
More Dynamic Object
Reclassification: FickleII
SOPHIA DROSSOPOULOU
Imperial College
FERRUCCIO DAMIANI and MARIANGIOLA DEZANI-CIANCAGLINI
Università di Torino
and
PAOLA GIANNINI
Università del Piemonte Orientale

Reclassification changes the class membership of an object at run-time while retaining its identity.
We suggest language features for object reclassification, which extend an imperative, typed, class-
based, object-oriented language.

We present our proposal through the languageFickleII. The imperative features, combined with
the requirement for a static and safe type system, provided the main challenges. We develop a type
and effect system for FickleII and prove its soundness with respect to the operational semantics.
In particular, even though objects may be reclassified across classes with different members, there
will never be an attempt to access nonexisting members.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented
Programming; D.3.3 [Programming Languages]: Language Constructs and Features—classes
and objects; inheritance; polymorphism; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—object-oriented constructs; type structure

General Terms: Theory, Languages

Additional Key Words and Phrases: Object-oriented languages, type and effect systems

1. INTRODUCTION
In class-based, object-oriented programming, an object’s behavior is determined
by its class. Case or conditional statements should be avoided when variation

Partially supported by IST-2001-322222 MIKADO, IST-2001-33477 DART, MURST Cofin’00
AITCFA, MURST Cofin’01 COMETA, MURST Cofin’01 NAPOLI Projects, CNR-GNSAGA, and
the EPSRC (Grant Ref: GR/L 76709).
Authors’ addresses: S. Drossopoulou, Department of Computing, Imperial College, 180 Queen’s
Gate, London SW7 2BZ, U.K.; email: sd@doc.ic.ac.uk; F. Damiani and M. Dezani-Ciancaglini,
Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy; email:
{damiani,dezani}@di.unito.it; P. Giannini, Università del Piemonte Orientale, Corso Borsalino 54,
15100 Alessandria, Italy; email: giannini@di.unito.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this worked owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0164-0925/02/0300–0153 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002, Pages 153–191.

154 • S. Drossopoulou et al.

in behavior can be expressed by using different classes. Thus, students paying
reduced and employees paying full conference fees are best described through
distinct classes Stdt and Empl with different methods fee(()).

However, this elegant approach does not scale to the case where objects
change classification. For example, how can we represent that mary, who was a
Stdt, became an Empl? Usually, class-based programming languages do not pro-
vide mechanisms for objects to change their class membership. Two solutions
are possible: either replace the original Stdt object by an Empl object, or merge
the two classes Stdt and Empl into one, for example, StdtOrEmpl.

Neither solution is satisfactory. The first solution needs to trace and inform
all references to mary. The second solution blurs in the same class the differ-
ences in behavior that were elegantly expressed through the class system. In
fact, Scheer and Pringle [1998] list the lack of reclassification primitives as the
first practical limitation of object-oriented programming.

We suggest language features that allow objects to change class membership
dynamically, and so, the class of the object pointed at by mary changes from
Stdt to Empl. We combine these features with a strong type system.

We take a programming perspective, and base our approach on an im-
perative, class-based language, where classes are types and subclasses are
subtypes,1 and where methods are defined inside classes and selected depend-
ing on the class of the receiver. We achieve dynamic reclassification of objects
by explicitly changing the class membership of objects.

We describe our approach through the language FickleII: A reclassification
operation changes the class membership of an object while preserving its iden-
tity; it maintains all fields common to the original and the target class and
initializes the extra fields. State classes are possible targets of reclassifications;
in that sense, they represent an object’s possible states. Root classes are the su-
perclasses of such state classes and declare all the members common to them.
Only nonstate classes may appear as types of fields. This limitation is motivated
by type soundness, see Example (4) on page 157. FickleII is statically typed,
with a type and effect system [Lucassen and Gifford 1988; Talpin and Jouvelot
1992], which determines the reclassification effect of an expression on the re-
ceiver and on all other objects. The type system is sound, so that terminating
execution of a well-typed expression produces a value of the expected type, or
a null-pointer exception, but does not get stuck.

FickleII is an extension of Fickle [Drossopoulou et al. 2001]: Fickle only
allowed the receiver to be of a state class and to be reclassified, whereasFickleII
also allows parameters to be of a state class and to be reclassified. Although we
do not describe this formally, this extension applies implicitly to local variables
as well.

This article is organized as follows: In Section 2, we introduce FickleII infor-
mally using an example. In Sections 3, 4, and 5, we outline FickleII: the syntax,
operational semantics, typing rules, and we state type soundness. In Section 6,

1Even though the object-based paradigm may be more fundamental [Abadi and Cardelli 1996] and
though classes should not be types, and subclasses should not imply subtypes [Canning et al. 1989],
current praxis predominantly uses languages of the opposite philosophy.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 155

abstract root class Player extends Object{
bool brave;

abstract bool wake(()) { } ;
abstract Weapon kissed(()) {Player};

}

state class Frog extends Player{
Vocal pouch;

bool wake(()) { } {pouch.blow(()) ; brave}
Weapon kissed(()){Player}{this⇓Prince; sword := new Weapon}

}

state class Prince extends Player{
Weapon sword;

bool wake(()) { } {sword.swing(()); brave}
Weapon kissed(()){Player}{sword}
Frog cursed(()){Player}{this⇓Frog; pouch := new Vocal; this}

}

class Princess extends Object{
bool walk1((Frog mate)){Player}{mate.wake(()); mate.kissed(()); mate.wake(())}
Weapon walk2((Frog mate)){Player}{mate⇓Prince; mate.sword := new Weapon}

}

Fig. 1. Program Ppl—players with reclassification.

we describe design alternatives. In Section 7, we discuss the implementation
of FickleII. In Section 8, we compare our proposal with other approaches. In
Section 9, we discuss the limits of our approach and future work. The appendix
contains an example, some definitions, and the proof of the type soundness
result.

2. AN EXAMPLE
In Figure 1, we give an example inspired by adventure games.2 We use a syn-
tax similar to Java’s, and define a class Player with subclasses Frog and Prince.
When woken up, a frog inflates its pouch, while a prince swings his sword.
When kissed, a frog turns into a prince; when cursed, a prince turns into
a frog.

We have introduced two new kinds of classes: state and root classes. The
state classes are the classes that may serve as targets of reclassifications. Such
classes cannot be used as types for fields; in our example Frog and Prince. The

2A computer science example dealing with linked lists can be found in Appendix A.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

156 • S. Drossopoulou et al.

root classes define the fields and methods common to their state subclasses; in
our example, class Player defines the field brave, and the two abstract methods
wake and kissed. The subclasses of root classes must be state classes.3 A state
class c must have a (possibly indirect) root superclass c′; objects of class c may
be reclassified to any subclass of c′.

Annotations like { } and {Player} before method bodies are called effects. Ef-
fects list the root classes of all objects that may be reclassified by invocation of
that method.

Methods with the empty effect { }, for example, wake, may not cause any
reclassification. Methods with nonempty effects, for example, kissed and cursed
with effect {Player}, may reclassify objects of a subclass of their effect; in our case
of Player. Such reclassifications may be caused by reclassification expressions
(e.g., this⇓Prince in method kissed of class Frog, or mate⇓Prince in method
walk2 of classPrincess), or by further method calls (e.g.,mate.kissed (()) in method
walk1 of class Princess).

The method body of kissed in class Frog contains the reclassification expres-
sion this⇓Prince. At the beginning of the method, the receiver is an object of
class Frog; therefore, it contains the fields brave and pouch, but not the field
sword. After execution of this⇓Prince the receiver is of class Prince, and there-
fore sword is accessible, while pouch is not, and brave retains its value. This
mechanism supports the transmission of some information from the object be-
fore the reclassification to the object after the reclassification.

Consider the instructions in the method body of walk1 in class Princess:
1. mate.wake(()); // inflates pouch
2. mate.kissed(());
3. mate.wake(()); // swings sword

(1)

Suppose that the parameter mate is bound to a Frog object with field brave
containing true. After line 2., the object is reclassified to Prince with the same
value for brave. Therefore, the call of wake in line 1. selects the method from
Frog, and inflates the pouch, while the call of wake in line 3. selects the method
from Prince, and swings the sword.

Reclassification removes from the object all fields that are not defined in its
root superclass and adds the remaining fields of the target class. For example,
after line 2. in Example (1), the object denoted by mate has a sword but not a
pouch. For example, consider the instructions in the method body of walk2 in
class Princess:

1. mate⇓Prince;
2. mate.sword := new Weapon; (2)

Let the parameter mate be bound to a Frog object. After line 1., the object is
reclassified to Prince. Therefore, in line 2. field sword can be selected.

3A root class is the first non-state superclass of a state class. The property that all its subclasses
are state classes allows for a simpler type system (compare with Drossopoulou et al. [1999a]). The
reason for introducing root classes as a separate kind of class is that in a system with separate
compilation and without root classes, it would be impossible to enforce that if a class has a state
subclass then all its further subclasses are state classes.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 157

Reclassification is transparent to aliasing. For instance, in Example (3)

Player p1, p2;
1. p1 := new Prince;
2. p2 := p1;
3. p1.cursed(());
4. p2.wake(()); // inflates pouch

(3)

line 3. reclassifies the object, and not the binding. Therefore, the call of method
wake in line 4. selects the method from Frog. Thus, through aliasing, one re-
classification may affect several variables; in Example (3), the reclassification
affects both p1 and p2.

Because the class membership of objects of state class is transient, access to
their members (e.g., to sword from class Prince) is only legal in contexts where
it is certain that the object belongs to the particular class. This can be done for
“local” entities, that is, for parameters, the receiver this, and for local variables.
But it cannot be done for fields, as their lifetime exceeds a method activation.
Therefore, we do not allow state classes as the types of fields.

For example, the declaration of field friend in the following is illegal:

class Witch{
Prince friend; // illegal!

Weapon search(()){ }{ friend.sword; }
}

If, on the other hand, the declaration of field friend in class Witch were legal,
then, in the following code

... // w a Witch, p1 a Prince, w.friend alias of p1:
1. p1.cursed(());
2. w.search(()); // error!

(4)

where p1 is an alias of w.friend,4 the execution of line 1. would reclassify the
object bound to w.friend to Frog, and the field access w.friend.sword inside the
call of w.search(()) in line 2. would raise a fieldNotFound error.

Therefore, state classes may not be used as types of fields. However, they
may be used as types of this, parameters, or as return types for methods. In
our example, the state class Frog is the parameter type of mate of method walk1
in class Princess, and the return type of method cursed in class Prince.

Before introducing formally the language and its semantics, we present
further examples that demonstrate some special features of our typing
system.

The class-membership of an object denoted by an identifier (this or a pa-
rameter) of state class is transient. Thus, the type of an identifier may change

4For example, through execution of p1 := new Prince ; w := new Witch ; w.friend := p1.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

158 • S. Drossopoulou et al.

within a method body. In Example (5), we add the method freed to the class
Frog:

Weapon freed(()){Player}{
this.pouch; // type correct, this is currently a Frog
this.sword; // type incorrect, this is currently a Frog
this⇓Prince;
this.pouch; // type incorrect, this is currently a Prince
this.sword / ∗ type correct, this is currently a Prince ∗ / }

(5)

this has type Frog before the reclassification, and it has type Prince afterwards.
Similar changes are possible for the types of the parameters:

Weapon meet((Frog x)){Player}{
x.pouch; // type correct, x is currently a Frog
x⇓Prince;
x.sword / ∗ type correct, x is currently a Prince ∗ / }

(6)

Changes to the type of an identifier may be caused either by explicit reclas-
sifications, as in Examples (5) and (6), or by potential, indirect reclassification,
due to aliasing, as in method play of Example (7).

bool play((Player x1, Frog x2)){Player}{
x2.pouch; // type correct, x2 is currently a Frog
x1.kissed(()); // reclassifies x1 and all its aliases
x2.pouch; // type incorrect, x2 is currently a Player
x2.brave / ∗ type correct, x2 is currently a Player ∗ / }

(7)

Since at the time of the call x1 and x2 might be aliases, the reclassification
x1.kissed(()) might reclassify the object pointed at by x2 as well. In order to capture
such potential reclassifications, each method declares as its effect the set of root
classes of objects that may be reclassified through its execution. In our case,
kissed has effect {Player}. After the call x1.kissed (()), the type of x2 is Player, that
is, the application of the effect {Player} to the class Frog.

3. SYNTAX
In Figure 2, we give the syntax of FickleII. We use standard extended BNF,
where a [−] pair means optional, and A∗ means zero or more repetitions of A. We
follow the convention that nonterminals appear as nonTerm, keywords appear
as keyword, literals appear as literal and identifiers appear as identifier. We
omit separators like “;” or “, ” where they are obvious. Expressions are usually
called e, e′, e1 etc., and values are usually called v, v′, v1 etc. By id, id′, etc., we
denote either this or a parameter name (x, x′, etc.).

