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Abstract

Many distributed applications can be understood in ternmafponents interacting in an
open environment such as the Internet. Open environmeatsulject to change in unpre-
dictable ways, as other applications may arrive, evolvelisappear. In order to validate
components in such environments, it can be useful to builchalation environment which
reflects this highly unpredictable behavior. In this pafier,validation of components with
respect to behavioral interfaces is considered. Behda\iaterfaces specify semantic re-
quirements on the observable behavior of components, gsgadn an assume-guarantee
style. In our approach, a rewriting logic model is transptyeextended with the history
of all observable communication, and metalevel strategiesised to guide the simulation
of environment behavior. Over-specification of the envinent is avoided by allowing ar-
bitrary environment behavior within the bounds of the agsion on observable behavior,
while the component is validated with respect to the guaeanof the behavioral interface.

Key words: Validation, components, behavioral interfaces, simatati
strategies, rewriting logic, meta-programming

1 Introduction

This paper suggests an application of rewriting lodi€] [to test the behavior of
software units iropen distributed environmengsich as the Internet. An open en-
vironment is an environment in which various other softwamés exist, and little
or no information about these units is available. A dist@alienvironment is an
environment in which communication is asynchronous. Reiagan this setting is
intrinsically difficult, partly due to the non-determinissaused by distribution, but
more characteristically due to the unknown and evolvingag@/ironment.

It is a major challenge to predict the behavior of componewutdving in open
distributed environments, in order to ensure and maintaimabioral properties
concerning safety, availability, quality of service, relness, and fault tolerance.
Formal approaches to system verification, such as Hoare, lbgpe checking,

1 Email: einarj@ifi.uio.no,olaf@ifi.uio.no,aribraat@ifi.uio.no

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



JOHNSEN, OWE, AND TORJUSEN

and model checking, depend on knowing the implementatidaildeof the sys-
tem components, including those in the open environmenprdgches based on
testing simulate an environment in which the system can bgsted to test runs.
In contrast to verification methods, testing cannot geheraisure that compon-
ents are always well-behaved, but testing may still giveaéng insights into a
component’s behavior. However, the problem of conformaasgng for software
units in open distributed environments is not resoh24).[ This paper shows how
open environments can be mimicked by underspecified forestriptions based
on observable behavidn order to validate the behavior of software units in open
distributed environments at the modeling level. Modeldobgesting in the early
development stages makes the testing process more eff¢djv

Object orientation is the leading framework for concurramd distributed sys-
tems, recommended by the RM-ODPZ] and used in, e.g., .Net and Corba. In
this paper, we model distributed components by objectswasynchronously ex-
change messages. The models are executable in the reviogicgystem Maude
[4], which has facilities for simulation, model checking, aretification. To allow
black-box validation, we use requirement specificatiorteims of observable be-
havior. Observable behavior is specified udedpavioral interface$l13,14] which
describe component services available to the environment.

This paper defines an executable framework for validatiegaibservable be-
havior of models in the open distributed setting. For thigppse, behavioral in-
terfaces are captured in rewriting logic and combined witktasndard rewriting
logic model of asynchronously communicating objects. lrenmore, the execut-
able platform in Maude is extended with validation facdgiin a transparent way.
Rewriting logic isreflective[3,5] in a mathematically precise manner: it is pos-
sible to reason formally about reflective rewriting insiéevriting logic itself, and
to execute reflective specifications at the Maodsalevel The use of reflection is
essential to our approach, allowing for guided search astesy monitoring in a
modular, composable, and hierarchical way. Reflection neayded to define ex-
ecution strategies for an executable object model, for @@imnon-deterministic
execution strategy is proposed it5]. Reflective specifications support a layered
architecture where several specifications may be givercatlesel. Reflection can
be used to extend a system model with, e.g., logging faslifz4]. In this paper,
we transparently extend an executable specification wathigtory of observable
communications at the metalevel, and define executioregies at the metalevel
which are guided by requirements on the communication fyistOne strategy is
used to mimic open environments and another to test the @atdeunodel. The
two strategies are combined in order to enable an assunrargea style model-
based testing of components with respect to their behdvigeafaces.

