
Distribution – Part III

5 November 2010

INF5071 – Performance in distributed systems:

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

backbone
network

local
distribution

network

local
distribution

network

Client-Server

local
distribution

network

Traditional distributed computing

Successful architecture, and will continue to be so (adding
proxy servers)

Tremendous engineering necessary to make server farms
scalable and robust

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distribution with proxies
  Hierarchical distribution

system
－ E.g. proxy caches that

consider popularity

  Popular data replicated
more frequently and kept
close to clients

  Unpopular ones close to the
root servers

end-systems

local servers

root servers

regional
servers

completeness of
available content

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Peer-to-Peer (P2P)

backbone
network

local
distribution

network

local
distribution

network

local
distribution

network

Really an old idea - a distributed system architecture
- No centralized control
- Nodes are symmetric in function

Typically, many nodes, but unreliable and heterogeneous

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Overlay networks

LAN

backbone
network

backbone
network backbone

network

LAN

LAN
LAN

IP routing

IP link

IP path

Overlay node

Overlay link

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

P2P
  Many aspects similar to proxy caches
－ Nodes act as clients and servers
－ Distributed storage
－  Bring content closer to clients
－  Storage limitation of each node
－ Number of copies often related to content popularity
－ Necessary to make replication and de-replication decisions
－  Redirection

  But
－ No distinguished roles
－ No generic hierarchical relationship

•  At most hierarchy per data item
－  Clients do not know where the content is

•  May need a discovery protocol
－  All clients may act as roots (origin servers)
－ Members of the P2P network come and go (churn)

Examples: Napster

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Napster
  Program for sharing (music) files over the Internet

  Approach taken
－  Central index
－  Distributed storage and download
－  All downloads are shared

  P2P aspects
－  Client nodes act also as file servers

  Shut down July 2001, but Roxio Inc. has rebrand the
pressplay music service as Napster 2.0, sold for $121M
2008, Napster 4 available in UK…

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Napster

  Client connects to Napster
with login and password

  Transmits current listing of
shared files

  Napster registers username,
maps username to IP address
and records song list

central index"

join"

..."

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Napster

central index"

query"
answer"

..."

  Client sends song request to
Napster server

  Napster checks song database

  Returns matched songs with
usernames and IP addresses
(plus extra stats)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Napster

central index"

get"
file"

..."

  User selects a song, download
request sent straight to user

  Machine contacted if available

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Napster: Assessment
  Scalability, fairness, load balancing
－  Large distributed storage
－  Replication to querying nodes

•  Number of copies increases with popularity

－ Unavailability of files with low popularity
－ Network topology is not accounted for at all, i.e.,

latency may be increased and bandwidth may be low

  Content location
－  Simple, centralized search/location mechanism
－  Can only query by index terms

  Failure resilience
－ No dependencies among normal peers
－  Index server as single point of failure

Examples: Gnutella

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gnutella
  Program for sharing files over the Internet

  Approach taken
－  Pure P2P system, centralized nothing

(each peer typically connect to 5 other peers)
－ Dynamically built overlay network
－ Query for content by overlay broadcast
－ No index maintenance

  P2P aspects
－  Peer-to-peer file sharing
－  Peer-to-peer querying
－  Entirely decentralized architecture

  Many iterations to fix poor initial design (lack of scalability)
－  introduction of leaves and ultrapeers to find shorter paths
－  each leave connected to few (typically 3) ultrapeers which again

connected to many (typically 32) other ultrapeers
－ …

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gnutella: Joining
  Connect to one known

host and send a
broadcast ping

－  Can be any host, hosts

transmitted through
word-of-mouth or host-
caches

－  Use overlay broadcast
ping through network
with TTL of 7
(later 4)

TTL 1 TTL 2 TTL 3 TTL 4

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gnutella: Joining

Hosts that are not
overwhelmed respond with
a routed pong

Gnutella caches these
IP addresses or replying
nodes as neighbors

In the example the grey nodes

do not respond within a
certain amount
of time (they are
overloaded)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gnutella: Query