A program is a sequence of class definitions. A class definition may be pre-
ceded by the keyword state, or root. State classes describe the properties of
an object while it satisfies some conditions; when it no longer satisfies these
conditions, it can be explicitly reclassified to another state class. For example,
Prince describes princes that have not been cursed; if they are cursed, they are

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 159

progr ::= class∗

class ::= [root | state] class c extends c { field ∗ meth∗}
field ::= type f
meth ::= type m ((par ∗)) eff {e}
type ::= bool | c
par ::= type x
eff ::= {c∗}
e ::= if e then e else e | var := e | e ; e | sVal |

this | var | new c | e.m((e∗)) | id⇓c
var ::= x | e.f
sVal ::= true | false | null
id ::= this | x

with the following conventions
c ::= c | c′ | ci | d | · · · for class names
f ::= f | f′ | fi | · · · for field names
m ::= m | m′ | mi | · · · for method names
x ::= x | x′ | xi | · · · for parameter names

Fig. 2. Syntax of FickleII.

reclassified to Frog. Root classes abstract over state classes.5 Any subclass of
a state or a root class must be a state class. Objects of a state class c may be
reclassified to class c′, where c′ must be a subclass of the uniquely defined root
superclass of c. For example, Player abstracts over Frog and Prince; objects of
class Frog may be reclassified to Prince, and vice-versa.

Objects of a nonstate, nonroot class c behave like regular Java objects, that
is, they are never reclassified. However, objects pointed at by an identifier id
(or field f) declared of type c may be reclassified. Namely, if c had two state
subclasses d and d′, and id (or f) refers to an object of class d, the object may
be reclassified to d′. Our type system ensures that this reclassification will not
cause accesses to fields or methods that are not defined for the object.

The type of fields may be either Boolean or a non-state class; we call such
types field types. Thus, fields may point to objects that change class, but these
changes do not affect their type. In contrast, the type of this and parameters
may be a state or root class; these variables may also point to objects that change
class, and these changes affect their type.

Objects are created with the expression new c – cmay be any class, including
a state class.

Reclassification expressions, id⇓c, set the class of id to c – c must be a state
or a root class.

Method declarations have the shape:

t m ((t1 x1, . . . , tq xq)){c1, . . . , cn} {e},

5Notice that our proposal is orthogonal to the “abstract superclass rule” discussed in Hürsch [1994].
In fact, root classes are not necessarily abstract classes, and state classes may be superclasses only
of other state classes.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

160 • S. Drossopoulou et al.

where t is the result type, t1, . . . , tq are the types of the formal parameters
x1, . . . , xq, and e is the body. The effect consists of root classes c1, . . . , cn, with
n ≥ 0.6

We require the inheritance hierarchy to be a tree, root classes to extend only
nonroot and nonstate classes, and state classes to extend either root classes or
state classes. The judgment ' P !h (the inheritance hierarchy is well formed)
asserts that program P satisfies these conditions, and is defined in Appendix B.

Remark 1. Section 2 and Appendix A follow a slightly more liberal syntax,
with abstract classes, abstract methods, and the implicit use of this to access
fields and methods from the current class.

4. OPERATIONAL SEMANTICS
We give a structural operational semantics that rewrites pairs of expressions
and stores into pairs of values, exceptions, or errors, and stores in the context
of a program P. The signature of the rewriting relation ! is:

! : progr → e × store → (val ∪ dev) × store.

The store maps this to an address, parameters to values, and addresses to
objects. Values are addresses, or the source language values as in Section 3.
Addresses may point to objects, but not to other addresses, primitive values,
or null. Thus, in FickleII, as in Java, pointers are implicit, and there are no
pointers to pointers. As we will show, execution of well-typed expressions never
produces a stuck error, although it may throw a null pointer exception. We
denote stores with σ , addresses with ι, exceptions and errors with dv.

store = ({this} → addr) ∪ (x → val) ∪ (addr → object)
val = sVal ∪ addr
dev = {nullPntrExc, stuckErr}
object = {[[f1 : v1, . . . , fr : vr]]c | f1, . . . , fr are fields identifiers,

v1, . . . ,vr ∈ val, and c is a class name}

We need some operations on objects and stores. For object o = [[f1 : v1 · · · fl :
vl · · · fr : vr]]c, store σ, value v, address ι, identifier or address z, field identifier
f, we define:

—field access o(f) =
{
vl if f = fl for some l ∈ 1, . . . , r,
Udf otherwise

—object update o[f ,→ v] = [[f1 : v1 · · · fl : v · · · fr :vr]]c,
where fl = f for some l ∈ 1, . . . , r,

—store update σ [z ,→ v](z) = v, σ [z ,→ v](z′) = σ (z′) if z′ -= z.

Also, we follow the convention that σ (ι)(f) = Udf whenever σ (ι) = Udf.
Figures 3, 4, and 5 list all the rewrite rules of FickleII. We discuss the two

most significant rewrite rules of FickleII: method call and reclassification.

6Extending FickleII to allow methods to have local variables would be straightforward. Their types
could be any types, including state classes. The typing rules for local variables would be the same
as for parameters.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 161

e, σ p! true , σ ′′

e1, σ ′′
p! v, σ ′

if e then e1 else e2, σ p! v, σ ′

e, σ p! false , σ ′′

e2, σ ′′
p! v, σ ′

if e then e1 else e2, σ p! v, σ ′

σ (x) -= Udf
e, σ p! v, σ ′

x:=e, σ p! v, σ ′[x ,→ v]

e, σ p! ι, σ ′′

e′, σ ′′
p! v, σ ′′′

σ ′′′(ι)(f) -= Udf
σ ′ = σ ′′′[ι ,→ σ ′′′(ι)[f ,→ v]]

e.f := e′, σ p! v, σ ′

e1, σ p! v′, σ ′′

e2, σ ′′
p! v, σ ′

e1; e2, σ p! v, σ ′ v, σ p! v, σ

σ (id) -= Udf
id, σ p! σ (id), σ

e, σ p! ι, σ ′

σ ′(ι)(f) -= Udf
e.f, σ p! σ ′(ι)(f), σ ′

Fs(P, c) = {f1, . . . , fr}
vl initial for F(P, c, fl) (∀l ∈ {1, . . . , r})
ι is new in σ

new c, σ p! ι, σ [ι ,→ [[f1 : v1, . . . , fr : vr]]c]

e0, σ p! ι, σ0
ei, σ i−1 p! vi, σ i (∀i ∈ {1, . . . , n})
σn(ι) = [[· · ·]]c
M(P, c,m) = t m((t1 x1, . . . , tn xn)) φ {e}
σ ′ = σn[this ,→ ι, x1 ,→ v1, . . . , xn ,→ vn]
e, σ ′

p! v, σ ′′

e0.m(e1, . . . , en), σ p! v, σ ′′[this ,→ σn(this), x1 ,→ σn(x1), . . . , xn ,→ σn(xn)]

σ (id) = ι
σ (ι) = [[· · ·]]c
Fs(P, R(P, c)) = {f1, . . . , fr}
vl = σ (ι)(fl) (∀l ∈ {1, . . . , r})
Fs(P, d) \ {f1, . . . , fr} = {fr+1, . . . , fr+q}
vl initial for F(P, d, fl) (∀l ∈ {r+ 1, . . . , r+ q})
id⇓d, σ p! ι, σ [ι ,→ [[f1 : v1, . . . , fr+q : vr+q]]d]

id, σ p! null, σ ′

id⇓d, σ p! null, σ ′

Fig. 3. Execution—without exceptions and errors.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

162 • S. Drossopoulou et al.

e, σ p! null, σ ′

e.f := e′, σ p! nullPntrExc, σ ′

e.f, σ p! nullPntrExc, σ ′

e.m(e1, . . . , en), σ p! nullPntrExc, σ ′

e, σ p! v, σ ′

v -= true and v -= false
if e then e1 else e2, σ p! stuckErr, σ ′

σ (x) = true or σ (x) = false
x⇓c, σ p! stuckErr, σ

σ (x) = Udf
x, σ p! stuckErr, σ
x := e, σ p! stuckErr, σ
x⇓c, σ p! stuckErr, σ

e, σ p! v, σ ′

v -= null
v /∈ addr

e.f, σ p! stuckErr, σ ′

e.f := e′, σ p! stuckErr, σ ′

e, σ p! ι, σ ′

σ ′(ι)(f) = Udf
e.f, σ p! stuckErr, σ ′

e, σ p! ι, σ ′′

e′, σ ′′
p! v, σ ′

σ ′(ι)(f) = Udf
e.f := e′, σ p! stuckErr, σ ′

e0, σ p! v, σ0
v -= null
v /∈ addr or σ0(v) = Udf

e0.m(e1, . . . , en), σ p! stuckErr, σ0

e0, σ p! ι, σ0
ei, σ i−1 p! vi, σ i (∀i ∈ {1, . . . , n})
σn(ι) = [[· · ·]]c
M(P, c,m) = Udf

e0.m(e1, . . . , en), σ p! stuckErr, σn

Fig. 4. Execution—Generation of exceptions and errors.

For method calls, e0.m(e1, . . . , en), we evaluate the receiver e0, obtaining
an address, say ι. We then evaluate the arguments, e1, . . . , en. We find the
appropriate body by looking up m in the class of the object at address ι—we
use the function M(P, c,m) that returns the definition of method m in class c
going through the class hierarchy, if needed (see Appendix B). We execute the
body after substituting this with the current object and assigning to the formal
parameters the values of the actual parameters. After the call, we restore the
receiver and parameters to the values they had immediately before execution
of the body.7

7We restore the references, but not the contents: thus, after a method call the receiver is the same,
but the side effects caused by execution of the method body survive after the call. Note also that
if one of the method parameters was undefined before the call, then it will be undefined after the
call as well.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 163

e, σ p! dv, σ ′

or (e, σ p! true , σ ′′ and e1, σ ′′
p! dv, σ ′)

or (e, σ p! false , σ ′′ and e2, σ ′′
p! dv, σ ′)

if e then e1 else e2, σ p! dv, σ ′

e1, σ p! dv, σ ′ or (e1, σ p! v, σ ′′ and e2, σ ′′
p! dv, σ ′)

e1; e2, σ p! dv, σ ′

e, σ p! dv, σ ′

x := e, σ p! dv, σ ′

e.f, σ p! dv, σ ′

e.m(e1, . . . , en), σ p! dv, σ ′

e.f := e′, σ p! dv, σ ′

e, σ p! ι, σ ′′

e′, σ ′′
p! dv, σ ′

e.f := e′, σ p! dv, σ ′

e0, σ p! ι, σ0
ei, σ i−1 p! vi, σ i (∀i ∈ {1, . . . , q}, q < n)
eq+1, σq p! dv, σq+1

e0.m(e1, . . . , en), σ p! dv, σq+1

e0, σ p! ι, σ0
ei, σ i−1 p! vi, σ i (∀i ∈ {1, . . . , n})
σn(ι) = [[· · ·]]c
M(P, c,m) = t m((t1 x1, . . . , tn xn)) φ {e}
σ ′ = σn[this ,→ ι, x1 ,→ v1, . . . , xn ,→ vn]
e, σ ′

p! dv, σ ′′

e0.m(e1, . . . , en), σ p! dv, σ ′′[this ,→ σn(this), x1 ,→ σn(x1), . . . , xn ,→ σn(xn)]

Fig. 5. Execution—propagation of exceptions and errors.

For reclassification expressions, id⇓d, we find the address of id, which points
to an object of class c. We replace the original object by a new object of class d.
We preserve the fields belonging to the root superclass of c and initialize the
other fields of d according to their types. The term R(P, t), defined by

R(P, t) =
{
c if t is a state class and c is the root superclass of t
t otherwise,

denotes the least superclass of t which is not a state class, if t is a class,
and denotes t itself if t is not a class. For example, R(Ppl, Prince) = Player,
R(Ppl, Princess) = Princess, and R(Ppl, bool) = bool. Moreover, Fs(P, c) denotes
the set of fields defined in class c, and F(P, c, f) the type of field f in class c (see
Appendix B).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

164 • S. Drossopoulou et al.

For example, for store σ1 , with σ1 (x1) = ι, and σ1 (ι) = [[brave : true , sword :
ι′]]Prince, σ1 (ι′) = [[· · ·]]Weapon, we have

x1⇓Frog, σ1 ppl! ι, σ2 ,

where σ2 = σ1 [ι ,→ [[brave : true , pouch : null]]Frog] that is, we obtain an
object of class Frog with unmodified field brave.

In well-typed programs, R(P, c) = R(P, d) always holds, and c and d must
be state or root classes. This implies that reclassification depends only on the
target class d, not on the class c of the receiver. Therefore, a compiler could fold
the type information into the code, by generating specific reclassification code
for each state class. The rule for reclassification uses the types of the fields to
initialize the fields, similarly to the rule for object creation.