Paper overview: Sect.2 presents a formalism for behavioral interfaces. Sgct.
presents rewriting logic and the Maude tool. Sdatlevelops metalevel strategies
for monitoring and testing executable Maude models. Aagpator simulation of
open environments is presented in S&and it is shown how this can be utilized
in a test scenario. Se@.discusses related and future work.
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2 Behavioral Interfaces

An open distributed system (ODS) can be represented by coemp® or objects
that run in parallel and communicate asynchronously by meanemote method
calls. The implementation details of the components mayrtk@awn, in which
case reasoning must rely on abstract specifications of gtersys components. We
assume that components come equipped Wwéhavioral interfaceshat instruct

us on how to use them. As a component may be used for multipjeopes, it
can come equipped witmultipleinterfaces. This section presents a formalism for
viewpoints based on a notion of generic interface with beral' requirements,
restricted to safety aspects. For further details abostork, see13,14].

Black-box specifications of concurrent components may Ipeessed in terms
of observable behavior.e., the time sequence of input and output to the com-
ponents. This fits well with the notion of encapsulation;yowisible operations
are considered at the specification level. An execution earepresented by a se-
guence of communication events, which is infinite in the aafseon-terminating
executions. However, infinite sequences are not easy tomessout. To avoid
infinite sequences, specifications may be expressed in tefrtie finite initial
segments of the executions, capturing the abstract stabesmponents during ex-
ecution. These sequences are commonly referred to asiéssfgjror traces [L1].
Prefix-closed sets of executions express safety propertiee sense of Alpern and
Schneider]].

Finite sequences\Ve consider an abstract data ty§sg[T| of finite sequences
parameterized by a typE. Functions over sequences will be defined by means
of convergent sets of equations, using the empty sequeneed right append,
_;_:Seq|[T] x T — Seq[T], as sequence constructors. We let “_" denote argument
positions of functions with mix-fix notation.

We define projection,/ :Seq[T]| x Set[T] — Seq[T], and an “ends with” rela-
tion, _ew_:Seq[T] x Set[T| — Bool, using one equation for each constructor case:

g/S=¢ € ew S= false
(t;x)/S=if x € Sthen (t/S); x elset/S (t;X) ewS=xe S

The notation #denotes the length of a sequen@nd is defined in a similar way.

2.1 Semantics

Let Ob be an unbounded set of object identifiers. Deta be a set of data values,
including Ob. In this paper, we conventionally let,0, € Ob. A communication
eventhas the form

msgfrom 03 to 02

wheremsgconsists ofData. This term is considered avutput evenbf 0, and an
input evenf 0,. For observable events; ando, are distinct. The sets of observ-
able input and output events of an objeetre denotediN, andOU T,, respectively,
and are by definition disjoint. Their union is denot&t®UT,,.
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An alphabetfor an objecb is a subset ofNOU T,. An alphabet ob may cover
certain aspects of the communicatioroofin the next section we introduce syntax
for statically defined alphabets. #ace set7y C Seq[a] is a prefix-closed set of
well-formed sequences.

Definition 2.1 A specification is a triple(o,a,7") where (1)o € Ob is an object
identifier, (2)a is a possibly infinite alphabet far, and (3)7 is a trace set ovex.

For any specificatiofi, we can derive @ommunication environmer(l") of
objects communicating with the objectiof In an ODS setting, we generally think
of the communication environment as unbounded. Since teeifggationl” does
not need to cover all aspects of the behavioopfve say thaf™ is aninterface
specification(of o).

In the following we consider object-oriented distributggtems where com-
munication is achieved through remote methods calls. lerota achieve asyn-
chronous communication, we model a method call through wemts: the event
representing the initiation of a call, and the event reprisg its completion. Let
Mtd be an unbounded set of method names, anthletMtd. For a call byo; to
methodm of 0y, the initiation event is generated by the catieiland is represented
by invogd'm) from o7 to oz, and the completion event is generated by the caljee
and represented lmom@m) from 0, to 0;. To simplify the exposition, we abstract
from parameter values in this paper. In order to increasagat@hty, we represent
these events by, —0,.m ando;«—0,.m, respectively.

As we consider asynchronously communicating objects, lara@ay commu-
nicate while (passively) waiting for a completion and a@almay communicate
while performing a method. Consequently, other events easbserved in between
the initiation and completion of any given call. When we ddes the history of
observable behavior, every completion event must be peeclkyd a corresponding
invocation, which gives rise to the following notion of wétirmedness for com-
munication histories:

wi(€) = true
wif(t; (0—0.m)) = wif(t)
wf(t; (0—0'.m)) = wi(t) A#(t/o—0d.m) > #(t/o—0d'.m)

where #t /o—0'.m) is the length of the tracerestricted to invocation events of the
methodm from o to o, and similarly for completion events.

