overwrite strategies
•  can be highly efficient

  ECT: Eternal, Conditional, Temporal

LFU
Forget object statistics when removed
Cache all requested objects

Log # requests or time between hits

ECT
Remember object statistics forever
Compare requested object and
replacement candidate
Log times between hits

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation

  Movies
－ 500 movies
－ Zipf-distributed popularity
－ 1.5 MBit/s
－ 5400 sec
－ File size ~7.9 GB

Clients

Unlimited downlinks

Limited uplink

Central server

Cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of caching strategies on user hit rates

0.5

0.75

1

0 500010000 20000 30000 40000 50000

H
it

R
at

io

Users

Cache Hit Ratio for single server, 64 GB cache

✧
✧
✧
✧✧✧✧

✧ ✧✧ ✧✧✧ ✧

✧

■

■
■■■■■

■

✕✕✕
✕✕✕✕ ✕

0.5

0.75

1

0 500010000 20000 30000 40000 50000

H
it

R
at

io

Users

Cache Hit Ratio for single server, 96 GB cache

✧✧
✧✧✧✧✧✧ ✧ ✧✧ ✧✧✧ ✧ ✧ ✧ ✧

■

■■■■■■ ■
✕✕
✕✕✕✕✕ ✕ ✕ ✕ ✕ ✕

✕

✕

ECT
FIFO ■

LRU ✕

✧ECT
FIFO ■

LRU ✕

✧

  Hit ratio
－  dumb strategies do (almost) not profit from cache size increases
－  intelligent strategies profit hugely from cache size increases

－  strategies that use conditional overwrite outperform other strategies

massively
•  doesn’t have to be ECT

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of caching strategies on throughput

  Uplink usage
－  profits greatly from small cache increase...... if there is a strategy

－  conditional overwrite reduces uplink usage

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of number of movies on uplink usage

  In spite of 99% hit rates
－  Increasing the number of users will congest the uplink
－ Note

•  scheduling techniques provide no savings on low-popularity movies
•  identical to unicast scenario with minimally larger caches

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of number of movies on hit ratio

  Limited uplink bandwidth
－  Prevents the exchange of titles with medium popularity
－ Unproportional drop of efficiency for more users
－  Strategy can not recognize medium popularity titles

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Hint–based Caching

  Idea
－  Caches consider requests to neighbour caches in their removal decisions

  Conclusion
－  Instability due to uplink congestion can not be prevented
－  Advantage exists and is logarithmic as expected

•  Larger hint numbers maintain the advantage to the point of instability

－  Intensity of instability is due to ECT problem
•  ECT inherits IRG drawback of fixed–size histograms

better

Hit ratio development, increasing #hints, ECT history 8 Hit ratio development, increasing #hints, ECT history 64

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation: Summary
  High relevance of population sizes
－  complex strategies require large customer bases

  Efficiency of small caches
－  90:10 rule–of–thumb reasonable
－  unlike web caching

  Efficiency of distribution mechanisms
－  considerable bandwidth savings for uncached titles

  Effects of removal strategies
－  relevance of conditional overwrite
－  unlike web caching, paging, swapping, ...

  Irrelevance of popularity changes on short timescales
－  few cache updates

compared to many direct deliveries

Coordinated servers

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning

client

1st level cache

2nd level cache

d-2nd level cache

d-1st level cache

origin server

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning

  No problems with simple scheduling mechanisms
  Examples
－ Caching with unicast communication
－ Caching with greedy patching

•  Patching window in greedy patching is the movie length

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

top movie Decreasing popularity

Network for free
(not shown – all at origin)

Increasing network costs
0!100!200!

Movie (0-300 of 500)!

0.5!
1! Link!client!

1!

2!

3!

4!

5!

origin!

C
!a!c
!h!e
! !L
!e!v
!e!l
!

Cost!

Caching"
Caching and Greedy Patching"

0!100!200!

Movie (0-300 of 500)!

0.5!
1! Link!client!

1!

2!

3!

4!

5!

origin!

C
!a!c
!h!e
! ! L
!e!v
!e!l
!

Cost!

Movies ”move
away” from clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning

  Problems with complex scheduling mechanisms
  Examples
－ Caching with λ–patching

•  Patching window is optimized for minimal server load

－ Caching with gleaning
•  A 1st level proxy cache maintains the ”client buffer” for several

clients

－ Caching with MPatch
•  The initial portion of the movie is cached in a 1st level proxy cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

client

1st level cache

2nd level cache

d-2nd level cache

d-1st level cache

origin server

5000 clients per level 1 cache

10 level x caches per level x+1 cache

origin server at level 6

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: λ–Patching

UM F Δ⋅⋅=Δ 2

time

po
si

tio
n

in
 m

ov
ie

 (o
ffs

et
)

N
um

be
r o

f c
on

cu
rr

en
t s

tre
am

s

multicast

Unicast patch stream

Central server

1st client 2nd client

cyclic
buffer

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: λ–Patching

  Placement for λ–patching

Popular movies may be more
distant to the client

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: λ–Patching

  Failure of the optimization
－ Implicitly assumes perfect delivery
－ Has no notion of quality
－ User satisfaction is ignored

  Disadvantages
－ Popular movies further away from clients

•  Longer distance
•  Higher startup latency
•  Higher loss rate
•  More jitter

－ Popular movies are requested more frequently
－ Average delivery quality is lower

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: Gleaning

  Placement for gleaning
－ Combines

•  Caching of the full movie
•  Optimized patching
•  Mandatory proxy cache

－ 2 degrees of freedom
•  Gleaning server level
•  Patch length

multicast

Unicast patch stream

Central server

1st client 2nd client

cyclic
buffer

Unicast Unicast

Proxy cache
Proxy cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: Gleaning

  Placement for gleaning

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: MPatch

  Placement for MPatch
－ Combines

•  Caching of the full movie
•  Partial caching in proxy servers
•  Multicast in access networks
•  Patching from the full copy

－ 3 degrees of freedom
•  Server level
•  Patch length
•  Prefix length

Central server

1st client 2nd client

Unicast Unicast

Prefix cache
Prefix cache

Batch
(multicast)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: MPatch

  Placement for MPatch

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Approaches
  Current approached does not consider quality
－ Penalize distance in optimality calculation
－ Sort

  Penalty approach
－ Low penalties

•  Doesn’t achieve order because actual cost is higher

－ High penalties
•  Doesn’t achieve order because optimizer gets confused

  Sorting
－ Trivial
－ Very low resource waste





INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning
－ Impossible to achieve optimum with autonomous caching

  Solution for complex scheduling mechanisms

  A simple solution exists:
－ Enforce order according to priorities

•  (simple sorting)

－ Increase in resource use is marginal

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Summary

  A lot of performance can be gained using appropriate
distribution mechanisms
－ type 1: delayed delivery
－ type 2: prescheduled delivery
－ type 3: client side caching
－ type 4: network of servers combining types 1-3

  Caching is (almost) always beneficial
－ better with conditional replacements / overwrites
－ hints from neighboring caches