5. TYPING

5.1 Widening, Environments, Effects
The following assertions, defined in Figure 10 of Appendix B, describe kinds of
classes, and the widening relationship between types:

—P ' c !ct means that c is any class,
—P ' c !rt means that c is a reclassifiable type, that is, either a root or a state

class,
—P ' t ! f t means that t is a field type, that is, either bool or a nonstate class,

and
—P ' t ≤ t′ means that type t′ widens type t, that is, t is a subclass of, or identical

to, t′.

In our example, Ppl ' Player !ct , Ppl ' Player !rt , Ppl ' Player ! f t , Ppl '
Frog !ct , and Ppl ' Frog !rt , but Ppl -' Frog! f t .

Environments, $, map parameter names to types, and the receiver this to a
class. They have the form {x1 : t1, . . . xn : tn, this : c}. Lookup, $(id), and update,
$[id ,→ t], have the usual meaning, and are defined in Figure 11 of Appendix B.

An effect, φ, is a set {c1, . . . , cn} of root classes; it means that any object of a
state subclass of ci may be reclassified to any state subclass of ci. The empty ef-
fect, { }, guarantees that no object is reclassified. Effects are well formed, that is,
P ' {c1, . . . , cn} !, iff c1, . . . , cn are distinct root classes. Thus, P ' {c1, . . . , cn} !

implies that ci are not subclasses of each other.

5.2 Typing Specialities
Typing an expression e in the context of program P and environment $ involves
three components, namely

P, $ ' e : t [] $′ [] φ,

where t is the type of the value returned by evaluation of e, the environment
$′ contains the type of this and of the parameters after evaluation of e, and
φ conservatively estimates the reclassification effect of the evaluation of e on

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 165

objects. (Note that in Drossopoulou et al. [2001], where only this could be
reclassified, typing had a slightly different format, that is, P, $ ' e : t [] c [] φ,
where c denoted the type of this after execution of e.)

For example, consider environments, $0, $1, with $0(this) =Frog, $1(this) =
Prince. Typing the body of freed in Example (5), after erasing the type incorrect
expressions, we have:

Ppl, $0 ' this.pouch : Vocal [] $0 [] { }
Ppl, $0 ' this⇓Prince : Prince [] $1 [] {Player}
Ppl, $1 ' this.sword : Weapon [] $1 [] { }.

Similarly, Example (6) is typed in environments $2, $3, with $2(x) =Frog,
$3(x) = Prince:

Ppl, $2 ' x.pouch; x⇓Prince : Prince [] $3 [] {Player}
Ppl, $3 ' x.sword : Weapon [] $3 [] { }. (8)

Finally, for Example (7) and $4(x1) = $5(x1) = Player, $4(x2) = Frog, $5(x2) =
Player:

Ppl, $4 ' x2.pouch : Vocal [] $4 [] { }
Ppl, $4 ' x1.kissed(()) : Weapon [] $5 [] {Player}
Ppl, $5 ' x2.brave : bool [] $5 [] { }.

The exact point at which effects modify types is important. In method calls,
the evaluation of the arguments may affect the receiver. In Example (9), as-
suming that method croak takes a Weapon parameter and is only defined in
class Frog,

Object played((Player x1, Frog x2)){Player}
{ x2.croak((x1.kissed(()))) / ∗ type incorrect ∗ /} (9)

the evaluation of x1.kissed(()) may reclassify x2, so that it is no longer a Frog.
Therefore, the effect of the arguments must be taken into account when looking
up the method in order to check method calls. In Example (9), type checking
requires looking up croak in class Player and results in a type error.

5.3 Typing Rules
The typing rules are given in Figure 6. We use the look-up functions F(P, c, f)
and M(P, c,m), defined in Appendix B, which search for fields and methods
through the class hierarchy. We follow the convention that rules can be applied
only if the types in the conclusion are defined. This is useful in rules (cond)
and (id).

Consider the rule (seq) for composition e ; e′. The second expression, e′, is
typed in the environment $0, that is, the environment updated by typing the
first expression, e. The effect of the composition is the union of the effects of
the components.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

166 • S. Drossopoulou et al.

P, $ ' e : bool [] $0 [] φ

P, $0 ' e1 : t1 [] $1 [] φ1
P, $0 ' e2 : t2 [] $2 [] φ2 (cond)

P, $ ' if e then e1 else e2 : t1 0P t2 [] $1 0P $2 [] φ ∪ φ1 ∪ φ2

P, $ ' e : c [] $0 [] φ

P, $0 ' e′ : t [] $′ [] φ′

F(P, φ′@Pc, f) = t′
P ' t ≤ t′

(a-field)
P, $ ' e.f := e′ : t [] $′ [] φ ∪ φ′

P, $ ' e : t′ [] $′ [] φ

$′(x) = t
P ' t′ ≤ t

(a-var)
P, $ ' x := e : t′ [] $′ [] φ

P, $ ' e : c [] $′ [] φ

F(P, c, f) = t
(field)

P, $ ' e.f : t [] $′ [] φ

P, $ ' e : t [] $0 [] φ

P, $0 ' e′ : t′ [] $′ [] φ′
(seq)

P, $ ' e; e′ : t′ [] $′ [] φ ∪ φ′

(bool)
P, $ ' true : bool [] $ [] { }
P, $ ' false : bool [] $ [] { }

P ' c !ct (null)
P, $ ' null : c [] $ [] { }

(id)
P, $ ' id : $(id) [] $ [] { }

P ' c !ct (new)
P, $ ' new c : c [] $ [] { }

P, $ ' e0 : c [] $0 [] φ0
P, $i−1 ' ei : t′i [] $i [] φ i (∀i ∈ {1, . . . , n})
M(P, (φ1 ∪ · · · ∪ φn)@Pc,m) = t m((t1 x1, . . . , tn xn)) φ { · · · }
P ' (φ i+1 ∪ · · · ∪ φn)@Pt′i ≤ ti (∀i ∈ {1, . . . , n})

(meth)
P, $ ' e0.m((e1, . . . , en)) : t [] φ@P$n [] φ ∪ φ0 ∪ · · · ∪ φn

P ' c !rt

R(P, c) = R(P, $(id))
(recl)

P, $ ' id⇓c : c [] ({R(P, c)}@P$)[id ,→ c] [] {R(P, c)}

Fig. 6. Typing rules for expressions.

Consider now the rule (cond) for conditionals. With t 0P t′, we denote the least
upper bound of t and t′ in P with respect to ≤ , when it exists.8 See Figure 11
of Appendix B for a formal definition. With $ 0P $′, we denote the extension of
the above operation to environments, defined as follows:

$ 0P $′ = {id : (t 0P t′) | $(id) = t and $′(id) = t′}.
Least upper bounds are used in rule (cond) to determine a conservative approx-
imation of the type of the conditional expression. The two branches may cause

8Note that for any class c the least upper bound c 0P bool does not exist.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 167

different reclassifications for this and the parameters. So, after the evalua-
tion we can only assert that this and the parameters belong to the least upper
bound of their relative classes in $1 and $2. Proposition 1(2), which appears
at the end of the section, assures that for this rule $1 0P $2 is defined. On the
other hand, the least upper bound of the types of the branches, t1 0P t2, may not
be defined, in which case the rule cannot be applied.

Consider now the typing of assignments, that is, rules (a-field) and (a-var).
Evaluation of the right-hand side may modify the type of the left-hand side. In
particular, in (a-var) evaluation of e can modify the type of x. This is taken into
account by looking up x in the environment $′. Also, in rule (a-field) evaluation of
e′ may modify the class of the objecte. For this purpose, we define the application
of effects to types:

{c1, . . . , cn}@Pt =
{
ci if R(P, t) = ci for some i ∈ 1, . . . , n
t otherwise.

For example, {Player}@PplFrog = Player, and {Player}@PplPrincess = Princess. By
applying φ′ to c before looking up f, we provide for the case where evaluation of
e′ might reclassify e and remove f in the process. Note that the field type cannot
be changed since it cannot be a state class.

Consider now (recl): id⇓c is type correct if c, the target of the reclassification,
is a state or root class, and if c and the class of id before the reclassification (the
class $(id)) are subclasses of the same root class. A reclassification updates the
environment by changing the class of the identifier id. Moreover, since there
could be aliasing with identifiers of state classes that are subclasses of the root
class of id, the static type of all such variables is set to the root class. For this
reason, we define the application of effects to environments:

φ@P$ = {id : φ@Pt | $(id) = t}.

For example, for an environment $1, with $1(x1) = $1(x2) = Frog, $1(x3) =
Prince, we have {Player}@Ppl$1 = $2, where $2(x1) = $2(x2) = $2(x3) = Player.
Therefore, the following typing judgment can be derived:

Ppl, $1 ' x2⇓Prince : Prince [] $3 [] {Player}, (10)

where $3(x1) = $3(x3) = Player, but $3(x2) = Prince.
Consider rule (meth) for method calls, e0.m((e1, . . . , en)). The evaluation of the

arguments ei+1, . . . , en may modify the types of the arguments e1, . . . , ei and
of the object e0, as shown in Example (9). This could happen if a superclass of
the original type of ej (1 ≤ j ≤ i) is among the effects of ei+1, . . . , en. (Existence
of such a class implies uniqueness, since effects are sets of root classes.) The
definition of m has to be found in the new class of the object e0, and the types
of the formal parameters must be compared with the new types of e1, . . . , en−1.
In (meth), we look up the definition of m in the class obtained by applying the
effect of the arguments to the class of the receiver (c.f. Example (9)) and we
compare the types of formal and actual parameters by keeping into account the
effects of the actual parameters.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

168 • S. Drossopoulou et al.

C(P, c) =[root | state] class c extends c′ { · · · }
∀f : FD(P, c, f) = t0 ⇒P ' t0 ! f t and F(P, c′, f) = Udf
∀m : MD(P, c,m) = t m((t1 x1, . . . , tn xn)) φ {e} ⇒
P ' φ !

P, {x1 : t1, . . . , xn : tn, this : c} ' e : t′ [] $′ [] φ′

P ' t′ ≤ t
φ′ ⊆ φ

M(P, c′,m) = Udf or (M(P, c′,m) = t m((t1 x1, . . . , tn xn)) φ′′ { · · · } and φ ⊆ φ′′)
(wfc)

P ' c !

' P !h

∀c : C(P, c) -= Udf ⇒ P ' c !
(wfp)

' P !

Fig. 7. Rules for well-formed classes and programs.

Overall, in our typing rules, we applied the effects to types and environ-
ments only when this was necessary to guarantee soundness, since we wanted
to preserve as much typing information as possible.

In Proposition 1, we state that if P, $ ' e : t [] $′ [] φ can be derived, then
the environments $ and $′ are defined for the same set of identifiers, and any
differences in $ and $′ are due to the effect φ:

PROPOSITION 1. Let P, $ ' e : t [] $′ [] φ. Then, for all id :

(1) $(id) -= Udf if and only if $′(id) -= Udf,
(2) $(id) -= Udf implies φ@P$(id) = φ@P$

′(id).

For example, in the typing judgment (8), for $ = $2 and $′ = $3 we have
$2(x) = Frog, $3(x) = Prince, φ = {Player} and φ@P$2(x) = φ@P$3(x) = Player.

Looking at rule (cond), Proposition 1(2) ensures that if $(id) is defined, then
$1(id) 0P $2(id) is defined as well, for all id.

In general, P, $ ' e : t [] $′ [] φ does not imply $′ = φ@P$. A counterexample
is the typing judgment (10).

5.4 Well-Formed Programs
A program is well formed (i.e., ' P !) if the inheritance hierarchy is well formed
(i.e., ' P !h) and all its classes are well formed (i.e., P ' c !). Fields may not
redefine fields from superclasses, and methods may redefine superclass meth-
ods only if they have the same name, arguments, and result type, and their
effect is a subset of that of the overridden method.9 Method bodies must be
well formed, must return a value appropriate for the method signature, and
their effect must be a subset of that in the signature. See Figure 7, where

9Thus, in contrast to Java and C++, FickleII does not allow field shadowing, nor method overload-
ing. These features can be included into FickleII adopting the approach from Drossopoulou et al.
[1999b]. However, this would complicate the presentation unnecessarily.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 169

C(P, c) returns the definition of class c in program P, and the look-up functions
FD(P, c, f), MD(P, c,m), defined in Appendix B, search for fields and methods
only in class c.

5.5 Soundness
The judgment P, σ ' v " t, guarantees that value v conforms to type t. In
particular, it requires that an address ι points to an object of class c, a subclass
of t, that the object contains all fields required in the description of c, and
that the fields contain values that conform to their type in c. The judgment
P, $ ' σ ! guarantees that all object fields contain values that conform to their
types in the class of the objects, and that all parameters and the receiver are
mapped to values which conform to their types in $. Formal definitions can be
found in Figure 12 of Appendix B.