Definition 2.2 A specification(o,a, 7') of o refinesanother specificatiofo,a’, 7”)
ofoifa’ Caandvte 7 .t/a’ € T'.

Thus, refinement corresponds to the subset relation ongbedijdrace sets in
the sense thaft/a’ |t € T} C 7. Note that a specification may refine several
specifications with (partially) disjoint alphabets. Thergmsition of specifications
may be introduced to define partial components or systentespethe sense of
distributed servicesl3,14].
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2.2 Syntax

Interface specifications may be given in a generic manneneft@specifications
are referred to abehavioral interfacesAn object may support a number of inter-
faces. As Maude does not provide a syntax for specificatiabsérvable behavior,
statically defined alphabets, nor methods (not even withNWratuide), we introduce
a syntax for observable behavior by means of object-orikinterfaces:

interface F ({(context parameters
inherits F1,F,....Fn

begin

with cointerface
opm(...)
op My(....)

spec<formula on local trace>
where <auxiliary function definitions>
end

Interfaces can have context parameters, which typicalbgrilee the minimal
environment, representing static links needed by objéetissupport the interface.
An initiation and a completion event is associated with eaethod declaration
(ranging over method parameters, which are ignored in tpep. In the specific-
ation formula, the keywordthis’ denotes the object supporting the interface.

Mutual dependencylet objects be typed by interfaces. By identifying a type
for the caller, thecointerface we restrict the objects that may call the methods of
this interface, while allowinghis object to call cointerface methods. This opens
up for interaction with a caller during execution of a methdd an implementa-
tion language, access to thaller may be provided by an explicit parameter as in
Maude, or implicitly as in Creol15]. Cointerfaces give strong typing in an asyn-
chronous setting. Semantically a cointerface declaraiaiments the alphabet of
the interface, as events related to cointerface methodsdaled.

Inheritance. Multiple inheritance is allowed for interfaces, but cydiherit-
ance graphs are not allowed. In a subinterface, additioetthods and behavioral
constraints can be declared. A cointerface restrictiofiepfo the locally declared
methods. If an interfacE is declared with an inheritance clause, the alphabets of
the super-interfaces are included in the alphabét.oTrace sets are inherited by
intersection, when restricted to the relevant alphabetiseouper-interfaces. Thus,
an interface will always refine its super-interfaces.

Definition 2.3 Theinterface alphabebf an objec with respect to an interfade,
denotediyg, is defined as the set of events of the form

(i) invogm) from o to o andcomgm) from oto o for mdeclared irF,

(i) invogm) from oto o’ andcomgm) from o’ to o for mdeclared in (or inherited
by) the cointerface, and

(iii) any eventinagr whereF’ is a super-interface d¥.
5
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Definition 2.4 LetF,Fy,..., R, be interfaces with corresponding specification pre-
dicatesP,Py,..., P, and leth range over histories. F inheritsFy, ..., R, theinter-
face specificationf F is the conjunctiofP(h) AP(h/Omisk, ) A .. APa(h/QthisE, )

Assume-guarantee predicatés.ODS, the environment in which an object ex-
ists is subject to change, and specifications are relatie@ @mssumed behavior of
the environment. We adapt the assume-guarantee speoifficsttile [L6] to the
setting of observable behavior. Assumptions should esprestrictions on the
inputs and guarantees on the outputs. However, it is oftificudt to formulate
assumptions and guarantees separately, since requisetoenitputs may depend
on earlier input, and requirements to inputs may depend dieeeautput. Instead
we use a single predicakewhich relates input and output events, and extract an
assumption part and a guarantee part flim

Definition 2.5 Let IN and OUT denote the sets of input and output events for
this interface. Anassume-guarantepredicate is derived from the specification
specP(h), where the assumption pakiand the guarantee pdktare defined by the
equations

Ale) =true
A(h;x) = A(h) A (xe IN AP(h) = P(h;x))
G(e) =true

G(h;x) = G(h) A (A(h;x) = P(h;x))
The trace set given by the specificatgpecP(h) is {h|G(h)}.

Note that both set$h | G(h)} and{h|A(h)} are prefix-closed, and that their
intersection is the largest (prefix-closed) trace set d¢nethin{h|P(h)}.

