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distribution 

network 

Traditional distributed computing 
 
Successful architecture, and will continue to be so (adding 
proxy servers) 
 
Tremendous engineering necessary to make server farms 
scalable and robust 
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Distribution with proxies 
  Hierarchical distribution 

system 
－ E.g. proxy caches that 

consider popularity 

  Popular data replicated 
more frequently and kept 
close to clients 
 

  Unpopular ones close to the 
root servers 

end-systems 

local servers 

root servers 

regional 
servers 

completeness of  
available content 
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Peer-to-Peer (P2P) 

 
backbone 
network 

 

local 
distribution 

network 

local 
distribution 

network 

local 
distribution 

network 

Really an old idea - a distributed system architecture 
- No centralized control 
- Nodes are symmetric in function 

Typically, many nodes, but unreliable and heterogeneous 
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P2P 
  Many aspects similar to proxy caches 
－ Nodes act as clients and servers 
－ Distributed storage 
－  Bring content closer to clients 
－  Storage limitation of each node 
－ Number of copies often related to content popularity 
－ Necessary to make replication and de-replication decisions 
－  Redirection 

  But 
－ No distinguished roles 
－ No generic hierarchical relationship 

•  At most hierarchy per data item 
－  Clients do not know where the content is 

•  May need a discovery protocol 
－  All clients may act as roots (origin servers) 
－ Members of the P2P network come and go (churn) 



Examples: Napster 
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Napster 
  Program for sharing (music) files over the Internet 

 
  Approach taken 
－  Central index 
－  Distributed storage and download 
－  All downloads are shared 

  P2P aspects 
－  Client nodes act also as file servers 

 

  Shut down July 2001, but Roxio Inc. has rebrand the 
pressplay music service as Napster 2.0, sold for $121M 
2008, Napster 4 available in UK… 
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Napster 

  Client connects to Napster 
with login and password 

  Transmits current listing of 
shared files 

  Napster registers username, 
maps username to IP address 
and records song list 

central index"

join"

..."
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Napster 

central index"

query"
answer"

..."

  Client sends song request to 
Napster server 

  Napster checks song database 

  Returns matched songs with 
usernames and IP addresses 
(plus extra stats) 
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Napster 

central index"

get"
file"

..."

  User selects a song, download 
request sent straight to user 

  Machine contacted if available 
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Napster: Assessment 
  Scalability, fairness, load balancing 
－  Large distributed storage 
－  Replication to querying nodes 

•  Number of copies increases with popularity 

－ Unavailability of files with low popularity 
－ Network topology is not accounted for at all, i.e., 

latency may be increased and bandwidth may be low  
 

  Content location 
－  Simple, centralized search/location mechanism 
－  Can only query by index terms 

 

  Failure resilience 
－ No dependencies among normal peers 
－  Index server as single point of failure 



Examples: Gnutella 
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Gnutella 
  Program for sharing files over the Internet 

 
  Approach taken 
－  Pure P2P system, centralized nothing 

(each peer typically connect to 5 other peers) 
－ Dynamically built overlay network 
－ Query for content by overlay broadcast 
－ No index maintenance 

 
  P2P aspects 
－  Peer-to-peer file sharing 
－  Peer-to-peer querying 
－  Entirely decentralized architecture 

 
  Many iterations to fix poor initial design (lack of scalability) 
－  introduction of leaves and ultrapeers to find shorter paths 
－  each leave connected to few (typically 3) ultrapeers which again 

connected to many (typically 32) other ultrapeers 
－ … 
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Gnutella: Joining 
  Connect to one known 

host and send a 
broadcast ping 
 
－  Can be any host, hosts 

transmitted through 
word-of-mouth or host-
caches 
 
 

－  Use overlay broadcast 
ping through network 
with TTL of 7 
(later 4) 

TTL 1 TTL 2 TTL 3 TTL 4 
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Gnutella: Joining 

Hosts that are not 
overwhelmed respond with 
a routed pong 
 

Gnutella caches these  
IP addresses or replying 
nodes as neighbors 

 
In the example the grey nodes 

do not respond within a 
certain amount  
of time (they are 
overloaded) 
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Gnutella: Query 

  Query by broadcasting 
in the overlay 
 
－  Send query to all 

overlay neighbors 
 

－ Overlay neighbors 
forward query to all 
their neighbors 
 

－  Up to 7 layers deep 
(TTL 7), and later 4 
 

query 

query 

query 

query 

TTL:7 

TTL:6 
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Gnutella: Query 
  Send routed responses 

