INF5071 — Performance in distributed systems

Distribution — Part 11

5 November 2010

I Type IV — Distribution Systems

= Combine
— Types I, Il or III
— Network of servers

= Server hierarchy
— Autonomous servers
— Cooperative servers
— Coordinated servers

= “Proxy caches”
— Not accurate ...

— (Cache servers
» Keep copies on behalf of a
remote server
— Proxy servers

e Perform actions on behalf of
their clients

é(,;r‘/“fi‘%\ .-—
‘@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula . research laboratory]

I Type IV — Distribution Systems

= Combine
— Types I, Il or III
— Network of servers

= Server hierarchy
— Autonomous servers
— Cooperative servers
— Coordinated servers

\\ " /O
= “Proxy caches A
— Not accurate ... Q?/ NO/ i' §§

J

— (Cache servers
» Keep copies on behalf of a ,/
remote server
— Proxy servers

e Perform actions on behalf of
their clients

“@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula . research laboratory |

I Type IV — Distribution Systems

= Combine
— Types I, Il or III
— Network of servers

= Server hierarchy
— Autonomous servers
— Cooperative servers
— Coordinated servers

= “Proxy caches”
— Not accurate ...

— (Cache servers
» Keep copies on behalf of a
remote server
— Proxy servers

e Perform actions on behalf of
their clients

“ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula.research laboratory |

| Type IV — Distribution Systems

= Variations

— Gleaning

* Autonomous, coordinated possible

e In komssys
— Proxy prefix caching

» Coordinated, autonomous possible

e In Blue Coat (which was formerly Cacheflow, which was formerly Entera)
— Periodic multicasting with pre-storage

» Coordinated

* The theoretical optimum

& ,t{,“‘ .-—
“fF. University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

| Gleaning

— Webster’s Dictionary: from Late Latin glennare, of Celtic origin
1. to gather grain or other produce left by reapers
2. to gather information or material bit by bit
= Combine patching with caching ideas
— non-conflicting benefits of caching and patching

= Caching
— reduce number of end-to-end transmissions
— distribute service access points
— no single point of failure
— true on-demand capabilities

= Patching

— shorten average streaming time per client
— true on-demand capabilities

/F/‘r‘ J{,“‘ .-—
“fF. University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

| Gleaning

= Combines
Patching & Caching i
— Wide-area scalable
— Reduced server load
— Reduced network load Proxy cache

7
— Can support standard clients %ﬁf‘ :ﬁf_
QA -
A A

- Central server
N

Unicast patch stream

Proxy cache

15t client 2nd client

5 6) . . R
“%F; University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

I Proxy Prefix Caching

= Split movie w Central server
— Prefix A
— Suffix

= Operation Unicast

— Store prefix in prefix cache
» Coordination necessary!

— On demand | W !
. . . Prefix cache
» Deliver prefix immediately
e Prefetch suffix from central 4
server
- Goal Unicast
— Reduce startup latency

— Hide bandwidth limitations,
delay and/or jitter in backbone @

— Reduce load in backbone

|
\‘ |

Client

S ER “ .-— .
“%F; University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula.research laboratory |

| MCache

. . e
" One of several Prefix Caching %ﬁ; Central server
variations ! Batch
(multicast)
= Combines Batching and Prefix
Caching Prefix cache e

Prefix cache

— Can be optimized per movie Ry -

« server bandwidth Uzﬁ{‘ lﬁf—u
» network bandwidth A g
» cache space

— Uses multicast Unicast

— Needs non-standard clients

Unicast

15t client 2nd client

‘@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula . research laboratory |

I Periodic Multicasting with Pre—Storage

= Optimize storage and

Y
network ‘ Central server

] Assumed start
— Wide-area scalable of the show

— Minimal server load achievable o
— Reduced network load %
— Can support standard clients) N
= Specials
— Can optimize network load per
subtree
= Negative 4
— Bad error behaviour \E
1st client 2nd client

‘@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula.research laboratory]

| Periodic Multicasting with Pre—Storage

= Optimize storage and
network
— Wide-area scalable
— Minimal server load achievable
— Reduced network load
— Can support standard clients