The type system is sound in the sense that a converging well-typed expression
returns a value that agrees with the expression’s type, or nullPntrExc; but is
never stuck.

THEOREM 1 (TYPE SOUNDNESS). For a well-formed program P, environment
$, and expression e, such that

P, $ ' e : t [] $′ [] φ

if P, $ ' σ !, and e, σ converges, then

—e, σ p! v, σ ′, P, σ ′ ' v " t, P, $′ ' σ ′ !,
or

—e, σ p! nullPntrExc, σ ′.

Remark 2. As far as divergent expressions go, the theorem does not say
anything. However, the operational semantics forces convergence for standard
typing errors or access to members undefined for an object, see Figure 4. There-
fore, Theorem 1 suffices to ensure that execution of well-typed expression never
accesses nonexisting identifiers, fields or methods, and is never stuck.

6. DESIGN ALTERNATIVES
Our aim was to develop language features supporting reclassification of objects
in an imperative setting, which also allows aliasing. The operational seman-
tics was straightforward, the design of a strong type system less so. The main
challenges were:

(c1) The type of id inside method bodies containing reclassifications—c.f.
Examples (5)–(6), Section 2.

(c2) Reclassification of an aliased object may remove members, which the object
may need in another context—c.f. Example (4), Section 2.

(c3) The possibility that an object uses members removed by a reclassification
earlier in the call stack—c.f. Example (9), Section 5.2.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

170 • S. Drossopoulou et al.

We have considered, and experimented with, several ideas:
For (c1). The type of this and the parameters may change after a reclassifi-

cation; we express this through the second component of our typing scheme.
For (c2). We considered several solutions, and chose (f):

(a) Check the existence of members at run-time, as in Serrano [1999]. This
is not type safe.

(b) An object should have all members for all possible state subclasses of its
root superclass, as in Ernst et al. [1998]. Although type safe, this does
not allow compact representations as required in Serrano [1999], and
does not express our intention of exclusive cases.

(c) Require all state subclasses of a root class to have exactly the same
members, and differ in the method bodies only. However, this require-
ment is too strong, for example, does not hold for empty and nonempty
lists.

(d) In Fickle–99, we allow state class fields, but avoid the aliasing intro-
duced through line 2. in Example (3) of Section 2, through the type sys-
tem. Types are either nonstate, nonroot classes, or sets of state classes.
Accessing a member of an expression is only legal if all state classes of
the type of the expression define this member. A set of state classes is a
subtype of another set, only if they are identical.

(e) In Fickle, we forbid the use of state classes as types, except for the type
of this. Thus state classes may have different members, but all state
subclasses of the same root class offer the same interface to all their
clients.

(f) In FickleII only fields cannot have state classes as types.

For (c3).

(a)–(c) With any of the approaches described in (c2)(a), (c2)(b), or (c2)(c), the
problem would not arise; but we have rejected these solutions in (c2).

(d) In Fickle–99, we “lock” an object of a state class when it starts execut-
ing a method, and “unlock” when it finishes. Attempting to reclassify a
locked object throws an exception; for example, Example (9) could throw
such an exception. This is too restrictive, and has the drawback that it
allows run-time errors.

(e)–(f) In FickleII, the type system ensures against the problem; the effects
from any called methods are applied to the type of id; therefore, after
a call that may modify an object referred by id, the type of id will be
the root superclass, and so, access to state class members will be type
incorrect. Similarly in Fickle, but only when id is the receiver this.

7. IMPLEMENTATION
A prototype implementation of Fickle through a Java translator has already
been developed [Jarman 2000; Anderson 2001; Ancona et al. 2001]. Type correct
Fickle programs are mapped into equivalent Java programs, where root classes
are represented by wrapper classes, containing a field value, which points to

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 171

an object of one of its state subclasses. Method calls are forwarded from the
wrapper object to its value field, and reclassifications are implemented by over-
writing the value field. We are currently working on a translator for FickleII
[Ancona et al. 2002], allowing for parameters of state class.

In a production compiler, one can avoid the wrapper object and the indirec-
tion in the method dispatch, provided that the maximal size of state subclasses
of any given root is known:10 Notably, the constraint that the target and source
of reclassification have a common root superclass allows the standard, effi-
cient implementation of method call, where we look up through an offset into
the method dispatch table of the receiver. The fact that sources and targets of
reclassifications have the same maximal size allows us to implement reclassi-
fication through simple in-place overwriting of the source object.

Alternatively, the use of object tables [Goldberg and Robson 1983], where
object references are represented through pointers to a table of pointers to
objects, would allow a more direct implementation of object reclassification,
and would dispense with the restriction of explicit double indirection. Such an
approach is taken in some Java implementations and in the implementation of
GILGUL [Costanza 2001].

We are currently working on an implementation of FickleII using an ex-
tended JVM [Shuttlewood 2002]. We extend the JVM by one additional in-
struction, which represents reclassification. We use object tables, but we also
plan to use object fragmentation, avoiding the indirection of object tables in
the general case, and using indirection only when required by the size of the
reclassified objects.

8. RELATED WORK
Most foundational work on the semantics of object-oriented programming lan-
guages is based on functional object-based languages.

In Abadi and Cardelli [1996], method overriding models field update and del-
egation. In Fisher et al. [1994], method extension represents class inheritance,
while Bono et al. [1999], Di Gianantonio et al. [1998], Rémy [1995], Fisher and
Mitchell [1995], and Riecke and Stone [1998] enhance the above representa-
tion by introducing a limited form of method subtyping. These calculi deal with
questions of width-subtyping over deep-subtyping, the use of MyType, method
extension and overriding; they were primarily developed as a means of under-
standing inheritance and delegation.

Object extension in these calculi can be seen as the reclassification of an
object of class c to an object of a subclass of c. Unrestricted subtyping followed
by object expansion might cause messageNotUnderstood errors, and so type
soundness is recovered by imposing certain restrictions on the use of subtyping
[Fisher and Mitchell 1995; Rémy 1995; Di Gianantonio et al. 1998; Ghelli and
Palmerini 1999; Bono et al. 1999] with the consequence that an object cannot
be promoted to a superclass and then to the original subclass.

10Restrictions on possible subclasses can be found in several systems, for example, in [Chambers
and Leavens 1995].

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

172 • S. Drossopoulou et al.

For databases, Bertino and Guerrini [1995] suggest multiple most specific
classes, thus in a way allowing multiple inheritance, while Ghelli and Palmerini
[1999] allow objects to accumulate different roles in a functional setting. They
model nonexclusive roles (for example, female and professor), whereas we model
objects changing mutually exclusive classes (for example, opened window ver-
sus iconified window).

Refinement types in functional languages distinguish cases through sub-
types, see Freeman and Pfenning [1991]. The main questions in Freeman and
Pfenning [1991] are type inference, and establishing that functions are well
defined, in the sense that they cover all possible cases. Side-effects are not con-
sidered; therefore, problems like aliasing that are central to our development
do not arise.

Predicate classes [Chambers 1993] support a form of dynamic classification
of objects based on their run-time value: Code is broken down on a per-function
basis, while FickleII follows the mainstream, where code is broken down on
a per-class basis. Also, in Chambers [1993], the term reclassification denotes
changes in attribute values that imply changes in predicates when calculated
next. Thus, reclassification in Chambers [1993] is implicit and lazy, whereas
in FickleII reclassification is explicit and eager. Predicate dispatching [Ernst
et al. 1998] suggests multimethod dispatch depending on predicates on the re-
ceiver and argument. Different methods may dispatch depending on different
predicates, for example, insert may depend on whether the list is a priority or
a last-in–first-out list, whereas print may depend on whether the list is empty
or not. This is not possible in FickleII, unless extended with multiple inheri-
tance. Finally, Chambers [1993] and Ernst et al. [1998] raise the question of
disjointness and completeness of predicates (unambiguous and complete).

Similarly, for single method dispatch, in Tailvasaari [1993] classes have
“modes” representing different states, for example, opened vs. iconified win-
dow. Wide classes from Serrano [1999] are the nearest to our approach; they
allow an object to be temporarily “widened” or “shrunk” to a subclass or a su-
perclass. However, they differ from FickleII, by dropping the requirement for a
strong type system, and requiring run-time tests for the presence of fields. (The
primary aim of wide classes was better memory use in the presence of changes
of object structures.)

The language GILGUL [Costanza 2001] is an extension of Java that allows for
dynamical object replacement. GILGUL supports implementation-only classes,
that is, classes that cannot be used as types. Objects belonging to a Java class
can be replaced only by instances of the same class or of any subclass, while
objects belonging to an implementation-only class can be replaced also by in-
stances of any class having the same least nonimplementation-only superclass.
Like the other approaches we discussed, GILGUL is not strongly typed, and a run-
time exception is raised when a forbidden object replacement is attempted.

For concurrent objects, Ravara and Vasconcelos [2000] give behavioral types
that guarantee that every message has a chance of being received if it requires
a method that may be enabled at some point in the future.

Our work is also related to Strom and Yellin [1993] and DeLine and
Fähndrich [2001], who use the type system to track state changes. In Strom

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 173

and Yellin [1993], the language NIL attaches states to objects along with
their types and does not allow aliasing of objects. Building on the Capability
Calculus [Walker et al. 2001], the language Vault [DeLine and Fähndrich 2001]
tracks states of objects in the presence of aliasing.

We now consider related features in some of the more widely used program-
ming languages: Modula-3 [Cardelli et al. 1989] offers a limited, “one-off” possi-
bility of reclassification, since the method suite of an object can be determined at
object creation time. Self [Agesen et al. 1992] allows dynamic inheritance among
prototypes in order to change state dynamically. However, Self is only dynami-
cally typed [Agesen et al. 1995]. In BETA [Kristensen et al. 1987], nested pat-
terns can be used to model dynamic state changes, at the price of dynamic type
checking. The “become:” primitive of Smalltalk [Goldberg and Robson 1983] has
also been used to get the effect of dynamic reclassification. Again, Smalltalk is
dynamically typed.

FickleII succeeds two earlier proposals: Fickle–99 [Drossopoulou et al.
1999a] and Fickle [Drossopoulou et al. 2001], which addressed the same re-
quirements. Fickle improves Fickle–99 in at least two respects: First, Fickle
allows all reclassifications of state class objects, whereas Fickle–99 prevents
reclassification of objects while they are executing a method; it achieves this
either through run-time locks or through an effect system. Second, Fickle has
one type hierarchy both for reclassifiable and nonreclassifiable objects, whereas
Fickle–99 distinguishes two kinds of types. FickleII further improves Fickle: it
allows parameter and result types to be state classes, and has a more elegant
typing system.

9. CONCLUSIONS
FickleII is the outcome of several designs and successive improvements. We are
now satisfied that the suggested approach is useful and usable. In the process,
we also developed an interesting typing scheme, where typing an expression af-
fects the environment in which the following or enclosing expressions are typed.

Reclassifiable objects support the differentiation of the behavior of an object
according to its class, thus keeping more in the object-oriented style, and the
expression of special cases through subclasses, thus also more in style with
pattern matching as in the functional programming paradigm.

Reclassifiable objects support carrying over practices from functional pro-
gramming into imperative, object oriented languages. Less use of the special
value null is made in programs adopting reclassification. (See the example in
Appendix A.)

Having state classes as types of parameters considerably extends the range
of type correct programs. Type casts, which become necessary when accessing
fields in state classes, can be avoided through the introduction of further meth-
ods. (Again, see Appendix A.) Thus, the type system encourages breaking down
code into several methods. We believe that the restrictions imposed from the
type system do not seriously constrain the applicability, and have shown this
through larger cases studies in Drossopoulou [2002]. When we developed the
case studies we were surprised at the possibilities opened up by reclassifiable

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

174 • S. Drossopoulou et al.

objects. The extent of their use, and the appropriate idioms, can only be deter-
mined after we have had more experience in using FickleII.

We discuss most of the above points in some detail in Appendix A, and in
more detail in Drossopoulou [2002], where we explore the use of object reclassi-
fication through the study of three examples, describing normal and privileged
accounts, empty or nonempty lists, and adventure games. That study differs
from our earlier one [Jarman and Drossopoulou 2000], which follows Fickle, as
it makes ample use of the extra expressive power offered in FickleII.

Most weaknesses of the current design are due to the fact that the effects
system is too crude:

—Reclassification of any object of a certain class affects the types of all variables
of subclasses of the object’s root class.

—Writing all the effects of a method may become cumbersome. This, however
could be addressed through some naming conventions, or through tools.