 
－  To the overlay node that was 

the source of the broadcast 
query 
 

－  Querying client receives 
several responses 
 

－  User receives a list of files that 
matched the query and a 
corresponding IP address 
 
 

  Later revised to directly 
deliver responses 

query response 

query 
response 
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Gnutella: Transfer 
  File transfer 

 
－  Using direct communication 

 
－  File transfer protocol not part of 

the Gnutella specification 

do
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Gnutella: Assessment 
  Scalability, fairness, load balancing 
－  Replication to querying nodes 

•  Number of copies increases with popularity 
－  Large distributed storage 
－ Unavailability of files with low popularity 
－  Bad scalability, uses flooding approach 
－ Network topology is not accounted for at all, latency may be increased 

 

  Content location 
－ No limits to query formulation 
－  Less popular files may be outside TTL 

 

  Failure resilience 
－ No single point of failure 
－ Many known neighbors 
－  Assumes quite stable relationships 



Examples: Freenet 
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Freenet 
  Program for sharing files over the Internet 
－ Focus on anonymity 

 

  Approach taken 
－  Purely P2P, centralized nothing 
－ Dynamically built overlay network 
－ Query for content by hashed query and best-first-search 
－  Caching of hash values and content along the route 
－  Content forwarding in the overlay 

 

  P2P aspects 
－  Peer-to-peer file sharing 
－  Peer-to-peer querying 
－  Entirely decentralized architecture 
－  Anonymity 



INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo 

Freenet: Nodes and Data 

  Nodes 
－ Routing tables - contain IP addresses of other nodes and the 

hash values they hold (resp. held) 

  Data is indexed with a hash values 
－ “Identifiers” are hashed 
－ Identifiers may be keywords, author ids, or the content itself 
－ Secure Hash Algorithm (SHA-1) produces a “one-way” 160-

bit key 
－ Content-hash key (CHK) = SHA-1(content) 
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Freenet: Storing and Retrieving Data 
  Storing Data 
－ Data is moved to a node with arithmetically close keys 

1. The key and data are sent to the local node 
2. The key and data is forwarded to the node with the nearest key 
Repeat 2 until maximum number of hops is reached 

  Retrieving data 
－  Best First Search 

1. An identifier is hashed into a key 
2. The key is sent to the local node 
3. If data is not in local store, the request is forwarded to the best neighbor 
Repeat 3 with next best neighbor until data found, or request times out 
4. If data is found, or hop-count reaches zero, return the data or error along 

the chain of nodes (if data found, intermediary nodes create entries in their 
routing tables) 
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Freenet: Best First Search 

  Heuristics for Selecting Direction 
>RES: Returned most results 
<TIME: Shortest satisfaction time 
<HOPS: Min hops for results 
>MSG: Sent us most messages (all types) 
<QLEN: Shortest queue 
<LAT: Shortest latency 
>DEG: Highest degree 

query"
?"... 
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Freenet: Routing Algorithm 
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Freenet: Assessment 
  Scalability, fairness, load balancing 
－  Caching in the overlay network 

•  Access latency decreases with popularity 

－  Large distributed storage 
－  Fast removal of files with low popularity 

•  A lot of storage wasted on highly popular files 

－ Network topology is not accounted for 
 

  Content location 
－  Search by hash key: limited ways to formulate queries 
－  Content placement changes to fit search pattern 
－  Less popular files may be outside TTL 

 

  Failure resilience 
－ No single point of failure 



Examples: FastTrack, 
Morpheus, OpenFT 
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FastTrack, Morpheus, OpenFT 

  Peer-to-peer file sharing protocol 
 

  Three different nodes 
 

－ USER 
•  Normal nodes 

 

－ SEARCH 
•  Keep an index of “their” normal nodes 
•  Answer search requests 

 

－ INDEX 
•  Keep an index of search nodes 
•  Redistribute search requests 
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FastTrack, Morpheus, OpenFT 

INDEX 

SEARCH 

USER 
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FastTrack, Morpheus, OpenFT 

INDEX 

SEARCH 

USER 

? 