  Query by broadcasting
in the overlay

－  Send query to all

overlay neighbors

－ Overlay neighbors
forward query to all
their neighbors

－  Up to 7 layers deep
(TTL 7), and later 4

query

query

query

query

TTL:7

TTL:6

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gnutella: Query
  Send routed responses

－  To the overlay node that was

the source of the broadcast
query

－  Querying client receives
several responses

－  User receives a list of files that
matched the query and a
corresponding IP address

  Later revised to directly
deliver responses

query response

query
response

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gnutella: Transfer
  File transfer

－  Using direct communication

－  File transfer protocol not part of

the Gnutella specification

do
w

nl
oa

d
re

qu
es

t
re

qu
es

te
d

fil
e

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Gnutella: Assessment
  Scalability, fairness, load balancing
－  Replication to querying nodes

•  Number of copies increases with popularity
－  Large distributed storage
－ Unavailability of files with low popularity
－  Bad scalability, uses flooding approach
－ Network topology is not accounted for at all, latency may be increased

  Content location
－ No limits to query formulation
－  Less popular files may be outside TTL

  Failure resilience
－ No single point of failure
－ Many known neighbors
－  Assumes quite stable relationships

Examples: Freenet

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Freenet
  Program for sharing files over the Internet
－ Focus on anonymity

  Approach taken
－  Purely P2P, centralized nothing
－ Dynamically built overlay network
－ Query for content by hashed query and best-first-search
－  Caching of hash values and content along the route
－  Content forwarding in the overlay

  P2P aspects
－  Peer-to-peer file sharing
－  Peer-to-peer querying
－  Entirely decentralized architecture
－  Anonymity

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Freenet: Nodes and Data

  Nodes
－ Routing tables - contain IP addresses of other nodes and the

hash values they hold (resp. held)

  Data is indexed with a hash values
－ “Identifiers” are hashed
－ Identifiers may be keywords, author ids, or the content itself
－ Secure Hash Algorithm (SHA-1) produces a “one-way” 160-

bit key
－ Content-hash key (CHK) = SHA-1(content)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Freenet: Storing and Retrieving Data
  Storing Data
－ Data is moved to a node with arithmetically close keys

1. The key and data are sent to the local node
2. The key and data is forwarded to the node with the nearest key
Repeat 2 until maximum number of hops is reached

  Retrieving data
－  Best First Search

1. An identifier is hashed into a key
2. The key is sent to the local node
3. If data is not in local store, the request is forwarded to the best neighbor
Repeat 3 with next best neighbor until data found, or request times out
4. If data is found, or hop-count reaches zero, return the data or error along

the chain of nodes (if data found, intermediary nodes create entries in their
routing tables)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Freenet: Best First Search

  Heuristics for Selecting Direction
>RES: Returned most results
<TIME: Shortest satisfaction time
<HOPS: Min hops for results
>MSG: Sent us most messages (all types)
<QLEN: Shortest queue
<LAT: Shortest latency
>DEG: Highest degree

query"
?"...

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Freenet: Routing Algorithm

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Freenet: Assessment
  Scalability, fairness, load balancing
－  Caching in the overlay network

•  Access latency decreases with popularity

－  Large distributed storage
－  Fast removal of files with low popularity

•  A lot of storage wasted on highly popular files

－ Network topology is not accounted for

  Content location
－  Search by hash key: limited ways to formulate queries
－  Content placement changes to fit search pattern
－  Less popular files may be outside TTL

  Failure resilience
－ No single point of failure

Examples: FastTrack,
Morpheus, OpenFT

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

FastTrack, Morpheus, OpenFT

  Peer-to-peer file sharing protocol

  Three different nodes

－ USER
•  Normal nodes

－ SEARCH
•  Keep an index of “their” normal nodes
•  Answer search requests

－ INDEX
•  Keep an index of search nodes
•  Redistribute search requests

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

FastTrack, Morpheus, OpenFT

INDEX

SEARCH

USER

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

FastTrack, Morpheus, OpenFT

INDEX

SEARCH

USER

?

!
!