—A more important weakness is the fact that methods are required to list
the effects of execution of their bodies, and thus methods higher up in the
calling chain accumulate the effects of all transitively called methods, c.f.
Example 1.1 in Drossopoulou [2002]. Therefore, the effects of a method may
end up mentioning classes that are not visible, and irrelevant to the class
where the method appears. Although a similar situation happens with the
listing of all exceptions in the throws clause of method headers, exceptions
may be eliminated from the throws clause when caught in the method body.
Unfortunately, no such opportunity is available in FickleII.

—Also, the restriction on fields not to be of a state class forbids, for example,
the expression of lists of frogs even in the context where we know that none
of these will be kissed.

—The current system does not work for threads, given that the effect calculated
for an invocation that spawns a child thread can in reality happen later, after
the moment the types of identifiers have changed in the main thread.

Further work includes the incorporation of FickleII into a full language, the
refinement of the effect system (e.g., through data-flow analysis techniques),
the incorporation of myType, multiple inheritance, the distinction of subclass-
ing from subtyping, the modelling of irreversible reclassifications (e.g., pupa to
butterfly). Moreover, we are generalizing our type and effect system in two dif-
ferent directions: to deal with a limited form of concurrency, and to allow fields
to have state classes, for example, by distinguishing between reclassifiable and
nonreclassifiable types and allowing fields of state classes but nonreclassifiable
types [Fidgett 2002].

APPENDIXES
A LINKED LISTS
In this appendix, we demonstrate the use of reclassifiable objects through the
example of lists of integers: Lists may be empty or nonempty, and support the
insertion of removal of integers (see Figure 8). The method void insertFront((int))

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 175

class ListException extends Exception{
}

abstract root class List extends Object{
abstract void insertFront((int i)){List};
abstract int getFront(()){List};

// auxiliary methods
abstract void copyTo((NonEmptyList x)){List};
// if receiver is NonEmplyList, copies fields of receiver onto x,
// if receiver is EmptyList, re-classifies x to EmptyList

}

state class EmptyList extends List{
void insertFront((int i)){List}{

this⇓NonEmptyList; content := i; next := new EmptyList; }
int getFront(()) { } {throw new ListException; }

// auxiliary methods
void copyTo((NonEmptyList x)){List}{x⇓EmptyList; }

}

state class NonEmptyList extends List{
int content;
List next;

void insertFront((int i)) { } {
// create second as a copy of the receiver
NonEmptyList second := new NonEmptyList;
copyTo(second);
// modify the receiver
content := i; next := second; }

int getFront(()){List}{
int result := content;
// copy the next element on the receiver
next.copyTo((this)); return result; }

// auxiliary methods
void copyTo((NonEmptyList x)) { } {

// copy the fields of the receiver onto x
x.content := content; x.next := next; }

}

Fig. 8. Program Plist—lists with reclassifications.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

176 • S. Drossopoulou et al.

inserts an integer at the front of the list, while the method int getFront(()) removes
the element from the front of the list and returns it.

The “traditional” approach represents lists through header objects that con-
tain a reference to a link. If the reference is null, then the list is empty. If the
reference is not null, then the list is not empty, and the link pointed at repre-
sents the first entry of the list. Each link contains an integer and a reference to
the next link. If that reference is null, then the link is the last in the list. Thus,
the distinction between the cases (empty and nonempty list, and also last and
nonlast link) is reflected by a particular field containing the special value null
or not. The variation in behavior is not reflected in the class hierarchy; instead,
it is buried inside the method bodies.

The FickleII approach seeks to express this distinction directly in the class
hierarchy. In Drossopoulou [2000], we explore two different implementations
of lists: The first represents lists through a Header object (which may be re-
classified to EmptyHeader or NonEmptyHeader), and a sequence of Links. The
second represents lists without separate header objects. In this article, we dis-
cuss the second approach, because it is more interesting in terms of the use of
reclassifiable objects.

Our representation reflects the distinction between empty and nonempty
lists through the state subclasses EmptyList and NonEmptyList of the root class
List. A NonEmptyList contains an integer, and a reference to the next list. An
EmptyList contains no fields.

Thus, our list representation is akin to the list representation in functional
programming with pattern matching, were we would have defined

data intlist = empty | nonempty(int, intlist)

The functional programming representation, like ours, allows a List object to
signify the beginning or any “intermediate” element in the list.

In that sense, reclassification allows us to maintain practices from functional
programming in imperative, object-oriented languages. This realization came
to us as a surprise, when we were writing the case studies. The similarities
between the functional programming representation and the FickleII repre-
sentation end in that FickleII was designed in the context of languages that
allow aliasing. For example, if list1 and list2 point to the same empty list, then
the expression list1.insertFront((7)) affects both list1 and list2. For this reason, it
is necessary to reclassify the object pointed at by list1, while in functional pro-
gramming it would be sufficient to create a new value with the type constructor
nonempty.

On the other hand, the traditional approach makes heavy use of the special
value null: it represents an empty list, and also the last link of a sequence.
Here we do not make use of null at all, as we are using state classes instead.11

Furthermore, the code from above does not expect to encounter the value null.

11Of course, it would have been possible to avoid null in the traditional approach as well. Namely,
null is a value that belongs to all reference types; this can also be represented by adding aNullClass
as a subclass to any class Class. The extra ingredient of FickleII comes from combining that
possibility with the reclassification of objects.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 177

The behavior of the method getFront depends on the state class member-
ship of this.next. If it is an EmptyList, then this is reclassified to EmptyList,
whereas if it is aNonEmptyList, then the fields from this.next have to be copied
onto this. We achieve that by a form of double dispatch, that is, by delegating
to the method copyTo. This also avoids type casts.12 The example also demon-
strates the importance of allowing state classes as types of parameters. In the
method copyTo in class NonEmptyList, the fields content and next of x can be
accessed without type casts, whereas in Fickle, where parameters could not
have had state classes as types, type casts would be needed, c.f. Section 2.2.1
in Jarman and Drossopoulou [2000].

In general, through the introduction of further methods one can avoid the
type casts necessitated by the access of members of state classes. Therefore,
the type system encourages breaking down code into several methods.

Programming linked lists as in this section is significantly different than
the “traditional” approach, also in that insertions and removals are applied
to the links themselves rather than to the links preceding them. For exam-
ple, removing the last element of the list13 is more directly expressed with the
current approach, as it only requires finding and reclassifying the last com-
ponent of the list, whereas, in the traditional approach, it is less direct, as it
requires finding the link immediately preceding the last link (i.e., the x, such
that x.next.next == null), and changing its next field.

The choice of linked lists as an example to demonstrate FickleII is, in some
ways, debatable: Such basic data structures have been programmed in certain
ways for many years now, and one might expect to find them expressed in the
old, familiar patterns. Also, such structures are usually found in libraries, and
modern programmers will typically not need to write linked list implementa-
tions. More importantly, in linked lists, there is a single reference to each of the
links, and so the full power of reclassification, which is transparent to aliasing,
does not come to light in the case of lists.

Nevertheless, we believe that this example is illuminating, because it shows
how familiar data structures can be programmed in significantly different ways
than usual.

12If instead, we chose to achieve the different behavior directly within the function getFront, then
we would have needed type casts. The corresponding code is:

int getFront(()){List}{
int result := content;
if ((this.next.isEmpty(()))){

this⇓EmptyList; }
else {
this.content := ((((NonEmptyList))this.next)).content;
this.next := ((((NonEmptyList))this.next)).next; }

return result; }

13This is shown in Section 2.2.2 of Jarman and Drossopoulou [2000].

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

178 • S. Drossopoulou et al.

∀c : P = P1 [root | state] class c extends c′{ · · · } P2,
P = P3 [root | state] class c extends c′′{ · · · } P4

⇒P1 = P3, P2 = P4
∀f : P = P1 [root | state] class c extends c′{defs1t f defs2} P2,

P = P1 [root | state] class c extends c′{defs3 t′ f defs4} P2
⇒ defs1 = defs3, defs2 = defs4;

∀m : P = P1 [root | state] class c extends c′{defs1 t m((t1x1, . . . tq xq)) φ {e} defs2} P2,
P = P1 [root | state] class c extends c′{defs3 t′ m((t′1 x

′
1 · · · t′n x′

n))φ′{e′} defs4} P2
⇒ defs1 = defs3, defs2 = defs4

' P !u

Fig. 9. Programs with unique definitions.

B DEFINITIONS OF LOOKUP, SUBTYPES, ACYCLIC PROGRAMS,
AND AGREEMENTS
Figure 9 defines the judgment ' P !u, which guarantees that a program has
unique definitions. The first requirement says that there should be no more
than one class definition for any identifier c—note that it implicitly guarantees
c′ = c′′ and that the class bodies are identical. The second requirement says
that there should be no more than one field definition in c for any identifier
f—note that it implicitly guarantees t = t′. The third requirement says that
there should be a unique method definition in c for any identifier m—note that
it implicitly guarantees t = t′, t1 = t′1, . . . , tq = tq′ , x1 = x′

1, . . . , xq = xq′ , φ = φ′,
and e = e′.

For program P with ' P !u, identifier c -= Object, and qualifier qual = root,
or qual = state, or qual = ε, we define the lookup of the class declaration for c:

C(P, c) ={
qual class c extends c′{cBody} if P=P′ qual class c extends c′{cBody} P′′,
Udf otherwise

The assertionP ' c 3 c′, defined in Figure 10, means that the class c is a sub-
class of c′. The class hierarchy in a program P is well formed, that is, ' P !h, if
the subclass relationship is acyclic, root classes extend only nonroot and non-
state classes, and state classes extend either root classes or state classes. Notice
that ' P !u whenever ' P !h.

It is straightforward to state and prove the following properties of programs
with well-formed inheritance hierarchies: Two types that are in the subclass re-
lationship are classes, the relation 3 is reflexive, transitive and antisymmetric,
and the subclass hierarchy forms a tree with Object at its root.

The following judgments, also defined in Figure 10, distinguish the kinds
of classes: P ' c !ct means that c is any class, P ' c !rt means that c is a
reclassifiable type that is, either a root or a state class. The judgment P ' t ! f t
means that t is a field type, that is, either bool or a nonstate class.

Widening, the extension of the subclass relationship to types, is expressed
by the assertion P ' t ≤ t′, and is also defined by the rules in Figure 10.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 179

' P !u
P ' Object 3 Object

' P !u
P = · · ·[root | state] class c extends c′{ · · · } · · ·

P ' c 3 c
P ' c 3 c′

P ' c 3 c′

P ' c′ 3 c′′

P ' c 3 c′′

∀c, c′ :
P ' c 3 c′ and P ' c′ 3 c ⇒ c = c′

C(P, c) = class c extends c′ { · · · } ⇒ C(P, c′) = class c′ · · ·
C(P, c) = root class c extends c′ { · · · } ⇒ C(P, c′) = class c′ · · ·
C(P, c) = state class c extends c′ { · · · } ⇒

((C(P, c′) = root class c′ · · ·) or (C(P, c′) = state class c′ · · ·))
' P !h

' P !h
C(P, c) = class c · · ·

P ' c ! f t
P ' c !ct

' P !h
C(P, c) = root class c · · ·

P ' c ! f t
P ' c !rt
P ' c !ct

' P !h
C(P, c) = state class c · · ·

P ' c !rt
P ' c !ct

P ' bool ! f t P ' bool ≤ bool
P ' c 3 c′

P ' c ≤ c′

Fig. 10. Subclasses, well-formed inheritance hierarchy, subtypes.

Environment lookup and update, and the least upper-bound operation on
types and environments are defined in Figure 11.

For program P with ' P !h, identifier c such that

C(P, c) = [root | state] class c extends c′{cBody},

and identifiers f and m we define:

FD(P, c, f) =
{
t if cBody = · · · t f · · ·
Udf otherwise

F(P, c, f) =
{
FD(P, c, f) if FD(P, c, f) -= Udf,
F(P, c′, f) otherwise

F(P,Object, f) = Udf
Fs(P, c) = {f | F(P, c, f) -= Udf }

MD(P, c,m) =

t m((t1 x1, . . . , tn xn)) φ {e} if cBody
= · · · t m ((t1 x1 · · · tn xn))φ{e} · · ·

Udf otherwise

M(P, c,m) =
{
MD(P, c,m) if MD(P, c,m) -= Udf,
M(P, c′,m) otherwise

M(P,Object,m) = Udf

Figure 12 introduces agreement notions between programs, stores, and val-
ues as informally introduced in Section 5.5. The judgment P, σ ' v ≺ t is in-
strumental to the definition of P, σ ' v " t : it avoids the use of coinduction.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

180 • S. Drossopoulou et al.

