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Abstract. E-unification problems are central in automated deduction. In this work, we consider
unification modulo theories that extend the well-known ACI or ACUI by adding a binary symbol
“∗” that distributes over the AC(U)I -symbol “+.” If this distributivity is one-sided (say, to the left),
we get the theory denoted AC(U)IDl ; we show that AC(U)IDl-unification is DEXPTIME-complete.
If “∗” is assumed two-sided distributive over “+,” we get the theory denoted AC(U)ID; we show
unification modulo AC(U)ID to be NEXPTIME-decidable and DEXPTIME-hard. Both AC(U)IDl

and AC(U)ID seem to be of practical interest, for example, in the analysis of programs modeled
in terms of process algebras. Our results, for the two theories considered, are obtained through two
entirely different lines of reasoning. A consequence of our methods of proof is that, modulo the
theory that adds to AC(U)ID the assumption that “∗” is associative-commutative, or just associative,
unification is undecidable.
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1. Introduction

The unification problem for the theories AC (“associativity-commutativity”), ACI
(“AC plus idempotence”), and ACUI (“ACI with unit element”) have been studied
in great detail. Natural extensions are the theories that one obtains by adjoining a
binary operator “∗,” which is assumed two-sided, or just left-, distributive over an
ACUI-symbol “+”; we denote these theories respectively by ACUID and ACUIDl .
From a practical point of view, the theory ACUID can be used in program specifica-
tions based on set constraints, whereas the theory ACUIDl can be used in analyzing
processes for noninterference through trace equivalence, since the concatenation
of action symbols is left-distributive over the choice operator “+” on processes.
To our knowledge the unification problems over ACUID or ACUIDl have not been
studied so far. (The theory ACUIDr – where only right-distributivity of “∗” over
“+” is assumed – is similar to ACUIDl .) On the other hand, if we drop the idempo-
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tence assumption on “+,” all these unification problems get close to Hilbert’s tenth
problem and therefore are undecidable (see the Conclusion).

Because of the distributivity assumption, any ground term over an ACUIDl

(or ACUID) signature defines a homomorphism w.r.t. the ACUI-operator “+.”
In a sense, therefore, the theory ACUIH obtained by adjoining a set H of homomor-
phisms over the ACUI symbol “+” can be viewed as intermediary between ACUI
and ACUID or ACUIDl. It is only natural, then, to consider first the unification
problem over such theories. Now, in [6] the case where H is a set of noncommuting
homomorphisms over the ACUI-symbol has been studied in detail, and its unifica-
tion problem has been proved DEXPTIME-complete. So we begin by considering
the unification problem modulo “ACUI plus a set of commuting homomorphisms,”
a theory that we denote ACUIHC . We prove that ACUIHC-unification is undecid-
able. The proof involves reducing a reachability problem for commutative word
rewriting (with constraints) to ACUIHC-unification; we then show that the halting
problem of Minsky counter machines can be reduced to this reachability prob-
lem for commutative word rewriting (with constraints). These results constitute
Section 2.

Unification modulo ACUIDl is actually reducible to unification modulo
ACUIH for a noncommuting set of homomorphisms H ; unification modulo ACUIDl

thus turns out to be decidable in EXPTIME. On the other hand, we also deduce a
DEXPTIME lower bound for this problem using reduction from the results of [6];
the reasoning employed – and the DEXPTIME lower bound obtained – hold for
ACUID-unification as well. Section 3 is devoted to these proofs.

In Section 4 we turn our attention to the ACUID-unification problem. We first
show, as an immediate consequence of the results of Section 2, that ACUID-unifi-
cation is undecidable if the symbol “∗” (assumed two-sided distributive over the
ACUI-symbol “+”) is assumed AC in addition. We show next that, if “∗” is
assumed associative besides being two-sided distributive over “+,” ACUID-uni-
fication still remains undecidable: the proof is by reduction from the modified Post
correspondence problem.

When no further laws other than two-sided distributivity over “+” are assumed
on “∗,” the ACUID-unification problem can be formulated as a problem of solv-
ability, in terms of finite sets, of a particular class of set constraints. Under such
a vision ACID-unification is the problem of solving the same set constraints in
terms of finite nonempty sets. It can be deduced from the more general results
of [13] that this is decidable, although without getting an explicit algorithm with
known complexity bounds. We give in Section 5 a direct NEXPTIME algorithm for
solving the ACID-unification problem, in terms of nonempty finite sets of ground
terms. Obviously this NEXPTIME upper bound holds also for ACUID-unification;
and we show in an Appendix how to modify the lines of reasoning of [6] so as
to get rid of the use of the unit element U = 0 made there, in order to deduce a
DEXPTIME lower bound for ACID-unification.
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We note that for the particular class of set constraints expressing the AC(U)ID-
unification problem, if the solutions can be arbitrary sets – meaning possibly infi-
nite, or empty – then satisfiability is also known to be NEXPTIME-decidable [2]
and DEXPTIME-hard [9].