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

FastTrack, Morpheus, OpenFT: Assessment
  Scalability, fairness, load balancing
－  Large distributed storage
－  Avoids broadcasts
－  Load concentrated on super nodes (index and search)
－  Network topology is partially accounted for
－  Efficient structure development

  Content location
－  Search by hash key: limited ways to formulate queries
－  All indexed files are reachable
－  Can only query by index terms

  Failure resilience
－  No single point of failure but overlay networks of index servers (and search

servers) reduces resilience
－  Relies on very stable relationship / Content is registered at search nodes
－  Relies on a partially static infrastructure

Examples: BitTorrent

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent

  Distributed download system

  Content is distributed in segments

  Tracker
－ One central download server per content
－ Approach to fairness (tit-for-tat) per content

－ No approach for finding the tracker

  No content transfer protocol included

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent

Tracker

Segment download operation
 Tracker tells peer source and

number of segment to get
 Peer retrieves content in pull

mode
 Peer reports availability of

new segment to tracker

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent

Tracker

Rarest first strategy

No second input stream:
not contributed enough

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent

Tracker

All nodes: max 2 concurrent streams in and out No second input stream:
not contributed enough

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent

Tracker

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent

Tracker

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent

Tracker

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

BitTorrent Assessment
  Scalability, fairness, load balancing
－ Large distributed storage
－ Avoids broadcasts
－ Transfer content segments rather than complete content
－ Does not rely on clients staying online after download

completion
－ Contributors are allowed to download more

  Content location
－ Central server approach

  Failure resilience
－ Tracker is single point of failure

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Comparison

Napster Gnutella FreeNet FastTrack BitTorrent

Scalability
Limited by
flooding

Uses caching

Separate
overlays per

file

Routing
information

One central

server

Neighbour list

Index server

One tracker

per file

Lookup
cost

O(1)

O(log(#nodes))

O(#nodes)

O(1)

O(#blocks)

Physical
locality

By search
server

assignment

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Comparison
Napster Gnutella FreeNet FastTrack BitTorrent

Load
balancing

Many replicas of popular

content

Content
placement

changes to fit
search

Load
concentrated

on
supernodes

Rarest first

copying

Content
location

All files

reachable

Unpopular files may be

outside TTL

All files
reachable
Search by

hash

External issue

Uses index
server

Search by
index term

Uses flooding

Search by

hash

Failure
resilience

Index server
as single point

of failure

No single point of failure

Overlay
network of

index servers

Tracker as
single point of

failure

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

P4P – saving money on P2P

top-level ISPs

end users

PAY

PAY

PAY

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

P4P – saving money on P2P

top-level ISPs

end users

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

P4P – saving money on P2P

  Background
－ users want context quickly
－ ISPs want to save money
－ closer peers deliver faster (most of the time)

  Approach
－ ISPs do absolutely not want to know what people exchange

in P2P systems
－ provide “hints” to P2P applications
－ order peers by “price”

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

little problem ...

top-level ISPs

end users

nobody wants
to talk to me 

Peer-to-Peer
Lookup Protocols

Distributed Hash Tables (DHTs)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Challenge: Fast, efficient lookups

  Napster has one central server
  Gnutella uses flooding
  Freenet uses a distributed approach, but their key

based heuristics make items with similar keys to
cluster

  Distributed Hash Tables (DHTs) use a more structured
key based routing
－ distribution properties of Gnutella and Freenet
－ efficiency and lookup guarantee of Napster

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

key

hash
function

hash table

pos

0
1
2
3
..
..
..
N

y z

Hash
bucket

lookup(key) → data
Insert(key, data)

Lookup Based on Hash Tables

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Distributed Hash Tables (DHTs)

Distributed application

Distributed hash tables

Lookup (key) data

node ….