Assumptions are the responsibility of the objects in theremment. The as-
sumption part ensures that each input is acceptable, asguraiearlier violation.
Guarantees are the responsibility of the object suppottiegnterface; they are
guaranteed when the assumption holds. The guarantee garesrthat each out-
put is acceptable, assuming the assumption holds. Thustaal &nvironment is
required to refine the trace set given Ayand an implementation of the interface
is required to refine the trace set given®y

2.3 Example: A Minimal Interface

Behavioral interfaces are illustrated through the exaropkbe dining philosoph-
ers. A table object informs a philosopher of the identity fed philosopher’s left
neighbor and provides units of food. A philosopher may beremd return its
neighbor’s chopstick. Interaction between the philosophad the table is restric-
ted by interfaces. This results in a clear distinction bevimternal methods and
methods externally available to other objects typed bycthieterface Here, each
philosopher owns one chopstick and must borrow another &araighbor before
eating. Hence, philosophers have both active and passhavize. Strong typing
and cointerfaces guarantee that only philosophers maytrealinethodsborrow-
Stick andreturnStick
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interface Phil interface Table

begin begin

with Phil with Phil
op borrowStick op seatput neighborPhil)
op returnStick op eat
(specificatiof end

end

Denote bycalleran arbitraryPhil object in the environment dghis Phil object, as
required by the cointerface. The alphabePdil is given by the events:

caller— this.borrowStick caller— this.borrowStick
this— callerborrowStick this— callerborrowStick

and similar events foreturnStick We define the following specification fhil:

spec 0< lenth) <1A0< borrowedh) + requesteh) <1

where lenth) = #(h/ < this.borrowStick— #(h/ — this.returnStick
borrowedh) = #(h/this<— borrowStick — #(h/this— returnStick
requesteh) = #(h/this— borrowStick — #(h/this«— borrowStick

Here, lent captures the number of sticks lent to neighbd&@rowedthe number

of sticks the object has borrowed from its neighbors, eagliestectaptures the
number of unfulfilled borrow requests. The three functiores defined in terms
of the history of observable behavior up to present time. §peification implies

that a single boolean variable suffices to keep track of stgtken away. Thus, the
assumption part of the specification reduces to

Appil(h;xX) = Appi(h) A (x € {— this.returnStick = lenth) > 0)

stating that the environment may not return more sticks ihlaas borrowed.

The two interfaces above are connected by introducing anfadeEatingPhil
inheriting Phil and with aTableas a parameter, thereby providing initial environ-
mental knowledge. The specification Bhil is strengthened by requiring that a
philosopher must have two sticks to eat:

interface EatingPhi(table: Tablg inherit Phil
begin
spec eatingh) = lenth) = 0A borrowedh) = 1
where eatingh) = #(h/this— ea) > #(h/this— ea}
end
Here, eatingis true whenthis object is capable of eating. This interface does not

strengthen the assumption inherited fr&mi, i.e., Agatingphilh) = Apnil(h) = Vh' <
h-lent(h) > 0.
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3 Rewriting Logic and Maude

This section gives a brief introduction to rewriting logic/] and Maude 4]. A re-
write theory is a 4-tupl&® = (X, E, L, R), where the signaturedefines the function
symbols of the languagé&, defines equations between terrhss a set of labels,
andR is a set of labeled rewrite rules. From a computational viamy a rewrite
rulet — t’ may be interpreted aslacal transition ruleallowing an instance of
the patterrt to evolve into the corresponding instance of the patterrRewrite
rules apply to fragments of a state configuration. If rewniles may be applied to
non-overlapping fragments of the configuration, the ti@mss may be performed
in parallel. Consequently, rewriting logic (RL) is a logicdieh easily captures
concurrent change. A number of concurrency models have sfismessfully rep-
resented in RL4,17], including Petri nets, CCS, Actors, and Unity.