Central server

= Specials
— Can optimize network load per
subtree

= Negative
— Bad error behaviour

15t client 2nd client

& B L
“%F; University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

| Type IV — Distribution Systems

= Autonomous servers
— Requires decision making on each proxy
— Some content must be discarded
— Caching strategies

= Coordinated servers
— Requires central decision making
— Global optimization of the system

SR .-—
“fF; University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [- research laboratory]

Autonomous servers

I Simulation

= Binary tree model allows centralsever
— i 1 i I
Allows analytical comparison of optiona
» Caching
‘ PatChI_ng network link 7N
» Gleaning / '
]] ‘ 7 AN
= Considering S D
— optimal cache placement per NN
movie
— basic server cost
— per-stream costs of storage, 0.16
interface card, network link > i
— movie popularity according to s |
Zipf distribution g @ \
g OULEH:% 60 80100

/}/,/x,\ A0
i

T
- University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

| Simulation

= Example

— 500 different movies
— 220 concurrent active users
— basic server:
— interface cost:
— network link cost:
— storage cost:

= Analytical comparison
& demonstrates potential of the approach
¢ very simplified

$25000
$100/stream
$350/stream
$1000/stream

Caching

Caching
Unicast transmission

4664 Mio $

A-Patching

No caching
Client side buffer
Multicast

375 Mio $

Gleaning

Caching
Proxy client buffer
Multicast

276 Mio $

“fi University of Oslo

INF5071, Carsten Griwodz & Pal Halvorsen

.research laboratory]

| Caching Strategies

= FIFO: First-in-first-out
— Remove the oldest object in the cache in favor of new objects

= LRU: Least recently used strategy
— Maintain a list of objects
— Move to head of the list whenever accessed
— Remove the tail of the list in favor of new objects

= LFU: Least frequently used
— Maintain a list distance between last two requests per object
— Distance can be time or number of requests to other objects
— Sort list: shortest distance first
— Remove the tail of the list in favor of new objects

& J/ ..—
"%/ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [-research laboratory |

| Caching Strategies

= Considerations
— limited uplink bandwidth
» quickly exhausted

» performance degrades immediately
when working set is too large for storage space

— conditional overwrite strategies
» can be highly efficient

= ECT: Eternal, Conditional, Temporal

LFU ECT
Forget object statistics when removed » Remember object statistics forever
Cache all requested objects » Compare requested object and

replacement candidate
Log # requests or time between hits » Log times between hits

“@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

| Simulation

= Movies
—500 movies

— Zipf-distributed popularity

—1.5 MBiIt/s
—5400 sec
— File size ~7.9 GB

M. University of Oslo

INF5071, Carsten Griwodz & Pal Halvorsen

N - Central server
- N

Limited uplink

N -
7 ~. Cache

Unlimited downlinks

Clients

[simula.research laboratory |

| Effects of caching strategies on user hit rates

Cache Hit Ratio for single server, 64 GB cache Cache Hit Ratio for single server, 96 GB cache

1 1
Ww—o—e & 153
.: "%
o ° ECT
= ECT —- w \ CT o
g 0.75 FIFO & 0.75 : FIFO -=-
= = p \Q better LRU ..
%s
\
0.5 . \ - gy \ \ 0.5 . - - o . .
000170000 20000 30000 40000 50000 5000 70000 20000 30000 20000 50000
Users Users

= Hit ratio
— dumb strategies do (almost) not profit from cache size increases
— intelligent strategies profit hugely from cache size increases

— strategies that use conditional overwrite outperform other strategies

massively
e doesn’t have to be ECT

"4 University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [.research laboratory]

| Effects of caching strategies on throughput

155 MBit/s uplink usage for single server, 64 GB cache 155 MBit/s uplink usage for single server, 96 GB cache

150 P"'oz* “““““““““““““““ wmmm—- . 150
S100f 7 4 ECT - S 100
g I '," FIFO -« .g
g 4 LRU .. better g’
£ %0 “ g %0
i
0 ”]
Users Users
= Uplink usage
— profits greatly from small cache increase...... if there is a strategy

