
Distribution – Part II

5 November 2010

INF5071 – Performance in distributed systems

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems
  Combine
－  Types I, II or III
－  Network of servers

  Server hierarchy
－  Autonomous servers
－  Cooperative servers
－  Coordinated servers

  “Proxy caches”
－  Not accurate …
－  Cache servers

•  Keep copies on behalf of a
remote server

－  Proxy servers
•  Perform actions on behalf of

their clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems
  Combine
－  Types I, II or III
－  Network of servers

  Server hierarchy
－  Autonomous servers
－  Cooperative servers
－  Coordinated servers

  “Proxy caches”
－  Not accurate …
－  Cache servers

•  Keep copies on behalf of a
remote server

－  Proxy servers
•  Perform actions on behalf of

their clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems
  Combine
－  Types I, II or III
－  Network of servers

  Server hierarchy
－  Autonomous servers
－  Cooperative servers
－  Coordinated servers

  “Proxy caches”
－  Not accurate …
－  Cache servers

•  Keep copies on behalf of a
remote server

－  Proxy servers
•  Perform actions on behalf of

their clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems

  Variations
－  Gleaning

•  Autonomous, coordinated possible
•  In komssys

－  Proxy prefix caching
•  Coordinated, autonomous possible
•  In Blue Coat (which was formerly Cacheflow, which was formerly Entera)

－  Periodic multicasting with pre-storage
•  Coordinated
•  The theoretical optimum

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gleaning
－  Webster’s Dictionary: from Late Latin glennare, of Celtic origin

1.  to gather grain or other produce left by reapers
2.  to gather information or material bit by bit

  Combine patching with caching ideas
－  non-conflicting benefits of caching and patching

  Caching
－  reduce number of end-to-end transmissions
－  distribute service access points
－  no single point of failure
－  true on-demand capabilities

  Patching
－  shorten average streaming time per client
－  true on-demand capabilities

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gleaning
  Combines

Patching & Caching ideas
－ Wide-area scalable
－  Reduced server load
－  Reduced network load
－  Can support standard clients

multicast

Unicast patch stream

Central server

1st client 2nd client

Join !

cyclic
buffer

Unicast Unicast

Proxy cache
Proxy cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Proxy Prefix Caching
  Split movie
－  Prefix
－  Suffix

  Operation
－  Store prefix in prefix cache

•  Coordination necessary!

－ On demand
•  Deliver prefix immediately
•  Prefetch suffix from central

server

  Goal
－  Reduce startup latency
－ Hide bandwidth limitations,

delay and/or jitter in backbone
－  Reduce load in backbone

Client

Unicast

Unicast

Central server

Prefix cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

MCache
  One of several Prefix Caching

variations
  Combines Batching and Prefix

Caching
－  Can be optimized per movie

•  server bandwidth
•  network bandwidth
•  cache space

－ Uses multicast
－ Needs non-standard clients

Central server

1st client 2nd client

Unicast Unicast

Prefix cache
Prefix cache

Batch
(multicast)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Periodic Multicasting with Pre–Storage
  Optimize storage and

network
－ Wide-area scalable
－ Minimal server load achievable
－  Reduced network load
－  Can support standard clients

  Specials
－  Can optimize network load per

subtree

  Negative
－  Bad error behaviour

1st client 2nd client

Central server
T
h
e
i

Assumed start
of the show

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Periodic Multicasting with Pre–Storage
  Optimize storage and

network
－ Wide-area scalable
－ Minimal server load achievable
－  Reduced network load
－  Can support standard clients

  Specials
－  Can optimize network load per

subtree

  Negative
－  Bad error behaviour

1st client 2nd client

Central server

T
h
e
i

T
h
e

T
h
e

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Type IV – Distribution Systems

  Autonomous servers
－  Requires decision making on each proxy
－  Some content must be discarded
－  Caching strategies

  Coordinated servers
－  Requires central decision making
－  Global optimization of the system

  Cooperative servers
－  No quantitative research yet

Autonomous servers

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation
  Binary tree model allows
－  Allows analytical comparison of