Insert(key, data)

node node node

  Key identifies data uniquely
  Nodes are the hash buckets
  The keyspace is partitioned
－  usually a node with ID = X has elements with keys close to X
－  must define a useful key nearness metric
－  DHT should balances keys and data across nodes

  Keep the hop count small
  Keep the routing tables “right size”
  Stay robust despite rapid changes in membership

Examples: Chord

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Chord

  Approach taken
－ Only concerned with efficient indexing
－  Distributed index - decentralized lookup service
－  Inspired by consistent hashing: SHA-1 hash
－  Content handling is an external problem entirely

•  No relation to content
•  No included replication or caching

  P2P aspects
－  Every node must maintain keys
－  Adaptive to membership changes
－  Client nodes act also as file servers

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Chord IDs & Consistent Hashing
  m bit identifier space for both keys and nodes
－  Key identifier = SHA-1(key)

－  Node identifier = SHA-1(IP address)

－  Both are uniformly distributed

  Identifiers ordered in a circle modulo 2m

  A key is mapped to the first
node whose id is equal to or
follows the key id

Key=“LetItBe” ID=54
SHA-1

IP=“198.10.10.1” ID=123 SHA-1

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Routing: Everyone-Knows-Everyone
  Every node knows of every other node - requires global information

  Routing tables are large – N

Hash(“LetItBe”) = K54

Where is
“LetItBe”?

Requires O(1) hops

“N42 has LetItBe”

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Hash(“LetItBe”) = K54

Where is
“LetItBe”?

Routing: All Know Their Successor
  Every node only knows its successor in the ring

  Small routing table – 1

Requires O(N) hops

“N42 has LetItBe”

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Routing: “Finger Tables”
  Every node knows m other nodes in the ring
  Increase distance exponentially
  Finger i points to successor of n+2i

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Joining the Ring

  Three step process:
－  Initialize all fingers of new node - by asking another node for help
－  Update fingers of existing nodes
－  Transfer keys from successor to new node

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Handling Failures
  Failure of nodes might cause incorrect lookup

  N80 doesn’t know correct successor, so lookup fails
  One approach: successor lists
－  Each node knows r immediate successors
－  After failure find first known live successor
－  Increased routing table size

N120"

N113"

N102"

N80"

N85"

N10"

Lookup(90)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Chord Assessment
  Scalability, fairness, load balancing
－  Large distributed index
－  Logarithmic search effort
－  Network topology is not accounted for
－  Routing tables contain log(#nodes)
－  Quick lookup in large systems, low variation in lookup costs

  Content location
－  Search by hash key: limited ways to formulate queries
－  All indexed files are reachable
－  Log(#nodes) lookup steps
－  Not restricted to file location

  Failure resilience
－  No single point of failure
－  Not in basic approach

•  Successor lists allow use of neighbors to failed nodes
•  Salted hashes allow multiple indexes

－  Relies on well-known relationships, but fast awareness of disruption and
rebuilding

Examples: Pastry

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Pastry
  Approach taken
－  Only concerned with efficient indexing
－  Distributed index - decentralized lookup service
－  Uses DHTs
－  Content handling is an external problem entirely

•  No relation to content
•  No included replication or caching

  P2P aspects
－  Every node must maintain keys
－  Adaptive to membership changes
－  Leaf nodes are special
－  Client nodes act also as file servers

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Pastry
  DHT approach
－  Each node has unique 128-bit nodeId

•  Assigned when node joins
•  Used for routing

－  Each message has a key
－  NodeIds and keys are in base 2b

•  b is configuration parameter with typical value 4 (base = 16, hexadecimal digits)
－  Pastry node routes the message to the node with the closest nodeId to the key
－  Number of routing steps is O(log N)
－  Pastry takes into account network locality

  Each node maintains
－  Routing table is organized into ⎡log2b N⎤ rows with 2b-1 entry each
－  Neighborhood set M — nodeId’s, IP addresses of ⎪M⎪ closest nodes, useful to

maintain locality properties
－  Leaf set L — set of ⎪L⎪ nodes with closest nodeId

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Pastry Routing

NodeId 10233102

0-??????? 2-??????? 3-???????

10-3-?????
1-3-?????? 1-2-??????

10-0-?????
1-1-??????

102-0-????
10-1-?????

10233-0-??
1023-2-??? 1023-1-??? 1023-0-???
102-2-???? 102-1-????

102331-2-?
10233-2-??

1-???????
1-0-??????

102-?????
102-3-????

10233-1-??
102331-0-?

1023310-2

1023-3-???

1023310-0
102331-1-?

1023310-1
102331-1-?
10233-1-??