$ = {x1 : t1, . . . , xn : tn, this : c}

$(id) =

{ti if id = xi
c if id = this
Udf otherwise

$[id ,→ t](id′) =
{
t if id′ = id
$(id′) otherwise

t1 0P t2 =
{
t if P ' t1 ≤ t P ' t2 ≤ t ∀t′.(P ' t1 ≤ t′ and P ' t2 ≤ t′) ⇒ P ' t ≤ t′

Udf otherwise

$ 0P $′ = {id : (t0P t′) | $(id) = t and $′(id) = t′}

Fig. 11. Environment lookup and update, lub on types and environments.

v = true or v = false
(bool ≺)

P, σ' v ≺ bool

P ' t !ct
(null ≺)

P, σ'null ≺ t

σ (ι) = [[· · ·]]c P ' c ≤ t
(ι ≺)

P, σ' ι ≺ t

P, σ' v ≺ t v ∈ sVal
(sVal ")

P, σ ' v" t

σ (ι) = [[· · ·]]c P, σ' ι ≺ t
∀f ∈ Fs(P, c) : P, σ' σ (ι)(f) ≺ F(P, c, f)

(ι ")
P, σ ' ι" t

σ(this) = σ′ (this)
σ (ι) = [[· · ·]]c ⇒σ ′(ι) = [[· · ·]]c

′
, φ@Pc = φ@Pc′

(σ ")
P, φ ' σ " σ ′

σ (ι) = [[· · ·]]c ⇒P, σ ' ι" c (for all addresses ι)
$(id) -= Udf ⇒P, σ ' σ(id) " $(id) (for all identifiers id) (!)

P, $ ' σ!

Fig. 12. Agreement between programs, stores, and values.

The judgment P, φ ' σ " σ ′ guarantees that the differences from σ to σ′ are
“small”; in particular, only objects of a state subclass of a class in φ may be
reclassified.

C PROOF OF THE TYPE SOUNDNESS THEOREM
We start with Propositions 2 and 3. Proposition 2 states that in well-formed pro-
grams, any subclass c′ of a class c inherits all the fields of c, and also method
definitions are inherited provided that they are not overridden along interme-
diate classes.

PROPOSITION 2. For program P, identifiers c,c′, f,m, expression e, types t, t′,
ti, t′i , (i ∈ 1, . . . , n), effects φ, φ′, with ' P ! :

(1) F(P, c′, f) -= Udf, P ' c 3 c′ ⇒ F(P, c, f) = F(P, c′, f).
(2) M(P, c,m) -= Udf ⇒ ∃c′′ : P ' c 3 c′′, M(P, c,m) = MD(P, c′′,m).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 181

(3) M(P, c,m) = t m((t1 x1, . . . , tn xn)) φ {e}, P ' c 3 c ⇒
∃e′, φ′ : M(P, c′,m) = t m((t1 x1, . . . , tn xn)) φ′ { e′ }, φ′ ⊆ φ.

(4) M(P, c,m) = t m((t1 x1, . . . , tn xn)) φ {e}, P ' c′ 3 c,
M(P, c′,m) = t′ m((t1 x1, . . . , tn xn)) φ′ { e′ }
⇒ t = t′, ti = t′i for i ∈ 1, . . . , n, φ′ ⊆ φ.

Proposition 3 states some properties of agreement that easily follow from the
definitions in Figure 12.

PROPOSITION 3. For programs P, environments $, states σ , σ ′ , σ ′′ , values v,
types t, t′, effects φ, φ′, identifiers id:

(1) P, σ ' v ≺ t, P ' t ≤ t′ ⇒ P, σ ' v ≺ t′.
(2) P, σ ' v " t, P ' t ≤ t′ ⇒ P, σ ' v " t.
(3) P, φ ' σ " σ ′ , P, φ′ ' σ ′ " σ′′ ⇒ P, φ ∪ φ′ ' σ " σ′′ .
(4) P, φ ' σ " σ ′, φ ⊆ φ′ ⇒ P, φ′ ' σ " σ ′.
(5) P, $ ' σ ! , P ' $(id) ≤ t′ ⇒ P, $[id ,→ t′] ' σ ! .
(6) φ ⊆ φ′, P ' t ≤ t′ ⇒ P ' φ@Pt ≤ φ′ @Pt′ .

Theorem 1 is a direct consequence of the following lemma that, asserts that,
if the evaluation of a well-typed expression terminates, either it produces a
value or a null-pointer exception (no stuck error). Moreover, if the evaluation
produces a value, then such a value agrees with the type of the expression, the
store produced agrees with the original store with respect to the final typing
environment, and the evaluation only modifies the identifiers that are explicitly
mentioned in the typing environment. If the evaluation produces an exception,
then the store produced agrees with the original store with respect to an envi-
ronment which is weaker than the final typing environment. This weakening
is due to the propagation of exceptions in the case of sequences of expressions,
see Remark 3.

LEMMA 1. For well-formed program P, environments $, $′, expression e,
effect φ, and type t, such that

P, $ ' e : t [] $′ [] φ

if P, $ ' σ !, and e, σ converges, then

—either e, σ p! v, σ ′, where
(1) P, σ ′ ' v " t,
(2) P, φ ' σ " σ ′ ,
(3) P,$′ ' σ ′ !,
(4) for all id, $′(id) = Udf implies σ (id) = σ ′ (id).

—or e, σ p! dv, σ ′, where
(1) dv = nullPntrExc,
(2) P, φ ' σ " σ ′,
(3) P, φ@P$

′ ' σ ′ !,
(4) for all id, $′(id) = Udf implies σ (id) = σ ′ (id).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

182 • S. Drossopoulou et al.

PROOF. Since e, σ converges there exists a value or a deviation r and a store
σ ′ such that e, σ p! r, σ ′. We prove the theorem by induction on the application
of the rules that define the operational semantics.

We first consider the significant rules of Figure 3.

—CONDITIONAL. In this case e is if e′ then e1 else e2. Since

P, $ ' e : t [] $′ [] φ

from (cond) we get that

(α) P, $ ' e′ : bool [] $0 [] φ′

(β) P, $0 ' e1 : t1 [] $1 [] φ1
P, $0 ' e2 : t2 [] $2 [] φ2

P, $ ' if e′ then e1 else e2 : t [] $′ [] φ

for t = t1 0P t2, $′ = $1 0P $2, and φ = φ′ ∪ φ1 ∪ φ2. From the operational
semantics, we have

(γ) e′, σ p! true , σ ′′

(δ) e1, σ ′′
p! v, σ ′

if e′ then e1 else e2, σ p! v, σ ′
or

e′, σ p! false , σ ′′

e2, σ ′′
p! v, σ ′

if e′ then e1 else e2, σ p! v, σ ′

Assume that the first rule was used, the other case being similar. By inductive
hypothesis on (α), P, $ ' σ !, and (γ), we get that

(2′) P, φ′ ' σ " σ ′′ ,
(3′) P, $0 ' σ ′′ !,
(4′) for all id, $0(id) = Udf implies σ (id) = σ ′′ (id).

By inductive hypothesis on (β), (3′), and (δ), we derive

(1′′) P, σ′ ' v " t1,
(2′′) P, φ1 ' σ ′′ " σ ′ ,
(3′′) P, $1 ' σ ′ !,
(4′′) for all id, $1(id) = Udf implies σ ′′ (id) = σ ′ (id).

From (1′′), P ' t1 ≤ t, and Proposition 3(2), we derive statement (1). From the
fact that φ = φ′ ∪ φ1 ∪ φ2, and from (2′), (2′′), and Proposition 3(3) and 3(4),
we derive statement (2). From $ = $1 0P $2, we obtain P ' $1(id) ≤ $(id) for
all id such that $(id) -= Udf. From that, (3′′), and Proposition 3(5), we derive
statement (3). Lastly, (4) follows from (4′) and (4′′) by Proposition 1(1).

—ASSIGNMENT TO IDENTIFIERS. This case is similar and simpler than
the following one. Notice that this cannot be on the left hand side of an
assignment; therefore, the location to which this is bound before and after
the execution of the assignment does not change. Moreover, for an assignment
to be well typed, the identifier must be defined in the environment.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 183

—ASSIGNMENT TO FIELDS. In this case, e is e′. f := e′′. Since e is well
typed, from (a-field), we have

(α) P, $ ' e′ : c [] $0 [] φ′

(β) P, $0 ' e′′ : t [] $′ [] φ′′

(γ) F(P, φ′′@Pc, f) = t′
(δ) P ' t ≤ t′
P, $ ' e′.f := e′′ : t [] $′ [] φ

where φ = φ′ ∪ φ′′. From the operational semantics rules, we get that

(µ) e′, σ p! ι, σ ′′

(ν) e′′, σ ′′
p! v, σ ′′′

σ ′′′(ι)(f) -= Udf
(π) σ ′ = σ ′′′[ι ,→ σ ′′′(ι)[f ,→ v]]

e′.f := e′′, σ p! v, σ ′

By inductive hypothesis on (α), P, $ ' σ !, (µ) we get
(1′) P, σ ′′ ' ι" c,
(2′) P, φ ′ ' σ " σ ′′ ,
(3′) P, $0 ' σ ′′ !,
(4′) for all id, $0(id) = Udf implies σ (id) = σ ′′ (id).
By inductive hypothesis on (β), (3′), (ν) we get
(1′′) P, σ ′′′ ' v " t,
(2′′) P, φ ′′ ' σ ′′ " σ ′′′ ,
(3′′) P,$′ ' σ ′′′ !,
(4′′) for all id, $′(id) = Udf, implies σ ′′ (id) = σ ′′′ (id).
We first prove (3), that is, P,$′ ' σ′ !. By the definition given in rule (!) of
Figure 12, we have to prove that:
(5) σ ′(ι′) = [[· · ·]]c′ ⇒P, σ ′ ' ι′ " c ′ for all addresses ι′,
(6) $′(id) -= Udf ⇒P, σ ′ ' σ ′(id) " $ ′(id) for all identifiers id.
Notice that σ′ is obtained from σ′′′ by modifying only one field of the object
bound to address ι, see (π). Therefore, the classes of all objects do not change,
that is,
(7) σ′′′ (ι′) = [[· · ·]]c′ ⇔ σ′ (ι′) = [[· · ·]]c′

.
From (3′′) by rule (!) of Figure 12 we have:
(5′) σ ′′′(ι′) = [[· · ·]]c′ ⇒P, σ ′′′ ' ι′ " c ′ for all addresses ι′, and
(6′) $′(id) -= Udf ⇒P, σ ′′′ ' σ ′′′(id) " $′(id) for all identifiers id.
When ι′ -= ι we get (5) from (5′) and (π) since the fields of the object at address
ι′ in σ′ is the same as in σ ′′′ .

If ι′ = ι from (1′) and rules (ι ") and (ι ≺) of Figure 12, we obtain that
σ′′ (ι) = [[· · ·]]d, for some d such that P ' d 3 c. From (7), (2′′) and rule
(σ ") of Figure 12, we derive that σ ′ (ι) = [[· · ·]]d′

, for some d′ such that
φ′′@Pd = φ′′@Pd′. Therefore, by Proposition 3(6), we get P ' d′ 3 φ′′@Pd′,
P ' φ′′@Pd 3 φ′′@Pc, and these imply P ' d′ 3 φ′′@Pc. This, together with
Proposition 2(1), and (γ), gives F(P,d′, f) = t′. Notice that v = σ ′ (ι)(f), so (1′′),

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

184 • S. Drossopoulou et al.

rule (ι ") of Figure 12, (δ) and Proposition 3(1) imply P, σ ′′′ ' σ ′ (ι)(f) ≺ t′.
Using (7), if v is an address, we obtain P, σ ′ ' σ ′ (ι)(f) ≺ t ′, and therefore
P, σ′ ' ι" d′. This concludes the proof of (5).

To prove (6), consider an id such that $′(id) -= Udf. By (π), σ ′ (id) = σ ′′′ (id).
Therefore, from condition (6′), we get P, σ′ 'σ ′(id) ≺ $′(id). If $ ′(id) = bool,
we are done. Otherwise, let σ ′(σ ′(id)) = [[· · ·]]c′

. Rule (ι≺) of Figure 12
implies that P ' c′ 3 $′(id). From (5) and Proposition 3(2), we can conclude
that P, σ ′ ' σ ′(id) " $ ′(id), that is, we proved (6). This concludes also the
proof of (3).
We get (1) from (1′′) using (5) and (7) when v is an address.

From (2′), (2′′) and Proposition 3(3), we derive that P, φ′ ∪ φ′′ ' σ " σ ′′′ ,
and from the construction of σ ′ out of σ ′′′ , that is, (π), we also obtain that
P, { } ' σ′′′ " σ ′ . The two last two statements together with Proposition 3(3)
give statement (2).
Lastly, (4) follows from (4′) and (4′′) by (π) and Proposition 1(1).