We express our thanks to Hubert Comon and to one of the referees, for having
pointed out that ACID-unification can be done more simply (with the algorithm
given in this paper) than by a more complicated construction based on labeled dag
automata that we presented in the initial version of the paper (see [4]). Our thanks
also to Franz Baader for a useful remark concerning the complexity of ACUIDl-
unification.

2. ACUI with Commuting Homomorphisms

An ACUIHC-signature consists of an AC-symbol denoted by “+” and assumed
idempotent, a unit element for this “+” (denoted “0”), a finite set S = {α, β, . . .}
of symbols, additive homomorphisms {hα, hβ, . . .} indexed by the symbols in S,
and commutativity relations between these homomorphisms. It is assumed that
each homomorphism maps 0 to 0. The equational theory ACUIHC thus defined is,
in more formal terms,

x + (y + z) ≈ (x + y) + z, x + y ≈ y + x,

x + 0 ≈ x, x + x ≈ x,

and for all u, v ∈ S:
hu(x + y) ≈ hu(x) + hu(y), hu(hv(x)) ≈ hv(hu(x)), hu(0) = 0.

As usual we also assume that there are finitely many free constants (not elements
of S). The set of ground terms over such a signature ACUIHC is denoted by G;
a ground term is thus a sum, or set, of commutative strings over the symbols
representing the commuting homomorphisms each applied itself to a ground term.
The idempotent AC symbol “+” is viewed in this section (implicitly) as the set-
union operation. The unification problem over such a signature reduces to solving
systems of linear equations over unknowns, with commutative strings over the
homomorphism symbols as coefficients; the solutions are to be sets of such strings
applied to ground constants. (For a systematic presentation on how to formulate
such E-unification problems in terms of solving linear equations over appropriate
semirings, the interested reader may consult [5, 17].) For instance, if f, g are
homomorphism symbols and a is a free constant, then the unification problem
f (f 2ga + gX) = gf (f a + f X) reduces to solving the “linear equation”

f 3ga + fgX = gf 2a + gf 2X

for the unknown X in G. (Note: parentheses for the arguments of the homomor-
phism symbols are often omitted.) The substitution {X ← f a} is a solution here.

We show in this section that the ACUIHC-unification problem with free con-
stants is undecidable. The proof is from a reduction of the reachability problem for
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configurations of Minsky’s counter machines. We briefly outline the ideas behind.
As we just saw, the problem is that of solving a system of finitely many linear
equations of the form

l
(j)

1 X1 + · · · + l(j)
n Xn + V (j) = r

(j)

1 X1 + · · · + r(j)
n Xn + U(j), 1 ≤ j ≤ m,

where the Xi, 1 ≤ i ≤ n, are the “unknowns,” the U(j), V (j) are sets of ground
terms, and l(j), r(j) are commutative strings over the homomorphism symbols,
which we also call ground terms or ground strings with no risk of confusion.
Without any loss of generality, we assume that the unit element “0” for the ACUI-
symbol “+” is not in U(j) or V (j), for any j . To such a given unification problem,
we associate, with every 1 ≤ j ≤ m, the set of rewrite rules l

(j)

i → r
(j)

i , 1 ≤ i ≤ n,
and use the usual notion of AC-rewrite steps on ground terms, via these rules; this
rewrite relation is denoted by “�⇒j .” The first step in our proof is to show that –
provided the transitive closure of “�⇒j” has no cycles for any j – the system of
linear equations of the type above has a solution if and only if, for every j , the set
V (j) is a set of elements reachable from elements of the set U(j) for the relation
“�⇒∗

j .” The second step is a reduction of the halting problem of Minsky machines
with two counters to this reachability problem.

2.1. ACUIHc-UNIFICATION PROBLEM VS. REWRITE REACHABILITY

Before establishing our first step, a notational convention: for any binary relation
“�⇒” between terms, we denote as usual by “�⇒+” and “�⇒∗” its transitive
closure and reflexive transitive closure, respectively. If u, v are terms such that
u �⇒∗ v, we say that v is reachable or derivable from u (or that u derives v) for
the relation “�⇒.” For any given pair of sets of terms S1, S2, we write S1 |�⇒∗ S2
iff

(i) for any v ∈ S2, there exists a u ∈ S1 such that u �⇒∗ v; and
(ii) for any u ∈ S1, there exists a v ∈ S2 such that u �⇒∗ v.