1023310-1

Routing table

b=2, so nodeId
is base 4

2b-1 entries per row

⎡ l
og

2b
 N

 ⎤
ro

w
s SELF

SELF

SELF
SELF

0-2212102 2-2301203 3-1203203

10-3-23302
1-3-021022 1-2-230203

10-0-31203
1-1-301233

102-0-0230
10-1-32102

10233-0-01
1023-2-121 1023-1-000 1023-0-322
102-2-2302 102-1-1302

102331-2-0
10233-2-32

MARK
MARK

MARK

MARK

SMALLER LARGER

10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

Leaf set
Contains the

nodes that are
numerically

closest to
local node

10200230 13021022
33213321 31203203 22301203 02212102
31301233 11301233

Neighborhood set
Contains the

nodes that are
closest to

local node
according to

proximity metric

Entries in the nth row
share the first n-1 digits
with current node
common prefix – next digit – rest

Entries in the mth column
have m as nth row digit

Entries with no suitable
nodeId are left empty

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

1331"
X1: 1-0-30 | 1-1-23 | 1-2-11 | 1-3-31!

1211"

X2: 12-0-1 | 12-1-1 | 12-2-3 | 12-3-3" 1223"

L: 1232 | 1221 | 1300 | 1301"

2331"

X0: 0-130 | 1-331 | 2-331 | 3-001"

source"

1221"

dest"

Pastry Routing
1.  Search leaf set for exact match
2.  Search route table for entry with at one

more digit common in the prefix
3.  Forward message to node with equally

number of digits in prefix,
but numerically closer in leaf set

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Pastry Assessment

  Scalability, fairness, load balancing
－ Distributed index of arbitrary size
－  Support for physical locality and locality by hash value
－  Stochastically logarithmic search effort
－ Network topology is partially accounted for, given an additional metric for

physical locality
－  Stochastically logarithmic lookup in large systems, variable lookup costs

  Content location
－  Search by hash key: limited ways to formulate queries
－  All indexed files are reachable
－ Not restricted to file location

  Failure resilience
－ No single point of failure
－  Several possibilities for backup routes

Examples: Tapestry

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Tapestry

  Approach taken
－ Only concerned with self-organizing indexing
－  Distributed index - decentralized lookup service
－  Uses DHTs
－  Content handling is an external problem entirely

•  No relation to content
•  No included replication or caching

  P2P aspects
－  Every node must maintain keys
－  Adaptive to changes in membership and value change

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Routing and Location
  Namespace (nodes and objects)
－  SHA-1 hash: 160 bits length
－  Each object has its own hierarchy rooted at RootID = hash(ObjectID)

  Prefix-routing [JSAC 2004]

－  Router at hth hop shares prefix of length ≥h digits with destination
－  local tables at each node (neighbor maps)
－  route digit by digit: 4***  42**  42A*  42AD
－  neighbor links in levels

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Routing and Location
  Suffix routing [tech report 2001]

－  Router at hth hop shares suffix of length ≥h digits with destination
－  Example: 5324 routes to 0629 via

5324  2349  1429  7629  0629

  Tapestry routing
－  Cache pointers to all copies
－  Caches are soft-state
－  UDP Heartbeat and TCP timeout to verify route availability
－  Each node has 2 backup neighbors
－  Failing primary neighbors are kept for some time (days)
－  Multiple root nodes possible, identified via hash functions

•  Search value in a root if its hash is that of the root
•  Choosing a root node

  Choose a random address
  Route towards that address
  If no route exists, choose deterministically, a surrogate

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Routing and Location
  Object location
－  Root responsible for storing object’s location (but not the

object)
－  Publish / search both routes incrementally to root

  Locates objects
－  Object: key/value pair

•  E.g. filename/file

－  Automatic replication of keys
－  No automatic replication of values

  Values
－ May be replicated
－ May be stored in erasure-coded fragments

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Tapestry

Insert(, key K, value V) V #K
#addr 1
#addr 2
…

(#K,●)
(#K,●)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Tapestry
V

(#K,●)
(#K,●)

#K
#addr 1
#addr 2
…

?K

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

●

caching

result

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Tapestry
V

(#K,●)
(#K,●)