— conditional overwrite reduces uplink usage

[simula.research laboratory |

”@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen

| Effects of number of movies on uplink usage

ECT Cache uplink usage with 64 GB, 155 MBit/s link ECT Cache uplink usage with 64 GB, 622 MBit/s link
100 e 100
s —
b -~
’/
75 ﬁoo users — 75 /,---—*’
° 10000 users — 52 -~
E‘ 50 §_ T
- = 50
S better o
g o
= = 251
5000 users —
10000 users —
: m—mm—'gm—mm—mmm 00 0 00
ovies in system

= In spite of 99% hit rates
— Increasing the number of users will congest the uplink
— Note

» scheduling techniques provide no savings on low-popularity movies
e identical to unicast scenario with minimally larger caches

‘@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula . research laboratory |

| Effects of number of movies on hit ratio

ECT Cache hit ratio with 64 GB, 622 MBit/s link

HIT Hatuo

gl]
B Y
ot

ECT Cache hit ratio with 64 GB, 155 MBit/s link

E ST
0.9
0.8
0.7
06 5000 users — TN
' 10000 users --- \
0.5 \

~ TI000 2000 3000 3000 5000 G000 7000
Movies in system

Limited uplink bandwidth

Hit Ratio
o
\‘

1

0.9

S
@

S
o

0.5

1

-—--\\
. = _
5000 users —
10000 users —
better

— 1000 2000 3000 3000 5000 6000 7000
Movies in system

— Prevents the exchange of titles with medium popularity
— Unproportional drop of efficiency for more users
— Strategy can not recognize medium popularity titles

University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen

[simula.research laboratory |

Hint—based Cachin

Hit ratio development, increasing #hints, ECT history 8 Hit ratio development, increasing #hints, ECT history 64
0.9 0.9

10 hin
100 hiNtg osevee 100 hiNtg eeopeeee
1000 hints sw-- 1000 hintg « o -

HIT Hato

0.6‘|

. . 0.6 : .
700 7000 1 100 7000
Users Users

= Idea

— Caches consider requests to neighbour caches in their removal decisions
= Conclusion

— Instability due to uplink congestion can not be prevented

— Advantage exists and is logarithmic as expected

» Larger hint numbers maintain the advantage to the point of instability
— Intensity of instability is due to ECT problem

» ECT inherits IRG drawback of fixed—size histograms

University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula.research laboratory]

| Simulation: Summary

= High relevance of population sizes
— complex strategies require large customer bases

= Efficiency of small caches
— 90:10 rule—of-thumb reasonable
— unlike web caching

= Efficiency of distribution mechanisms
— considerable bandwidth savings for uncached titles

= Effects of removal strategies
— relevance of conditional overwrite
— unlike web caching, paging, swapping, ...

= Irrelevance of popularity changes on short timescales

— few cache updates
compared to many direct deliveries

“{s University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [-research laboratory |

| Coordinated servers

| Distribution Architectures

* Combined optimization
—Scheduling algorithm
—Proxy placement and dimensioning

.. \H -
origin server /< \\
A/ v
d-1st level cache i N §< <

d-2nd level cache Al

‘@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula . research laboratory |

| Distribution Architectures

* Combined optimization
—Scheduling algorithm
—Proxy placement and dimensioning

* No problems with simple scheduling mechanisms

= Examples
— Caching with unicast communication

— Caching with greedy patching
» Patching window in greedy patching is the movie length

K ..—
“fF; University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [. research laboratory |

| Distribution Architectures

origin_ "

origin_-~ i

Caching and Greedy Patching

Movies "move

o A away” from clients

5|
L sl —
= .
>
3 s 7 / N
o 3| 3 A
2 ° 1 (not shown Erl in K\
® , o/ 3]" \ s \
(&) -
2]
= \ ﬂ =
| 0.5 NCr=asing Network costs—
client].. . . / Link 41 o 0.5
200 100 0 1 Cost = client-= - - f Link
Movie (0-300 of 500) 200 100 0 Cost
-« Movie (0-300 of 500)
‘ Decreasing popularity top movie
‘@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [- research laboratory]

| Distribution Architectures

* Combined optimization
—Scheduling algorithm
—Proxy placement and dimensioning

* Problems with complex scheduling mechanisms

= Examples
— Caching with A—patching
 Patching window is optimized for minimal server load
— Caching with gleaning