—METHOD CALL. We prove the result for methods with just one parameter.
(The proof for more than one parameter would be similar.) Let e = e0.m((e1)).
From (meth), we have

(α) P, $ ' e0 : c [] $0 [] φ0
(β) P, $0 ' e1 : t′1 [] $1 [] φ1
(γ) M(P, φ1@Pc,m) = t m((t1 x1)) φ′ {e′}
(δ) P ' t′1 ≤ t1

P, $ ' e0.m((e1)) : t [] $′ [] φ

where $′ = φ′@P$1, and φ = φ′ ∪ φ0 ∪ φ1.
The rule for the operational semantics is

(µ) e0, σ p! ι, σ0
(ν) e1, σ0 p! v1, σ1

(π) σ1(ι) = [[· · ·]]c′

(ρ) M(P, c′,m) = t′′ m((t′′1 x1)) φ′′ {e′′}
(ξ) σ ′′ = σ1[this ,→ ι, x1 ,→ v1]
(ζ) e′′, σ ′′

p! v, σ ′′′

e0.m((e1)), σ p! v, σ′

where (χ) σ′ = σ ′′′[this ,→ σ1(this), x1 ,→ σ1(x1)].
Applying the inductive hypothesis to (α), P, $ ' σ !, and (µ), we derive
(1′) P, σ0 ' ι" c,
(2′) P, φ0 ' σ " σ0 ,
(3′) P,$0 ' σ0 !,
(4′) for all id, $0(id) = Udf implies σ (id) = σ0 (id).
Applying the inductive hypothesis to (β), (3′), and (ν), we derive
(1′′) P, σ1 ' v1 " t′1,
(2′′) P, φ1 ' σ0 " σ1 ,
(3′′) P,$1 ' σ1 !,
(4′′) for all id, $1(id) = Udf implies σ0 (id) = σ1 (id).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 185

From (3′′) and (ξ), we know that all the objects have fields consistent with
their class in the state σ ′′, that is,

(5) σ ′′(ι′) = [[· · ·]]d′ ⇒P′′, σ ′ ' ι′ " d′ for all addresses ι′.

From (1′), (2′′), and (π), we obtain by rules (ι "), (ι ≺) and (σ ") of Figure 12
that P ' φ1@Pc′ 3 φ1@Pc. Therefore, by Proposition 3(6), we also get
P ' c′ 3 φ1@Pc. From (γ), (ρ), and Proposition 2(4), we have that t′′ = t, t′′1 = t1,
and φ′′ ⊆ φ′. From the fact that the program is well formed, and Proposi-
tion 2(2), we obtain that there exists a c′′, with P ' c′ 3 c′′, and M(P, c′,m) =
MD(P, c′′,m). Now, applying the requirements for well-formed programs
from Figure 7, we get that for some t′, $′′′, φ′′′:

(6) P, $′′ ' e′′ : t′ [] $′′′ [] φ′′′,

where $′′ = {this : c′′, x1 : t1}, and P ' t′ ≤ t, φ′′′ ⊆ φ′′. From (1′′), Proposi-
tion 3(2), and (δ) we have that P, σ1 ' v1 " t1. By (ξ) this implies

(7) P, σ ′′ ' σ ′′ (x1) " $′′(x1).
Because P ' c′ 3 c′′, we also have using (5) and (ξ)

(8) P, σ ′′ ' σ ′′ (this) " $′′(this).
So from (3′′), (ξ), (5), (7), (8) and rule (!) of Figure 12, we get

(9) P, $′′ ' σ ′′ !.

We now apply the inductive hypothesis to (6), (9) and (ζ). Thus, we derive
that

(1′′′) P, σ ′′′ ' v" t′,
(2′′′) P, φ ′′′ ' σ ′′ " σ ′′′ ,
(3′′′) P,$ ′′′ ' σ ′′′ !,
(4′′′) for all id, $′′′(id) = Udf implies σ ′′ (id) = σ ′′′ (id).
Because of (1′′′), the construction of σ ′ from σ ′′′ , P ' t′ ≤ t, and Proposi-
tion 3(2), we derive statement (1).

From (2′), (2′′), and Proposition 3(3), we haveP, φ0 ∪ φ1 ' σ " σ1 . Because
of Proposition 3(4), we also have

(10) P, φ ' σ " σ1 .

From (2′′′), and Proposition 3(4), since φ′′′ ⊆ φ′′ ⊆ φ′⊆ φ, we obtain that

(11) P, φ ' σ ′′ " σ ′′′ .

Now we show (2), that is, P, φ ' σ " σ′ . First, σ (this) = σ0 (this) by (2′),
σ0 (this) = σ1 (this) by (2′′) and σ ′ (this) = σ1 (this) by construction of
σ ′ . So σ (this) = σ ′ (this). To show the second condition of rule (σ ") of
Figure 12, let ι′ be any address, and let class d be the class of ι′ in σ ,
that is, σ (ι′) = [[· · ·]]d. Because of (10), there exists a class d′ with σ1 (ι′) =
[[· · ·]]d′

, and φ@Pd = φ@Pd′. Also, by (ξ), we obtain that σ ′′ (ι′) = σ1 (ι′).
Furthermore, because of (11), there exists a class d′′ with σ ′′′ (ι′) = [[· · ·]]d′′

,
where φ@Pd′ = φ@Pd′′. By (χ), we also have σ ′ (ι′) = σ ′′′ (ι′). This concludes
the proof of statement (2).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

186 • S. Drossopoulou et al.

To prove (3), that is, P,$′ ' σ ′ !, by rule (!) of Figure 12, we have to show
that:
(12) σ ′(ι′) = [[· · ·]]c′′′ ⇒P, σ ′ ' ι′ " c′′′ for all addresses ι′, and
(13) $′(id) -= Udf ⇒P, σ ′ ' σ ′(id) " $′(id) for all identifiers id.
From (3′′′), we get (12) since (χ) implies σ ′(ι′) = σ ′′′(ι′) for all addresses ι′.
Notice that (3′′) implies
(14) P, σ1 ' σ1 (id) " $1(id).
To prove (13) consider first id -= x1 and id -= this. By (ξ), σ ′′(id) = σ1(id),
and by (χ), σ ′(id) = σ ′′′(id). By (4′′′) and Proposition 1(1) applied to (6)
σ ′′(id) = σ ′′′(id). This shows σ ′(id) = σ1(id). So from (14) and Proposi-
tion 3(1), P, σ ′ ' σ ′ (id) ≺ φ′@P$1(id) = $′(id) since P ' $1(id) ≤ φ′@P$1(id). If
$′(id) = bool, we are done. Otherwise, let σ ′(σ ′(id)) = [[· · ·]]c′

. Rule (ι ≺) of
Figure 12 and (3′′), imply P ' c′ 3 $′(id). Condition (12) and Proposition 3(2),
allow us to conclude that P, σ ′ ' σ′(id) " $′(id).

Let now id = this or id = x1. If $1(id) = bool, then $′(id) = bool, and from
σ ′(id) = σ1(id) and (14), we have that P, σ ′ ' σ ′ (id) " $′(id).

If instead P ' $1(id) !ct , let σ1(id) = ι′′, and σ1(ι′′) = [[· · ·]]c1 . By (ξ),
we get σ ′′(ι′′) = σ1(ι′′). Let σ ′′′(ι′′) = [[· · ·]]d1 . From (2′′′), we get φ′′′@Pc1 =
φ′′′@Pd1. Therefore from (14), φ′′′ ⊆ φ′, Proposition 3(1), and 3(6), we have
that P, σ′ ' ι′′ ≺ φ′@P$1(id). Since from (χ) we have σ ′(ι′′) = σ ′′′(ι′′), then, from
rule (ι ≺) we get P ' d1 3 $′(id). Condition (12) and Proposition 3(2) allow us
to get P, σ ′ ' σ ′(id) " $′(id). This concludes the proof of (13) and so also of
(3).

Last, (4) follows from (4′), (4′′) and (4′′′) by Proposition 1(1).
—RECLASSIFICATION. In this case e = id⇓c. From rule (recl), we have

(α) P ' c !rt
(β) R(P, c) = R(P, $(id))
P, $ ' id⇓c : c [] $′ [] φ

where $′ = ({R(P, c)}@P$)[id ,→ c] and φ ={R(P, c)}. Moreover

(γ) σ (id) = ι σ (ι) = [[· · ·]]d
Fs(P, R(P, d)) = {f1, . . . , fr}
∀l ∈ 1, . . . , r : vl = σ (ι)(fl)
Fs(P, c) \ {f1, . . . , fr} = {fr+1, . . . , fr+q}
∀l ∈ r+ 1, . . . , r+ q : vl initial for F(P, c, fl)

id⇓c, σ p! ι, σ ′

where (δ) σ ′ = σ [ι ,→ [[f1 : v1, . . . , fr+q : vr+q]]c].
We first show (3), that, by rule (!) of Figure 12, implies that we have to

prove:
(5) σ ′(ι′) = [[· · ·]]c′ ⇒P, σ ′ ' ι′ " c′ for all addresses ι′, and
(6) $′(id′) -= Udf ⇒P, σ ′ ' σ ′(id′) " $′(id′) for all identifiers id′.
From P, $ ' σ ! we have:
(5′) σ (ι′) = [[· · ·]]d′ ⇒P, σ ' ι′ " d′ for all addresses ι′, and
(6′) $(id′) -= Udf ⇒P, σ ' σ(id′) " $(id′) for all identifiers id′.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 187

Let d′′ = $(id): (α) and (β) imply P ' d′′ !rt . From (6′), rule (ι ") and (γ), we
know also that P ' d 3 d′′. Therefore, by (β), R(P, c) = R(P, d′′) = R(P, d).
From rule (ι ") of Figure 12 and (5′), we get:
(7) σ (ι′) = [[· · ·]]d′ ⇒P, σ' ι′ ≺ d′ for all addresses ι′,
(8) σ (ι′) = [[· · ·]]d′ ⇒ ∀f ∈ Fs(P, d′) : P, σ ' σ (ι′)(f) ≺ F(P, d′, f) for all ad-

dresses ι′.
Notice that:
—' P! implies P ' F(P, d′, f) ! f t , that is, for all d′, f, F(P, d′, f) cannot be a

state class;
—σ ′ is built out of σ by reclassifying only the object at the address ι from

class d to class c. That is, by keeping the fields of the object at ι that are
already in R(P, d) = R(P, c) and initializing all the other fields with a
value that is compatible with their type in c.

Therefore, we get
(7′) σ ′(ι′) = [[· · ·]]c′ ⇒P, σ′ ' ι′ ≺ c′ for all addresses ι′,
(8′) σ ′(ι′) = [[· · ·]]c′ ⇒ ∀f ∈ Fs(P, c′) : P, σ ′ ' σ ′ (ι)(f) ≺ F(P, c′, f) for all ad-

dresses ι′.
Therefore, (5) follows from (7′) and (8′) by rule (ι ") of Figure 12.

To prove (6), first we consider the case $(id′) -= Udf, and σ (id′) -= ι, that is,
the identifiers that are not alias for id. By construction, P ' $(id′) ≤ $′(id′).
This, with (6′), (δ) and Proposition 3(1), givesP, σ ′ 'σ ′(id′) ≺ $′(id′). If $′(id′) =
bool, we are done. Otherwise, let σ ′(σ ′(id′)) = [[· · ·]]c′

. Rule (ι ≺) of
Figure 12 implies P ' c′ 3 $′(id). Condition (5) and Proposition 3(2) allow
us to conclude P, σ ′ ' σ ′(id)" $′(id).

Let instead id′′ be such that id′′ -= id, $(id′′) -= Udf and σ (id′′) = ι, that
is, id′′ is an alias for id. This implies P ' d 3 $(id′′). By definition, $′(id′′) =
R(P, c), if P ' $(id′′) 3 R(P, c) and $′(id′′) = $(id′′) otherwise. In both cases,
P ' R(P, c) 3 $′(id′′), so, as before, we obtain P, σ′ ' σ ′(id′) " $′(id′′). This
concludes the proof of (6) and therefore also of (3).

The condition (1) is (5) for ι′ = ι and c′ = c.
From R(P, c) = R(P, d), we get φ@Pc= φ@Pd, which ensures statement (2).
Last, (4) follows immediately from (δ).

For the rules of Figure 4 that generate a null pointer exception, the result
follows easily by inductive hypothesis.

Consider now the other rules of Figure 4. We shall show that none of these
rules is applicable:

—CONDITIONAL. The expression e′ has the form e′ = if e then e1 else e2,
and e evaluates to a value v′ which is neither true nor false. Since e′ is well
typed, e must have type bool. By application of the inductive hypothesis on
the evaluation of e, we obtain that e must rewrite to a value that conforms to
bool. The only values that conform to bool are true and false, which gives
a contradiction.

—FIELD ACCESS and FIELD ASSIGNMENT as above, using the fact that
the expression is well typed, that the state agrees with the program and
environment, and applying Proposition 2(1).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

188 • S. Drossopoulou et al.