●

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Tapestry
V

(#K,●)
(#K,●)

●

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

Move(, key K, value V)

V

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Tapestry

(#K,●)
(#K,●)

●

(#K,●)
(#K,●)

(#K,●)

(#K,●)

(#K,●)

V

(#K,●)

(#K,●)

●
Stays wrong
till timeout

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Tapestry Assessment
  Scalability, fairness, load balancing
－ Distributed index(es) of arbitrary size
－  Limited physical locality of key access by caching and nodeId selection
－  Variable lookup costs
－  Independent of content scalability

  Content location
－  Search by hash key: limited ways to formulate queries
－  All indexed files are reachable
－ Not restricted to file location

  Failure resilience
－ No single point of failure
－  Several possibilities for backup routes
－  Caching of key resolutions
－ Use of hash values with several salt values

Comparison

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Comparison

Chord Pastry Tapestry

Routing
information

Log(#nodes)
routing table size

Log(#nodes) x (2b – 1)
routing table size

At least log(#nodes) routing
table size

Lookup cost Log(#nodes)
lookup cost

Approx. log(#nodes)
lookup cost

Variable lookup cost

Physical
locality

By neighbor list In mobile tapestry

Failure
resilience

No resilience in
basic version

Additional
successor lists
provide resilience

No single point of
failure
Several backup route

No single point of failure
Several backup route
Alternative hierarchies

Streaming in Peer-to-peer networks

Applications:

Promise

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Promise
  Video streaming in Peer-to-Peer systems
－  Video segmentation into many small segments
－  Pull operation
－  Pull from several sources at once

  Based on Pastry and CollectCast

  CollectCast
－  Adds rate/data assignment
－  Evaluates

•  Node capabilities
•  Overlay route capabilities

－ Uses topology inference
•  Detects shared path segments - using ICMP similar to traceroute
•  Tries to avoid shared path segments
•  Labels segments with quality (or goodness)

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Promise

Receiver

active sender

active sender

standby sender active sender

Thus, Promise is a multiple sender to one receiver P2P media
streaming system which 1) accounts for different capabilities,
2) matches senders to achieve best quality, and 3) dynamically
adapts to network fluctuations and peer failure

Each active sender:
•  receives a control packet specifying which data segments, data rate, etc.,
•  pushes data to receiver as long as no new control packet is received

standby sender

The receiver:
•  sends a lookup request
 using DHT
•  selects some active
 senders, control packet
•  receives data as long
as
 no errors/changes
occur
•  if a change/error is
 detected, new active
 senders may be
selected

SplitStream

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

SplitStream

  Video streaming in Peer-to-Peer systems
－ Uses layered video
－ Uses overlay multicast
－ Push operation
－ Build disjoint overlay multicast trees

  Based on Pastry

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

SplitStream

Source: full quality movie

Stripe 2

Stripe 1

Each node:
•  joins as many multicast trees as there are stripes (K)
•  may specify the number of stripes they are willing to act as
 router for, i.e., according to the amount of resources available

Each movie is split into K stripes and each
stripe is multicasted using a separate three

Thus, SplitStream is a multiple sender to multiple receiver P2P system which
distributes the forwarding load while respecting each node’s resource limitations,
but some effort is required to build the forest of multicast threes

INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo

Some References
1.  M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream:

High-bandwidth multicast in a cooperative environment", SOSP'03, Lake Bolton, New York,
October 2003

2.  Mohamed Hefeeda, Ahsan Habib, Boyan Botev, Dongyan Xu, Bharat Bhargava, "Promise:
Peer-to-Peer Media Streaming Using Collectcast", ACM MM’03, Berkeley, CA, November 2003

3.  Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications”, ACM SIGCOMM’01

4.  Ben Y. Zhao, John Kubiatowicz and Anthony Joseph, “Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing”, UCB Technical Report CSD-01-1141, 1996

5.  John Kubiatowicz, “Extracting Guarantees from Chaos”, Comm. ACM, 46(2), February 2003
6.  Antony Rowstron and Peter Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems”, Middleware’01, November 2001