Informally, a state configuration in RL is a multiset of terwisgiven types,
specified in (membership) equational lodik, E), the functional sublanguage of
RL which supports algebraic specification in the ORJ][style. Memberships
express that a term belongs to a given sort. When modelingotational systems,
configurations may include different system componentseteatiby terms of the
different types defined in the equational logic. An RL objea term(O:C | a; :
V1,...,a8n: V), WhereOis the object’s identifielC is its class, they's are the names
of the object’s attributes, and thgs are the corresponding value§.|

RL extends algebraic specification techniques with rewtites to capture the
dynamic behavior of a system, supplementing the equatiefising the term lan-
guage. Assuming that all terms can be reduced to normal f@wrjte rules trans-
form terms modulo the equationsBf Rewrite rules may have a condition (a con-
junction of rewrites, equations, and memberships) whiclstrhold for the main
rule to apply. Each rule describes how a part of a configuratan evolve in one
transition step:

rl [label : subconfiguration— subconfiguration
crl [label : subconfiguratioar— subconfiguratioif condition

An unconditional rule with aiif-then-elseexpression as the right hand side may al-
ternatively be given as two complementary conditionalsulRules in RL may be
formulated at a high level of abstraction, closely resentbé compositional oper-
ational semanticslg]. The Maude system supports analysis of RL specifications.

3.1 Reflection and The Maude Metalevel

Rewriting logic is reflective in the sense that there is adigipresented rewrite
theory U that isuniversal any finitely presented rewrite theof§ (including U
itself) can be represented ifi. LetC andC’ be configurations an®_be a set of
rewrite rules. We write® - C — C’ to express thaf may be rewritten t&€' in the
rewrite theoryR . Informally, a configuratiol© and the se} of rewrite rules of a
specification in RL may be represented by te@wand®_at the metalevel. Using
this notation, we have the equivalen&§ [

8
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rl [reqg-stick] : (X : Ob| hungry: true, myS: yes nbrS: no,: nbr:Y) —
(X : Ob| hungry: true, myS: yes nbrS: req nbr:Y) (invoc(’borrowStick) from X toY) .

rl [borrow] : (X : Ob| hungry: false myS: yes nbrS: s, nbr:Y)
(invoc(’borrowStick) from Z to X) —
(X : Ob| hungry: false myS: no, nbrS: s, nbr:Y) (comy ’borrowStick) fromX toZ) .

rl [rev-stick] : (X : Ob| hungry: true, myS: yes nbrS: req nbr:Y)
(comyborrowStick) fromY to X) —
(X : Ob| hungry: true, myS: yes nbrS: yes nbr:Y) .

rl [eat-req] : (X : Ob| hungry: true myS: yes nbrS: yes nbr:Y) —
(X': Ob| hungry: true, myS: yes nbrS: yes nbr:Y) (invoc(’eat) from X to 'table) .

rl [eat] : (X : Ob| hungry: true myS: yes nbrS: yes nbr:Y)
(com’eat) from 'table toX) —
(X: Ob| hungry: false myS: yes nbrS: no, nbr:Y) (invoc( returnStick fromX toY) .

Figure 1. Rewrite rules capturing philosopher behavior.

REC—C e UF(R,C)—(R,C),

which states that if a terr@ can be rewritten to a ter@’ in the rewrite theory
R, then the meta-representation®in &, (®,C), can be rewritten to the meta-
representation &’ in 8, (®,C’), in the universal rewrite theorgz, and vice versa.
Maude includes facilities to meta-represent a rewrite the and to apply rules
from R to the meta-representation of a te@ioy so-calleddescent functions

Metalevel rewrite rules may be used to select which rule fi®nto apply to
which subterm ofC. This is done by defining an interpreter function which takes
as arguments a finitely presented rewrite the®rya termC, and a deterministic
strategyS. Metalevel rewrite rules may further be used to modify a ganfation or
the rule set of a rewrite theory. Hence, metalevel rewritiaig be used as a wrapper
around a rewrite theorg® in order to abstractly mimic a more elaborate rewrite
theory R’ extending®. Further details on the theory and the use of reflection in
RL and Maude may be found i3 f,5].

3.2 Example: Implementation of the Philosophers

We introduce a Maude specification which implementsEag¢ingPhil specifica-
tion given in Sect2.3. Let O be a variable ranging ové@b, a philosopher object is
defined as a RL objecO : Ob|hungry: _,myS: _ nbrS: _,nbr:_). The Boolean at-
tribute hungryindicates whether the philosopher is hungry, the attrioaigS and
nbrSindicate the status of its chopstickge&noreq), used to impose synchroniz-
ation constraints on the specification, artar identifies the neighbor.

The philosopher interacts asynchronously with the enwrent by message
passing. Internal actions are represented by a philos¢asynchronously) passing
messages to himself. A selection of rules from the speaibicas given in Fig.1.