! 
! 
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FastTrack, Morpheus, OpenFT: Assessment 
  Scalability, fairness, load balancing 
－  Large distributed storage 
－  Avoids broadcasts 
－  Load concentrated on super nodes (index and search) 
－  Network topology is partially accounted for 
－  Efficient structure development 

 

  Content location 
－  Search by hash key: limited ways to formulate queries 
－  All indexed files are reachable 
－  Can only query by index terms 

 

  Failure resilience 
－  No single point of failure but overlay networks of index servers (and search 

servers) reduces resilience 
－  Relies on very stable relationship / Content is registered at search nodes 
－  Relies on a partially static infrastructure 



Examples: BitTorrent 



INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo 

BitTorrent 

  Distributed download system 

  Content is distributed in segments 

  Tracker 
－ One central download server per content 
－ Approach to fairness (tit-for-tat) per content 

 
－ No approach for finding the tracker 

 

  No content transfer protocol included 
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BitTorrent 

Tracker 

Segment download operation 
 Tracker tells peer source and 

number of segment to get 
 Peer retrieves content in pull 

mode 
 Peer reports availability of 

new segment to tracker 
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BitTorrent 

Tracker 

Rarest first strategy 

No second input stream: 
not contributed enough 
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BitTorrent 

Tracker 

All nodes: max 2 concurrent streams in and out No second input stream: 
not contributed enough 
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BitTorrent 

Tracker 
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BitTorrent 

Tracker 
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BitTorrent 

Tracker 
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BitTorrent Assessment 
  Scalability, fairness, load balancing 
－ Large distributed storage 
－ Avoids broadcasts 
－ Transfer content segments rather than complete content 
－ Does not rely on clients staying online after download 

completion 
－ Contributors are allowed to download more 

 

  Content location 
－ Central server approach 

 

  Failure resilience 
－ Tracker is single point of failure 
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Comparison 

Napster Gnutella FreeNet FastTrack BitTorrent 

Scalability  
Limited by 
flooding 

 
Uses caching 

Separate 
overlays per 

file 

Routing 
information 

 
One central 

server 

 
Neighbour list 

 
Index server 

 
One tracker 

per file 

Lookup 
cost 

 
O(1) 

 
O(log(#nodes)) 

 

 
O(#nodes) 

 

 
O(1) 

 

 
O(#blocks) 

Physical 
locality 

By search 
server 

assignment 
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Comparison 
Napster Gnutella FreeNet FastTrack BitTorrent 

Load 
balancing 

 
Many replicas of popular 

content 

Content 
placement 

changes to fit 
search 

Load 
concentrated 

on 
supernodes 

 
Rarest first 

copying 

Content 
location 

 
All files 

reachable 

 
Unpopular files may be 

outside TTL 

All files 
reachable 
Search by 

hash 

 
External issue 

Uses index 
server 

Search by 
index term 

 
Uses flooding 

 
Search by 

hash 

Failure 
resilience 

Index server 
as single point 

of failure 

 
No single point of failure 

Overlay 
network of 

index servers 

Tracker as 
single point of 

failure 
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P4P – saving money on P2P 

top-level ISPs 

end users 

PAY 

PAY 

PAY 
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P4P – saving money on P2P 

top-level ISPs 

end users 
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P4P – saving money on P2P 

  Background 
－ users want context quickly 
－ ISPs want to save money 
－ closer peers deliver faster (most of the time) 

  Approach 
－ ISPs do absolutely not want to know what people exchange 

in P2P systems 
－ provide “hints” to P2P applications 
－ order peers by “price” 
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little problem ... 

top-level ISPs 

end users 

nobody wants 
to talk to me  



Peer-to-Peer  
Lookup Protocols 

Distributed Hash Tables (DHTs) 
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Challenge: Fast, efficient lookups 

  Napster has one central server 
  Gnutella uses flooding 
  Freenet uses a distributed approach, but their key 

based heuristics make items with similar keys to 
cluster 
 

  Distributed Hash Tables (DHTs) use a more structured 
key based routing 
－ distribution properties of Gnutella and Freenet 
－ efficiency and lookup guarantee of Napster 
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key 

 

hash 
function 

 

 

hash table 

pos 

0 
1 
2 
3 
.. 
.. 
.. 
N 

y z 

Hash 
bucket 

lookup(key) → data 
Insert(key, data) 

Lookup Based on Hash Tables 
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Distributed Hash Tables (DHTs) 

Distributed application 

Distributed hash tables 

Lookup (key) data 

node …. 