•  Caching
•  Patching
•  Gleaning

  Considering
－  optimal cache placement per

movie
－  basic server cost
－  per-stream costs of storage,

interface card, network link
－ movie popularity according to

Zipf distribution

central server

optional

network link

cache server

0

0.08

0.16

0 20 40 80 10060re
la

tiv
e

pr
ob

ab
ili

ty
/x

/1

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation
  Example
－  500 different movies
－  220 concurrent active users
－  basic server: $25000
－  interface cost: $100/stream
－  network link cost: $350/stream
－  storage cost: $1000/stream

  Analytical comparison
  demonstrates potential of the approach
  very simplified

Caching
Caching
Unicast transmission 4664 Mio $

λ-Patching
No caching
Client side buffer
Multicast

375 Mio $

Gleaning
Caching
Proxy client buffer
Multicast

276 Mio $

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Caching Strategies

  FIFO: First-in-first-out
－  Remove the oldest object in the cache in favor of new objects

  LRU: Least recently used strategy
－ Maintain a list of objects
－ Move to head of the list whenever accessed
－  Remove the tail of the list in favor of new objects

  LFU: Least frequently used
－ Maintain a list distance between last two requests per object
－ Distance can be time or number of requests to other objects
－  Sort list: shortest distance first
－  Remove the tail of the list in favor of new objects

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Caching Strategies
  Considerations
－  limited uplink bandwidth

•  quickly exhausted
•  performance degrades immediately

when working set is too large for storage space

－  conditional overwrite strategies
•  can be highly efficient

  ECT: Eternal, Conditional, Temporal

LFU
Forget object statistics when removed
Cache all requested objects

Log # requests or time between hits

ECT
Remember object statistics forever
Compare requested object and
replacement candidate
Log times between hits

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation

  Movies
－ 500 movies
－ Zipf-distributed popularity
－ 1.5 MBit/s
－ 5400 sec
－ File size ~7.9 GB

Clients

Unlimited downlinks

Limited uplink

Central server

Cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of caching strategies on user hit rates

0.5

0.75

1

0 500010000 20000 30000 40000 50000

H
it

R
at

io

Users

Cache Hit Ratio for single server, 64 GB cache

✧
✧
✧
✧✧✧✧

✧ ✧✧ ✧✧✧ ✧

✧

■

■
■■■■■

■

✕✕✕
✕✕✕✕ ✕

0.5

0.75

1

0 500010000 20000 30000 40000 50000

H
it

R
at

io

Users

Cache Hit Ratio for single server, 96 GB cache

✧✧
✧✧✧✧✧✧ ✧ ✧✧ ✧✧✧ ✧ ✧ ✧ ✧

■

■■■■■■ ■
✕✕
✕✕✕✕✕ ✕ ✕ ✕ ✕ ✕

✕

✕

ECT
FIFO ■

LRU ✕

✧ECT
FIFO ■

LRU ✕

✧

  Hit ratio
－  dumb strategies do (almost) not profit from cache size increases
－  intelligent strategies profit hugely from cache size increases

－  strategies that use conditional overwrite outperform other strategies

massively
•  doesn’t have to be ECT

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of caching strategies on throughput

  Uplink usage
－  profits greatly from small cache increase...... if there is a strategy

－  conditional overwrite reduces uplink usage

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of number of movies on uplink usage

  In spite of 99% hit rates
－  Increasing the number of users will congest the uplink
－ Note

•  scheduling techniques provide no savings on low-popularity movies
•  identical to unicast scenario with minimally larger caches

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Effects of number of movies on hit ratio

  Limited uplink bandwidth
－  Prevents the exchange of titles with medium popularity
－ Unproportional drop of efficiency for more users
－  Strategy can not recognize medium popularity titles

better

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Hint–based Caching

  Idea
－  Caches consider requests to neighbour caches in their removal decisions

  Conclusion
－  Instability due to uplink congestion can not be prevented
－  Advantage exists and is logarithmic as expected

•  Larger hint numbers maintain the advantage to the point of instability

－  Intensity of instability is due to ECT problem
•  ECT inherits IRG drawback of fixed–size histograms

better

Hit ratio development, increasing #hints, ECT history 8 Hit ratio development, increasing #hints, ECT history 64

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Simulation: Summary
  High relevance of population sizes
－  complex strategies require large customer bases

  Efficiency of small caches
－  90:10 rule–of–thumb reasonable
－  unlike web caching

  Efficiency of distribution mechanisms
－  considerable bandwidth savings for uncached titles

  Effects of removal strategies
－  relevance of conditional overwrite
－  unlike web caching, paging, swapping, ...