—VARIABLE ACCESS and VARIABLE ASSIGNMENT as above, using the
fact that the expression is well typed, and that the state agrees with the
program and environment.

—METHOD CALL as above, using the fact that the expression is well typed,
that the state agrees with the program and environment, and applying Propo-
sition 2(2) and 2(4).

We now consider exception propagation from Figure 5. Let us first consider
the propagation for the case of sequences of expressions. From rule (seq), we
have

(α) P, $ ' e0 : t0 [] $0 [] φ0
(β) P, $0 ' e1 : t [] $′ [] φ1
P, $ ' e0; e1 : t [] $′ [] φ

,

where φ = φ0 ∪ φ1. From the operational semantics

(γ) e0, σ p! dv, σ ′

e0; e1, σ p! dv, σ ′ .

By the inductive hypothesis on (α), P, $ ' σ !, and (γ):

(1′) dv = nullPntrExc,
(2′) P, φ0 ' σ " σ ′ ,
(3′) P,φ0@P$0 ' σ ′ !,
(4′) for all id, $0(id) = Udf implies σ (id) = σ′ (id).

(1′) implies (1). From (2′), φ0 ⊆ φ, and Proposition 3(4), we derive (2). From
(3′), for all id, P, σ ′ ' σ ′(id) " φ0@P$0(id), and from Proposition 3(6),
we get P ' φ0@P$0(id) ≤ φ@P$0(id). Proposition 3(2) implies: for all id,
P, σ ′ ' σ ′(id)" φ@P$0(id). Moreover, Proposition 1(2) and (β) implies that for
all id, φ1@P$0(id) = φ1@P$

′(id), so also (φ0 ∪ φ1)@P$0(id) = (φ0 ∪ φ1)@P$
′(id) by

Proposition 3(6). Therefore, for all id, P, σ ′ ' σ ′(id) " φ@P$
′(id), that is (3). Fi-

nally, from (4′) and Proposition 1(1), we derive (4).
All the other cases are proven in a similar way. We outline the proof for

the last propagation rule that deals with the fact that the exception may be
generated during the evaluation of the body of the method. For this case, we
can proceed with the same proof as for the case of correct method call, till
statement (9) (included), just replacing

(ζ ′) e′′, σ ′′
p! dv, σ ′′′

for (ζ). We then add:
Applying the inductive hypothesis to (6), (9), and (ζ ′), we derive that

(1′′′) dv = nullPntrExc,
(2′′′) P, φ′′′ ' σ ′′ " σ ′′′ ,
(3′′′) P,φ′′′@P$

′′′ ' σ ′′′ !,
(4′′′) for all id, $′′′(id) = Udf implies σ ′′ (id) = σ ′′′ (id).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 189

The proof of (1) derives directly from (1′′′), whereas the proofs of (2) and (4) are
as for the case of correct method call (noting that we have almost the same
inductive hypotheses).

To complete the proof of this case we have to show (3), that is:

P,φ@P$
′ ' σ ′ !.

As for the proof of correct method call we can show that for all
id such that $′(id) -=Udf, P, σ ′ ' σ ′(id)" $ ′(id). From Proposition 3(6),
P ' $′(id) ≤ φ@P$

′(id). So from Proposition 3(2), P, σ ′ ' σ ′(id)" φ@P$
′(id). This

concludes the proof.

Remark 3. The weaker guarantee of well formedness for the resulting
store σ′ in the second case of Lemma 1 is due to the fact that the interruption
of execution of e might prevent setting the type of this and parameters to the
types specified in $′. For instance, for program P0, state classes d′, d′′, which
are not subclasses of each other, and d their root superclass, σ0 , $0 and e0
with σ0 (this) = [[· · ·]]d′

and $0(this) = d′, and e0 = null.f; this⇓d′′, typing
produces:

P0, $0 ' e0 : d′′ [] $0[this ,→ d′′] [] {d},

whereas execution produces:

e0, σ0 p!0 nullPntrExc, σ0 .

In σ0 , the receiver this is bound to an object of class d′. So, P0, $0[this → d′′] -'
σ0!. However, {d}@P0 ($0(this)) = d, and P0 ' d′ 3 d. Thus, P0,{d}@P$0 ' σ0 !

holds.

ACKNOWLEDGMENTS

FickleII has benefited from constructive criticism on Fickle–99 from Walt Hill,
Viviana Bono, Luca Cardelli, Andrew Kennedy, Giorgio Ghelli, and anonymous
POPL’00 reviewers. Christopher Anderson, Lorenzo Bettini, Ross Jarman, and
the anonymous FOOL’01, ECOOP’01 referees gave useful feedback on Fickle.
We are particularly grateful to Davide Ancona and the TOPLAS referees for
careful reading and detailed suggestions, which improved greatly the submitted
version.

REFERENCES

ABADI, M. AND CARDELLI, L. 1996. A Theory of Objects. Springer, Berlin.
AGESEN, O., BAK, L., CHAMBERS, C., CHANG, B., HÖLZLE, U., MALONEY, J., SMITH, R., AND UNGAR, D. 1992.

The SELF Programmers’s Reference Manual, version 2.0. Tech. rep., SUN Microsystems.
AGESEN, O., PALSBERG, J., AND SCHWARTZBACH, M. I. 1995. Type inference of self: Analysis of objects

with dynamic and multiple inheritance. Soft.-Pract. Exper. 25, 9, 975–995.
ANCONA, D., ANDERSON, C., DAMIANI, F., DROSSOPOULOU, S., GIANNINI, P., AND ZUCCA, E. 2001. An effec-

tive translation of Fickle into Java. In Proceedings of the ICTCS’01. Lecture Notes in Computer
Science, vol. 2002. Springer, Berlin, 215–234.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

190 • S. Drossopoulou et al.

ANCONA, D., ANDERSON, C., DAMIANI, F., DROSSOPOULOU, S., GIANNINI, P., AND ZUCCA, E. 2002. Trans-
lating FickleII into Java. In preparation.

ANDERSON, C. 2001. Implementing Fickle, Imperial College, final year thesis.
BERTINO, E. AND GUERRINI, G. 1995. Objects with multiple most specific classes. In Proceedings of

ECOOP’95. Lecture Notes in Computer Science, vol. 952. Springer, Berlin, 102–126.
BONO, V., BUGLIESI, M., DEZANI-CIANCAGLINI, M., AND LIQUORI, L. 1999. A subtyping for extensible,

incomplete objects. Funda. Inf. 38, 4, 325–364.
CANNING, P., COOK, W., HILL, W., AND OLTHOFF, W. 1989. Interfaces for strongly typed object oriented

languages. In Proceedings of OOPSLA’89. ACM, New York, 457–467.
CARDELLI, L., DONAHUE, J., GLASSMAN, L., JORDAN, M., KALSOW, B., AND NELSON, G. 1989. Modula-3

Report (revised). Tech. rep., DEC Systems Research Center.
CHAMBERS, C. 1993. Predicate classes. In Proceedings of ECOOP’93. Lecture Notes in

Computer Science, vol. 707. Springer, Berlin, 268–296.
CHAMBERS, C. AND LEAVENS, G. 1995. Type checking modules for multimethods. ACM Trans. Prog.

Lang. Syst. 17, 6, 805–843.
COSTANZA, P. 2001. Dynamic object replacement and implementaion-only classes. In Proceed-

ings of WCOP’01 (at ECOOP’01). Available from http://www.cs.uni-bonn.de/∼costanza/implemen-
tationonly.pdf.

DELINE, R. AND FÄHNDRICH, M. 2001. Enforcing high-level protocols in low-level software. In
Proceedings of PLDI’01. ACM, New York, 59–69.

DI GIANANTONIO, P., HONSELL, F., AND LIQUORI, L. 1998. A Lambda calculus of objects with self-
inflicted extension. In Proceedings of OOPSLA’98. ACM Press, New York, 166–178.

DROSSOPOULOU, S. 2002. Three Case Studies in FickleII. Tech. rep., Imperial College. Available
from http://www.di.unito.it/∼damiani/papers/dor.html.

DROSSOPOULOU, S., DAMIANI, F., DEZANI-CIANCAGLINI, M., AND GIANNINI, P. 2001. Fickle: Dynamic
object reclassification. In Proceedings of ECOOP’01. Lecture Notes in Computer Science, vol.
2072. Springer, Berlin, 130–149. A shorter version is available in: Electronic proceedings of
FOOL8 (http://www.cs.williams.edu/∼kim/FOOL/).

DROSSOPOULOU, S., DEZANI-CIANCAGLINI, M., DAMIANI, F., AND GIANNINI, P. 1999a. Objects dy-
namically changing class. Tech. rep., Imperial College. Available from http://www.di.unito.
it/∼dezani/odcc.html.

DROSSOPOULOU, S., EISENBACH, S., AND KHURSHID, S. 1999b. Is the Java type system sound? Theory
Pract. Obj. Syst. 5, 1, 3–24.

ERNST, M. D., KAPLAN, C., AND CHAMBERS, C. 1998. Predicate dispatching: A unified theory of
dispatch. In Proceedings of ECOOP’98. Lecture Notes in Computer Science, vol. 1445. Springer,
Berlin, 186–211.

FIDGETT, D. 2002. Extending FickleII, Imperial College, final year thesis—to appear.
FISHER, K., HONSELL, F., AND MITCHELL, J. C. 1994. A Lambda calculus of objects and method

specialization. Nord. J. Comput. 1, 1, 3–37.
FISHER, K. AND MITCHELL, J. C. 1995. A Delegation-based Object Calculus with Subtyping. In

Proceedings of FCT’95. Lecture Notes in Computer Science, vol. 965. Springer, Berlin, 42–61.
FREEMAN, T. AND PFENNING, F. 1991. Refinement types for ML. In Proceedings of SIGPLAN ’91.

ACM, New York, 268–277.
GHELLI, G. AND PALMERINI, D. 1999. Foundations of extended objets with roles (extended abstract).

In Electronic Proceedings of FOOL6. Available from http://www.cs.williams.edu/∼kim/FOOL/
FOOL6.html.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, Mass.

HÜRSCH, W. 1994. Should superclasses be abstract? In Proceedings of ECOOP’94. Lecture Notes
in Computer Science, vol. 821. Springer, Berlin, 12–31.

JARMAN, R. 2000. Fickle: A study in objects, Imperial College, final year thesis.
JARMAN, R. AND DROSSOPOULOU, S. 2000. Examples in Fickle. Available from
http://www.di.unito.it/∼damiani/papers/dor.html.

KRISTENSEN, B., MADSEN, O., MOLLER-PEDERSON, B., AND NYGAARD, K. 1987. The BETA programming
language. In Research Directions in Object-Oriented Programming. MIT Press, Boston, Mass.,
7–48.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

More Dynamic Object Reclassification: FickleII • 191

LUCASSEN, M. AND GIFFORD, D. K. 1988. Polymorphic effect systems. In Proceedings of POPL’88.
ACM, New York, 47–57.

RAVARA, A. AND VASCONCELOS, V. T. 2000. Typing non-uniform concurrent objects. In Proceedings
of CONCUR’00. Lecture Notes in Computer Science, vol. 1877. Springer, Berlin, 474–488.

RÉMY, D. 1995. From classes to objects via subtyping. In Proceedings of ESOP’98. Lecture Notes
in Computer Science, vol. 1381. Springer, Berlin, 200–220.

RIECKE, J. C. AND STONE, C. A. 1998. Privacy via subsumption. In Electronic Proceedings of
FOOL5. Available from http://www.cs.williams.edu/∼kim/FOOL/FOOL5.html.

SCHEER, T. AND PRINGLE, S. 1998. Ten practical limitations of object orientation. OOPSLA Poster
Session, Available from http://www.acm.org/sigplan/oopsla/oopsla98/fp/posters/10.htm.

SERRANO, M. 1999. Wide classes. In Proceedings of ECOOP’99. Lecture Notes in Computer
Science, vol. 1628. Springer, Berlin, 391–415.

SHUTTLEWOOD, A. 2002. Implementing FickleII on the JVM, Imperial College, final year thesis—
to appear.

STROM, R. E. AND YELLIN, D. M. 1993. Extending typestate checking using conditional liveness
analysis. IEEE Trans. Soft. Eng. 19, 5, 478–485.

TAILVASAARI, A. 1993. Object oriented programming with modes. J. Obj. Orient. Prog. 6, 3, 27–32.
TALPIN, J.-P. AND JOUVELOT, P. 1992. Polymorphic type, region and effect inference. J. Funct.

Prog. 2, 3, 245–271.
WALKER, D., CRARY, K., AND MORRISETT, G. 2001. Typed memory management via static capabilities.

ACM Trans. Prog. Lang. Syst. 22, 4, 701–771.

Received May 2001; revised December 2001; accepted March 2002

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 2, March 2002.