Insert(key, data) 

node node node 

  Key identifies data uniquely 
  Nodes are the hash buckets 
  The keyspace is partitioned 
－  usually a node with ID = X has elements with keys close to X 
－  must define a useful key nearness metric 
－  DHT should balances keys and data across nodes 

  Keep the hop count small 
  Keep the routing tables “right size” 
  Stay robust despite rapid changes in membership 



Examples: Chord 
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Chord 

  Approach taken 
－ Only concerned with efficient indexing 
－  Distributed index - decentralized lookup service 
－  Inspired by consistent hashing: SHA-1 hash 
－  Content handling is an external problem entirely 

•  No relation to content 
•  No included replication or caching 

 

  P2P aspects 
－  Every node must maintain keys 
－  Adaptive to membership changes 
－  Client nodes act also as file servers 
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Chord IDs & Consistent Hashing 
  m  bit identifier space for both keys and nodes 
－  Key identifier = SHA-1(key) 

 
 
 

－  Node identifier = SHA-1(IP address) 
 
 
 

－  Both are uniformly distributed 
 

  Identifiers ordered in a circle modulo 2m 
 

  A key is mapped to the first  
node whose id is equal to or  
follows the key id 

Key=“LetItBe” ID=54 
SHA-1 

IP=“198.10.10.1” ID=123 SHA-1 
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Routing: Everyone-Knows-Everyone 
  Every node knows of every other node - requires global information 

 
  Routing tables are large – N 

Hash(“LetItBe”) = K54 

Where is 
“LetItBe”?  

Requires O(1) hops 

“N42 has LetItBe” 
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Hash(“LetItBe”) = K54 

Where is 
“LetItBe”?  

Routing: All Know Their Successor 
  Every node only knows its successor in the ring 

 
  Small routing table – 1 

Requires O(N) hops 

“N42 has LetItBe” 



INF5071, Carsten Griwodz & Pål Halvorsen University of Oslo 

Routing: “Finger Tables” 
  Every node knows m other nodes in the ring 
  Increase distance exponentially 
  Finger i  points to successor of n+2i 
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Joining the Ring 

  Three step process: 
－  Initialize all fingers of new node - by asking another node for help 
－  Update fingers of existing nodes 
－  Transfer keys from successor to new node 
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Handling Failures 
  Failure of nodes might cause incorrect lookup 

  N80 doesn’t know correct successor, so lookup fails 
  One approach: successor lists 
－  Each node knows r  immediate successors 
－  After failure find first known live successor 
－  Increased routing table size 

N120"

N113"

N102"

N80"

N85"

N10"

Lookup(90) 
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Chord Assessment 
  Scalability, fairness, load balancing 
－  Large distributed index 
－  Logarithmic search effort 
－  Network topology is not accounted for 
－  Routing tables contain log(#nodes) 
－  Quick lookup in large systems, low variation in lookup costs 

 
  Content location 
－  Search by hash key: limited ways to formulate queries 
－  All indexed files are reachable 
－  Log(#nodes) lookup steps 
－  Not restricted to file location 

 
  Failure resilience 
－  No single point of failure 
－  Not in basic approach 

•  Successor lists allow use of neighbors to failed nodes 
•  Salted hashes allow multiple indexes 

－  Relies on well-known relationships, but fast awareness of disruption and 
rebuilding 



Examples: Pastry 
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Pastry 
  Approach taken 
－  Only concerned with efficient indexing 
－  Distributed index - decentralized lookup service 
－  Uses DHTs 
－  Content handling is an external problem entirely 

•  No relation to content 
•  No included replication or caching 

 
 

  P2P aspects 
－  Every node must maintain keys 
－  Adaptive to membership changes 
－  Leaf nodes are special 
－  Client nodes act also as file servers 
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Pastry 
  DHT approach 
－  Each node has unique 128-bit nodeId 

•  Assigned when node joins 
•  Used for routing 

－  Each message has a key 
－  NodeIds and keys are in base 2b 

•  b is configuration parameter with typical value 4 (base = 16, hexadecimal digits) 
－  Pastry node routes the message to the node with the closest nodeId to the key 
－  Number of routing steps is O(log N) 
－  Pastry takes into account network locality 

 
 

  Each node maintains 
－  Routing table is organized into ⎡log2b N⎤ rows with 2b-1 entry each 
－  Neighborhood set M — nodeId’s, IP addresses of ⎪M⎪ closest nodes, useful to 

maintain locality properties 
－  Leaf set L — set of ⎪L⎪ nodes with closest nodeId 
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Pastry Routing 

NodeId 10233102 

0-??????? 2-??????? 3-??????? 

10-3-????? 
1-3-?????? 1-2-?????? 

10-0-????? 
1-1-?????? 

102-0-???? 
10-1-????? 