9
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crl [exec-monitoy:
(M : MetaRep curTerm: T, curModule: MOD, labels: L LS, failedRules FR)
(History: H) —
if RES :: Result4Tupléhen
(M : MetaRep curTerm: getTerm(RES),curModuteMOD, labels: LS L,
failedRules. nil)
(History: H ; getNewMessages(T, getTerm(RES), MOD) H)
else
(M : MetaRep curTerm: T,curModule: MOD, labels: LS L, failedRules. FR L)
(History: H) fi
if RES:.= metaXapply([MOD], T, L, none, 0, unbounded, Q)#FR < #LS.

Figure 2. The metalevel rewrite strate@yonitor records the communication history. The
membershigRES :: Result4Tuplexpresses that the rewrite boundR&Ssucceeds, using
a condition of the forrRES:= termto bind a term taRES

4 Monitoring and Testing Executable Models

The observable behavior of an executable model can be mediby recording the
communication historfrom an execution of the model: This can be dima@aspar-
entlywith the aid of the Maude metalevel without modifying thegimal specifica-
tion. We can further test that the execution conforms to ttelsioral specification
of the model by defining metalevel predicates that operatin@mecorded history
and block execution if a violation occurs.

To execute a specification at the metalevel, we develop arusttategy i.e.,
rewrite rules which apply to the meta-representation oftleelel. Thus the current
state may be inspected in-between rewrites. This enabkesrasord a communic-
ation history while executing a specification: We can chebktiver the application
of a rewrite rule results in the emission of a new message byeong the meta-
level representations of the configuration before and #iterule application.

The object(M : MetaReqd curTerm: _, curModule: _, labels: _, failedRules. _) is
used to store the information needed to control consecutigalevel rewrites.
curTermcontains the meta-representation of the current configuwaturMod-
ule is the meta-representation of the name of the object-leeelute in which the
rewrites will be performed/abelsis a list of rule labels from this module, and
failedRulescontains a list of labels for rules that are not applicableuorerm

The object(History: _) has an attribut& which contains the actual communic-
ation history recorded at runtime as a message list. Thicbkg distinct from the
objects of the object-level model and is consequently nadifieal by nor needed
for the application of any rewrite rule from the object-lespecification.

The custom strateg¥monitor IS Implemented as a conditional rewrite rbeec:
MetaRepx History— MetaRepx History(see Fig2). The actual rewriting is done
by the built-in Maude functiometaXapply which returns a tuple from which the
rewritten term is obtained usingetTerm Note that whitespace in Maude denotes

10
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list concatenation: IL is a label and.S is a list of labels, ther LS is a non-
empty list of labels. The strategy applies rules from teel/slist to the metalevel
configuration incurTermin a round-robin fashion. (A position-fair strategy for ran
dom rule selection based on a pseudo-random number genisrgieen in [L5].)

If no rule is applicable, the execution will terminate. Thexgiary function get-
NewMessagesompares the terr to the new system configuration, i.e., the result
of applying the rule labeled to T. If there are new communication messages in the
new system configuration, the attributef the history object is extended with the
new messages. If there are several new messages, theseised by concurrent
actions and may therefore be added to the history in an arpitrder.

The strategySiest Is defined by extendingmonitor With functionality to check
whether a given rule application will lead to an illegal stads specified by a pre-
dicate parameter. We consider predicates on communidaistories as defined by
behavioral interfaces. To obtain a compositional systémptedicate on the global
history will be formulated as the conjunction of the reqment specifications of a
number of behavioral interfaces, possibly associated eiftarent objects. Beha-
vioral specifications for specific objects are represenygaredicates on the global
history, restricted to an appropriate subset of possibtenconication events.

The Siest Strategy blocks further execution once the system attetoptsach
an illegal state violating the predicate on the global mstdlo test a particular
objecto against a behavioral specificatido, a, Zy), the testing predicate can be
expressed aB(h) = h/a € Ty. For behavioral requirements given as a predicate
P: Seq[a] — Bool, defined by a convergent set of equations, membership incbe t
set is effectively computable by reduciRgh/a) for the current global histori.

The Siest Strategy is implemented in Maude by extending the condiliemec
rule with a branch which checks the given predicate betwaeh eewrite step and
blocks execution if the predicate is violated. A Maude fimttCheckPredicate
Predx MsgList— Bool is used for this purpose. A predicate is specified using a
constantH which acts as a placeholder for the actual communicaticionyis At
run-time CheckPredicat@arses the predicate specification against the actual his-
tory, calls any auxiliary predicates, and returns a booledne indicating whether
the history after the rewrite step would be in compliancenilite predicate or not.

