

Fractals?

- Fractal compression has nothing to do with fractals such as the infamous Mandelbrot and Julia sets.
- But it uses the same principles of iteration, and self similarity.
- The fractal in fractal compression is a (Partitioned) Iterated Function System

Iterated Function System

- A set of linear functions (transformations) when applied to a starting point will generate a new point.
- x1 = ax + by + e
- y1 = cx + dy + f
- When the transformations are repeated on the new points iteratively an image is generated.
- Can produce complex images.
- Is it possible to do the reverse? To generate functions from an image?
- Problem not solved today.
 - Instead of finding transformations that describe the whole picture, find transformations that only apply to portions of a picture
 - Partitioned Iterated Function Systems.

The compressed file		
 Compression of a 320x200 24 bit true colour image. 		
Compression none low medium high	Size (KB) 192.0 15.4 10.6 4.1	Rate 1:1 1:12 1:19 1:48

- Decompression is done by applying the transformations and translations described in the fractal codes on an arbitrary image (usually just a grey background) iteratively until an image is produced that looks approximately like the original.
- Easy to automate.
- Is fast.
- Number of iterations varies from 4 to 12+
- Decoding is resolution independent:
 - If a 64x64 image was compressed, it can be decompressed to any size (e.g. 128x128) without as much loss in quality as for a normal zoom.

- Crossover point at 40:1
- The fractal compressed images have a much more natural looking noise than JPEG.
- Same decompression time as JPEG, sometimes faster.
- Fractal compression much slower compression time than JPEG.
- Can zoom on the fractal image and the image will still have a natural look → higher effective compression ratios(?)