10233-0-?? 
1023-2-??? 1023-1-??? 1023-0-??? 
102-2-???? 102-1-???? 

102331-2-? 
10233-2-?? 

1-??????? 
1-0-?????? 

102-????? 
102-3-???? 

10233-1-?? 
102331-0-? 

1023310-2 

1023-3-??? 

1023310-0 
102331-1-? 

1023310-1 
102331-1-? 
10233-1-?? 

1023310-1 

Routing table 

b=2, so nodeId 
is base 4 

2b-1 entries per row 

⎡ l
og

2b
 N

 ⎤ 
ro

w
s SELF 

SELF 

SELF 
SELF 

0-2212102 2-2301203 3-1203203 

10-3-23302 
1-3-021022 1-2-230203 

10-0-31203 
1-1-301233 

102-0-0230 
10-1-32102 

10233-0-01 
1023-2-121 1023-1-000 1023-0-322 
102-2-2302 102-1-1302 

102331-2-0 
10233-2-32 

MARK 
MARK 

MARK 

MARK 

SMALLER LARGER 

10233033 10233021 10233120 10233122 
10233001 10233000 10233230 10233232 

Leaf set 
Contains the 

nodes that are 
numerically 

closest to 
local node 

10200230 13021022 
33213321 31203203 22301203 02212102 
31301233 11301233 

Neighborhood set 
Contains the 

nodes that are 
closest to 

local node 
according to 

proximity metric 

Entries in the nth row 
share the first n-1 digits 
with current node 
common prefix – next digit – rest 

Entries in the mth column 
have m as nth row digit 

Entries with no suitable 
nodeId are left empty 
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1331"
X1: 1-0-30 | 1-1-23 | 1-2-11 | 1-3-31!

1211"

X2: 12-0-1 | 12-1-1 | 12-2-3 | 12-3-3" 1223"

L: 1232 | 1221 | 1300 | 1301"

2331"

X0: 0-130 | 1-331 | 2-331 | 3-001"

source"

1221"

dest"

Pastry Routing 
1.  Search leaf set for exact match 
2.  Search route table for entry with at one  

more digit common in the prefix 
3.  Forward message to node with equally 

number of digits in prefix,  
but numerically closer in leaf set 
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Pastry Assessment 
 
  Scalability, fairness, load balancing 
－ Distributed index of arbitrary size 
－  Support for physical locality and locality by hash value 
－  Stochastically logarithmic search effort 
－ Network topology is partially accounted for, given an additional metric for 

physical locality 
－  Stochastically logarithmic lookup in large systems, variable lookup costs 

  Content location 
－  Search by hash key: limited ways to formulate queries 
－  All indexed files are reachable 
－ Not restricted to file location 

  Failure resilience 
－ No single point of failure 
－  Several possibilities for backup routes 



Examples: Tapestry 
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Tapestry 

  Approach taken 
－ Only concerned with self-organizing indexing 
－  Distributed index - decentralized lookup service  
－  Uses DHTs 
－  Content handling is an external problem entirely 

•  No relation to content 
•  No included replication or caching 

  P2P aspects 
－  Every node must maintain keys 
－  Adaptive to changes in membership and value change 
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Routing and Location 
  Namespace (nodes and objects) 
－  SHA-1 hash: 160 bits length 
－  Each object has its own hierarchy rooted at RootID = hash(ObjectID) 

 

  Prefix-routing [JSAC 2004] 

－  Router at hth hop shares prefix of length ≥h digits with destination 
－  local tables at each node (neighbor maps) 
－  route digit by digit: 4***  42**  42A*  42AD 
－  neighbor links in levels 
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Routing and Location 
  Suffix routing [tech report 2001] 

－  Router at hth hop shares suffix of length ≥h digits with destination 
－  Example: 5324 routes to 0629 via 

5324  2349  1429  7629  0629 
 

  Tapestry routing 
－  Cache pointers to all copies 
－  Caches are soft-state 
－  UDP Heartbeat and TCP timeout to verify route availability 
－  Each node has 2 backup neighbors 
－  Failing primary neighbors are kept for some time (days) 
－  Multiple root nodes possible, identified via hash functions 

•  Search value in a root if its hash is that of the root 
•  Choosing a root node 

  Choose a random address 
  Route towards that address 
  If no route exists, choose deterministically, a surrogate 
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Routing and Location 
  Object location 
－  Root responsible for storing object’s location (but not the 

object) 
－  Publish / search both routes incrementally to root 

 