  Irrelevance of popularity changes on short timescales
－  few cache updates

compared to many direct deliveries

Coordinated servers

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning

client

1st level cache

2nd level cache

d-2nd level cache

d-1st level cache

origin server

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning

  No problems with simple scheduling mechanisms
  Examples
－ Caching with unicast communication
－ Caching with greedy patching

•  Patching window in greedy patching is the movie length

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

top movie Decreasing popularity

Network for free
(not shown – all at origin)

Increasing network costs
0!100!200!

Movie (0-300 of 500)!

0.5!
1! Link!client!

1!

2!

3!

4!

5!

origin!

C
!a!c
!h!e
! !L
!e!v
!e!l
!

Cost!

Caching"
Caching and Greedy Patching"

0!100!200!

Movie (0-300 of 500)!

0.5!
1! Link!client!

1!

2!

3!

4!

5!

origin!

C
!a!c
!h!e
! ! L
!e!v
!e!l
!

Cost!

Movies ”move
away” from clients

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning

  Problems with complex scheduling mechanisms
  Examples
－ Caching with λ–patching

•  Patching window is optimized for minimal server load

－ Caching with gleaning
•  A 1st level proxy cache maintains the ”client buffer” for several

clients

－ Caching with MPatch
•  The initial portion of the movie is cached in a 1st level proxy cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

client

1st level cache

2nd level cache

d-2nd level cache

d-1st level cache

origin server

5000 clients per level 1 cache

10 level x caches per level x+1 cache

origin server at level 6

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: λ–Patching

UM F Δ⋅⋅=Δ 2

time

po
si

tio
n

in
 m

ov
ie

 (o
ffs

et
)

N
um

be
r o

f c
on

cu
rr

en
t s

tre
am

s

multicast

Unicast patch stream

Central server

1st client 2nd client

cyclic
buffer

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: λ–Patching

  Placement for λ–patching

Popular movies may be more
distant to the client

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: λ–Patching

  Failure of the optimization
－ Implicitly assumes perfect delivery
－ Has no notion of quality
－ User satisfaction is ignored

  Disadvantages
－ Popular movies further away from clients

•  Longer distance
•  Higher startup latency
•  Higher loss rate
•  More jitter

－ Popular movies are requested more frequently
－ Average delivery quality is lower

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: Gleaning

  Placement for gleaning
－ Combines

•  Caching of the full movie
•  Optimized patching
•  Mandatory proxy cache

－ 2 degrees of freedom
•  Gleaning server level
•  Patch length

multicast

Unicast patch stream

Central server

1st client 2nd client

cyclic
buffer

Unicast Unicast

Proxy cache
Proxy cache

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: Gleaning

  Placement for gleaning

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: MPatch

  Placement for MPatch
－ Combines

•  Caching of the full movie
•  Partial caching in proxy servers
•  Multicast in access networks
•  Patching from the full copy

－ 3 degrees of freedom
•  Server level
•  Patch length
•  Prefix length

Central server

1st client 2nd client

Unicast Unicast

Prefix cache
Prefix cache

Batch
(multicast)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures: MPatch

  Placement for MPatch

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Approaches
  Current approached does not consider quality
－ Penalize distance in optimality calculation
－ Sort

  Penalty approach
－ Low penalties

•  Doesn’t achieve order because actual cost is higher

－ High penalties
•  Doesn’t achieve order because optimizer gets confused

  Sorting
－ Trivial
－ Very low resource waste

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution Architectures

  Combined optimization
－ Scheduling algorithm
－ Proxy placement and dimensioning
－ Impossible to achieve optimum with autonomous caching

  Solution for complex scheduling mechanisms

  A simple solution exists:
－ Enforce order according to priorities

•  (simple sorting)

－ Increase in resource use is marginal

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Summary

  A lot of performance can be gained using appropriate
distribution mechanisms
－ type 1: delayed delivery
－ type 2: prescheduled delivery
－ type 3: client side caching
－ type 4: network of servers combining types 1-3

  Caching is (almost) always beneficial
－ better with conditional replacements / overwrites
－ hints from neighboring caches