If the execution is blocked by the strategy, the recordetbhysrovides an error
trace for the system run, describing how the specificationwvi@ated.

Example. The acceptable behavior of a philosopher behaving acaptdithe
EatingPhilinterface (Sect2.3) can be expressed by a Maude oper&ocBeh.

eq AccBeh(nil)= true

eqAccBeh(H; MSG from X to Y)=P(H/X ; MSG from X to Y)
whereP is the specification predicate of tttgatingPhilinterface, and where the
notationh/X abbreviatedh/INOUTx. SinceP in the Maude specification is a
global predicate that spans all objects, there is no need to passbjbet identi-
fier as a separate parameterAocBeh In addition, sinceAccBehis checked for
each input and output event incrementally, we do not needddhe guarantee and
assumption parts defined in Sezi2

11
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5 Simulation of Open Environments for Testing

An open environment can emulatedsuch that the behavior of abstract objects
is exclusively defined by the behavioral interfaces. |@esfassumptions on the
observable behavior may be used to generate arbitraryosmant behavior within
the limits imposed by the assumption predicate.

5.1 Syntactic Simulation of Open Environments

At the object-level, a rewrite theory is used to syntaclicaimulate the unknown
environment. In an open environment, objects may be cremtddlestroyed dy-
namically during execution. To mimic the open environmewnt, define a term
containing a seabsIDsof (abstract) object identifiers representing objects whic
may currently interact with the syster(E : Envir| absIDs _, sysIDs: _,seed _). The
setabsIDswill be used to generate input messages to the objects ofytters.
System objects are represented as ag&tDsof pairsObj x Set[Mtdsjwhich con-
sist of object identifiers and sets of method names correipgrio the alphabets
of the object’s interfaces. The messages emitted by abstiogects are input to the
real objects of the system. Tlseedattribute is used for message generation.

In order to produce arbitrary but syntactically correctuhfo the system from
objects in the environment, we need to select an oloj&cim sys/Dsand produce a
message to (either calling a method available in the interfaceair replying to a
call fromo found in the history). For this purpose, we use a pseudoerantumber
generator 15] and let the functiomext: Nat— Natproduce new seed values for
the environment. Let the functiopenMsg. Objx Obj x Set[Msg]x Nat— Msg
generate a new messagesgto an objecto with alphabeta in the system from
an object in the environment, such thasge a. The rewrite rule for message
generation is given by:

rl [msg-gen: (E : Envir| absIDs 01 A, sysIDs. (02,0)C,seed X) —
(E : Envir| abslIDs. 01 A, sysIDs: (0z,0) C, seed nextX)) genMs{os, 02,0, X)

5.2 Semantic Simulation of Open Environments for Testing

At the metalevel, a rewrite theory is used to semanticaftyuate the unknown en-
vironment. Minimal behavioral requirements for open eonments are given by
assumptions in the system interfaces. Define a metaleegg S estrict Which re-
strictsa rewrite system to behave according to a predicate on ddisleriaehavior.
This strategy is similar tGies; but wheresSiest halts the execution when the applic-
ation of an enabled rule would violate the predic&#gstict tries another enabled
rule from thelabelslist of the MetaRepobject instead. Open environments do not
terminate; if no rewrite rule is applicable to any positidncorrTerm the strategy
changes the seed value and retries the rules.

The abstract environment specification can now be usedestzedor an ac-
tual programmed component (see R3Y. Let Ry be an object-level set of rewrite

12
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Rule set: Configuration:
Metalevel Srestrict(PL(h/01)) RURe, (G C2),
rewrite system: A Sest(P2(h/a2)) (History: h)
| Control T History logger
Object level
U
rewrite system: R GG

Figure 3. Reflective testing of observable behavior in opsirenments.