  Locates objects 
－  Object: key/value pair 

•  E.g. filename/file 

－  Automatic replication of keys 
－  No automatic replication of values 

  Values 
－ May be replicated 
－ May be stored in erasure-coded fragments 
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Tapestry 

Insert(  , key K, value V) V #K 
#addr 1 
#addr 2 
… 

(#K,●) 
(#K,●) 
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Tapestry 
V 

(#K,●) 
(#K,●) 

#K 
#addr 1 
#addr 2 
… 

?K 

(#K,●) 
(#K,●) 

(#K,●) 

(#K,●) 

(#K,●) 

● 

caching 

result 
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Tapestry 
V 

(#K,●) 
(#K,●) 

● 

(#K,●) 
(#K,●) 

(#K,●) 

(#K,●) 

(#K,●) 
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Tapestry 
V 

(#K,●) 
(#K,●) 

● 

(#K,●) 
(#K,●) 

(#K,●) 

(#K,●) 

(#K,●) 

Move(  , key K, value V) 

V 
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Tapestry 

(#K,●) 
(#K,●) 

● 

(#K,●) 
(#K,●) 

(#K,●) 

(#K,●) 

(#K,●) 

V 

(#K,●) 

(#K,●) 

● 
Stays wrong 
till timeout 
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Tapestry Assessment 
  Scalability, fairness, load balancing 
－ Distributed index(es) of arbitrary size 
－  Limited physical locality of key access by caching and nodeId selection 
－  Variable lookup costs 
－  Independent of content scalability 

 

  Content location 
－  Search by hash key: limited ways to formulate queries 
－  All indexed files are reachable 
－ Not restricted to file location 

 

  Failure resilience 
－ No single point of failure 
－  Several possibilities for backup routes 
－  Caching of key resolutions 
－ Use of hash values with several salt values 



Comparison 
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Comparison 

Chord Pastry Tapestry 

Routing 
information 

Log(#nodes) 
routing table size 
 

Log(#nodes) x (2b – 1) 
routing table size 

At least log(#nodes) routing 
table size 

Lookup cost Log(#nodes) 
lookup cost 

Approx. log(#nodes) 
lookup cost 

Variable lookup cost 

Physical 
locality 

By neighbor list In mobile tapestry 

Failure 
resilience 

No resilience in 
basic version 
 
Additional 
successor lists 
provide resilience 

No single point of 
failure 
Several backup route 

No single point of failure 
Several backup route 
Alternative hierarchies 



Streaming in Peer-to-peer networks 

Applications: 



Promise 
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Promise 
  Video streaming in Peer-to-Peer systems 
－  Video segmentation into many small segments 
－  Pull operation 
－  Pull from several sources at once 

  Based on Pastry and CollectCast 

  CollectCast 
－  Adds rate/data assignment 
－  Evaluates 

•  Node capabilities 
•  Overlay route capabilities 

－ Uses topology inference 
•  Detects shared path segments - using ICMP similar to traceroute 
•  Tries to avoid shared path segments 
•  Labels segments with quality (or goodness) 
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Promise 

Receiver 

active sender 

active sender 

standby sender active sender 

Thus, Promise is a multiple sender to one receiver P2P media  
streaming system which 1) accounts for different capabilities,  
2) matches senders to achieve best quality, and 3) dynamically  
adapts to network fluctuations and peer failure  

Each active sender:  
•  receives a control packet specifying which data segments, data rate, etc., 
•  pushes data to receiver as long as no new control packet is received 

standby sender 

The receiver:  
•  sends a lookup request  
  using DHT 
•  selects some active  
  senders, control  packet 
•  receives data as long 
as  
  no errors/changes 
occur  
•  if a change/error is  
  detected, new active  
  senders may be 
selected 



SplitStream 
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SplitStream 

  Video streaming in Peer-to-Peer systems 
－ Uses layered video 
－ Uses overlay multicast 
－ Push operation 
－ Build disjoint overlay multicast trees 

  Based on Pastry 
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SplitStream 

Source: full quality movie 

Stripe 2 

Stripe 1 

Each node:  
•  joins as many multicast trees as there are stripes (K) 
•  may specify the number of stripes they are willing to act as  
  router for, i.e., according to the amount of resources available 

Each movie is split into K stripes and each 
stripe is multicasted using a separate three 

Thus, SplitStream is a multiple sender to multiple receiver P2P system which  
distributes the forwarding load while respecting each node’s resource limitations,  
but some effort is required to build the forest of multicast threes  
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