» A 1st level proxy cache maintains the “client buffer” for several
clients

—Caching with MPatch
» The initial portion of the movie is cached in a 1st level proxy cache

K ..—
"%/ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [.research laboratory |

Distribution Architectures

- Y- origin server at level 6
origin server QA -

e Ve
d-1st level cache \w iﬁ:
d-2nd level cache R

10 level x caches per level x+1 cache
2"d |evel cache

1st level cache
5000 clients per level 1 cache

client

' University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula.research laboratory]

| Distribution Architectures: A—Patching

\ ya
ZW\ Central server

Unicast patch stream

position in movie (offset)

Number of concurrent streams

time
1st client 2nd client
A, =+2-F-A,
“@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula . research laboratory |

| Distribution Architectures: A—Patching

" Placement for A—patching

client)

\
\

=/

e

_ 30
Link cost Movie 1-30 (ot of 1-500)

Popular movies may be more
distant to the client

“\@L University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

| Distribution Architectures: A—Patching

" Failure of the optimization
—Implicitly assumes perfect delivery
—Has no notion of quality
—User satisfaction is ignored

= Disadvantages

—Popular movies further away from clients
» Longer distance
» Higher startup latency
» Higher loss rate
* More jitter
—Popular movies are requested more frequently

— Average delivery quality is lower

"%/ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [- research laboratory |

I Distribution Architectures: Gleaning

"= Placement for gleaning Central server

—Combines
» Caching of the full movie Unicast patch stream
 Optimized patching Proxy cache
7

e Mandatory proxy cache Proxy cache

(

=

— 2 degrees of freedom

» Gleaning server level
» Patch length

1t client 2nd client

& ,t{,“‘ .-—
“fF. University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula. research laboratory]

I Distribution Architectures: Gleaning

" Placement for gleaning

o

[4)]

Cache level (distance from client)
i

15

20

Link cost Movie 1-30 (out of 1-500)

‘@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula.research laboratory]

| Distribution Architectures: MPatch

* Placement for MPatch =
—Combines

(multicast)
» Caching of the full movie
 Partial caching in proxy servers Prefix cache |
* Multicast in access networks . g~ Prefix cache
 Patching from the full copy U?ﬁ\ %ﬁfu

A A
— 3 degrees of freedom

o Server level Unicast Unicast

 Patch length
 Prefix length

“@ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [simula.research laboratory]

I Distribution Architectures: MPatch

= Placement for MPatch
I

\!‘,A#"AWM //

Cache level (distance from client)
- N w

_ ' 30
Link cost Movie 1-30 (out of 1-500)

| Approaches

= Current approached does not consider quality

—Penalize distance in optimality calculation
—Sort

" Penalty approach

—Low penalties
» Doesn’ t achieve order because actual cost is higher @

—High penalties
» Doesn’ t achieve order because optimizer gets confused

= Sorting
—Trivial ©
—Very low resource waste

"%/ University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [- research laboratory |

| Distribution Architectures

* Combined optimization
—Scheduling algorithm
—Proxy placement and dimensioning
—Impossible to achieve optimum with autonomous caching

= Solution for complex scheduling mechanisms

= A simple solution exists:
—Enforce order according to priorities
 (simple sorting)
—Increase in resource use is marginal

K ..—
“fF; University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [. research laboratory |

| Summary

= A lot of performance can be gained using appropriate
distribution mechanisms

—type 1: delayed delivery

—type 2: prescheduled delivery

—type 3: client side caching

—type 4: network of servers combining types 1-3

= Caching is (almost) always beneficial

— better with conditional replacements / overwrites
—hints from neighboring caches

‘\@L University of Oslo INF5071, Carsten Griwodz & Pal Halvorsen [. research laboratory |