rules generating (and possibly garbage collecting) messagules fromg; may
be applied to a configuratiafy consisting of arEnvir object. Let®, be the object-
level set of rewrite rules applicable to the concrete oljétta configuration’,,
e.g., the given component, with synchronization constsaom the internal state.
Let a; anda; be alphabets associated with the objectgoand (>, respectively,
such thatn; C 0. Let P andP» be predicates observationally specifying the en-
vironment and actual component, respectively. If sevatakfaces are considered,
P1 will be the conjunction of assumptions afg the conjunction of guarantees,
restricted to the relevant alphabets. The metalevel glyagstrict restricts rule ap-
plication from®; to acceptable environment behavior, providing an abstogpen
environment which may behave in any way that does not vidkagredicatd;.
We here combine two metalevel strategies which react éffiity to the violation
of predicates Srestrict Will restrict rule application so that the communicatios-hi
tory conforms to the predicate, aisds;will halt the execution and produce an error
object if the predicate does not hold. By specifying one jwage that spans only
messages from the objects of the component, and one that aflarbjects, and
executing the former witlsiest and the latter withSiestrict, We can test whether the
programmed component executes correctly provided tharthieonment does so.

5.3 Execution of the Philosopher Example

This test scenario was implemented in Maude by defining alevetiarewrite rule
exec-tesssimilar to the rule given in Fig2, which combines th&estrict and Stest
strategies described above. The metalevel specificatisrused to test the imple-
mentation of philosophers described in S&®2. The test configuration consisted
of one concrete philosopher object, rules for a table opgat an environment
of 4 abstract philosophers, simulated as described in Selct.The rewrite rules
for philosopher behavior (Fid) were compared to thehil interface specification
(Sect.2.3) using Siesy, Whereas application of theasg-genrule was restricted by
the Srestrict Strategy to conform to the assumptidp;.

When the number of applications of tlegec-testule of this non-terminating
specification was limited to 5000, the result (after 534%4dévrites) was a trace
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of 355 messages involving the concrete object. We obsewfeiftihules which
violate the guarantee specification are introduced, thiatwm will be detected
by the strategy. Furthermore, if the environment assumptase broken (e.g., by
replacing the assumption predicate with the vacuous assamifpue), this will
cause a violation of the guarantee specification that wat &le detected.

6 Related and Future Work

We do not attempt to fully survey the extensive literaturenwonitoring and test-
ing here. Many previous history-base3j19,22] and automata-base#,p1,23] ap-
proaches require specific and deterministic test casesdefbeed. In contrast, we
userandom testingand assume-guarantee specifications to capture open @nviro
ments, where environment behavior is arbitrary within tberixls of an assumption
predicate. Invariant-driven strategies for Maude simibasur Siestrict have recently
been proposed irf], but that paper considers predicates on states ratheothan
servable behavior and does not consider the applicatiopea environments nor
to testing. For open environments random testing withinkibends of minimal
assumptions seems more attractive than deterministg: test

The specifications of observable behavior considered s ghper are fairly
easy to implement in rewriting logic. The specification laage considered may
be replaced by a more expressive language. For exampleultvbe interesting
to combine our approach to open environment modeling witkdr time temporal
logic specifications on finite traces. An efficient algorithmmewriting logic for the
verification of such formulas has been given29]|

7 Conclusion

The main contribution of this paper is to sketch an approadte validation of
black-box components in open environments by extendingddaunodels with a
notion of observable behavior and related execution gfiede The paper shows
how abstract specifications of open environments may beicapwery naturally
in a rewriting logic model extended with behavioral intega. The behavioral
interfaces express safety requirements on the observabbvior of components.
The approach is presented within a method-based, objeztted setting, but may
easily be adjusted to general asynchronous message paBsiado the reflective
character of rewriting logic, supported by Maude, it is polgsto define execu-
tion strategies at the metalevel. In this paper, we have ttgedacility in four
ways. First, a strategy is defined to non-deterministicgéigerate arbitrary input
to a system. Second, a strategy is defined to transparetrbgluce monitoring of
a set of communication events. Third, a strategy is defineddict system input
by semantic requirements on the observable behavior. Gongoihese strategies,
the arbitrary behavior of open environments may be simdlaii¢hin the bounds
of minimal assumptions. The separation of object-level metialevel constraints
facilitates experimenting with different assumptions lo@ €¢nvironment. The same
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approach may also be used to execute a prototype model défynisl observ-

able behavior, before deciding on its implementation tet&iourth, a strategy is
defined to test whether an executable model is well behavédrespect to se-
mantic requirements on the observable behavior. Combadirfigur strategies, we
obtain abstract validation environments for models of congmts or distributed
applications, in which the environment is unspecified bbjected to minimal ob-
servational requirements.
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