We then say the set S2 is a set of reachable (or derivable) elements from the set
S1, for the relation “�⇒,” which we omit to mention if clear from the context.

PROPOSITION 1. With the above notation, let

l
(j)

1 X1 + · · · + l(j)
n Xn + V (j) = r

(j)

1 X1 + · · · + r(j)
n Xn + U(j), (&)

1 ≤ j ≤ m, be an ACUIHC-unification problem. For every j , let {l(j)

i → r
(j)

i , i =
1..n} be the associated ground AC-rewrite system, and “�⇒j” the corresponding
rewrite relation. If the problem (&) is solvable, and if the relation �⇒j is acyclic
(i.e., �⇒+

j is irreflexive) for every j = 1..m, then U(j) |�⇒∗
j V (j) for every j .

Proof. Here is the proof when the number of equations m in the system is 1 (the
reasoning goes through verbatim, except for the notation, when m > 1); in what
follows we therefore drop the indices j . By hypothesis (&) is solvable; hence (after
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replacing each variable Xi by the corresponding set of terms in a given solution)
we assume that the Xi stand for sets satisfying (&). The proof is by induction on
the minimal “measure” |X1|+· · ·+|Xn| w.r.t. the given solutions (X1, . . . , Xn), for
any unification problem with the same associated rewrite systems (here |S| denotes
the cardinality of the set S, as usual). If |X1| + · · · + |Xn| = 0, then U = V , and
we have the trivial base case; so let us suppose U 	= V .

Case (a): U 	⊂ V . Let w be a string in U \V . Without loss of generality we assume
w ∈ l1X1, so w = l1w1 for some w1 ∈ X1; then write X1 = w1 + Y1 with w1 	∈ Y1

(and w1 	= 0).
Thus r1X1 = r1w1 + r1Y1 and (Y1, X2, . . . , Xn) has a strictly smaller measure

than (X1, . . . , Xn) and satisfies the unification problem:

l1Y1 + · · · + lnXn + (V + l1w1) = r1Y1 + · · · + rnXn + (U + r1w1).

By the induction hypothesis, therefore, we have (U + r1w1) |�⇒∗ (V + l1w1).
This means that (i) every term in V is reachable from some term in U + r1w1

and hence from some term in U + l1w1 = U , and (ii) every term in U can derive
some term in V + l1w1. Furthermore, r1w1 must derive elements in V , since �⇒
is assumed acyclic. Thus, every term in U derives some term in V .

Case (b): U ⊂ V . Let x be a term in V not in U ; without loss of generality we
assume x ∈ r1X1, that is, x = r1x1 for some x1 ∈ X1. Let then X1 = x1 + Z1 with
x1 	∈ Z1 (and x1 	= 0).

Thus l1X1 = l1x1 + l1Z1; now (Z1, X2, . . . , Xn) has a strictly smaller measure
than (X1, . . . , Xn) and satisfies the unification problem:

l1Z1 + · · · + lnXn + (V + l1x1) = r1Z1 + · · · + rnXn + (U + r1x1).

Again, by the induction hypothesis we have (U + r1x1) |�⇒∗ (V + l1x1). Now,
since the relation �⇒ is assumed acyclic, it cannot be that r1x1 �⇒∗ l1x1, so there
must be some string in U other than r1x1 that reduces to l1x1, and hence to r1x1

as well. This implies then that any element of V is reachable from elements of U .
Since U ⊂ V , the result follows. �

Remark 1. The above proposition ceases to be true if the rewrite relation is
not acyclic. Here is a counterexample. We suppose we are given two commuting
homomorphisms a, b over “+” and consider the following unification problem:

l1X1 + l2X2 + a3b3 + a4b2 + a3b2 = r1X1 + r2X2 + a3b3,

where l1 = a2b, r1 = ab and l2 = a2b2, r2 = a3b2; the strings on a, b with no
following variables are all assumed evaluated at some fixed ground constant. This
problem does have a solution, namely, X1 = a2b,X2 = a (since “+” is assumed
idempotent). But neither a4b2 nor a3b2 can be reached from a3b3 via the rewrite
rules li → ri, i = 1, 2: indeed, each rule consuming a power of b brings back
exactly the same power of b; and the rewrite relation defined by these rules has
cycles a2b2 �⇒ a3b2 �⇒ a2b2.
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PROPOSITION 2. Let (&) be a given ACUIHC-unification problem:

l
(j)

1 X1 + · · · + l(j)
n Xn + V (j) = r

(j)

1 X1 + · · · + r(j)
n Xn + U(j),

1 ≤ j ≤ m; (&)

for every j , let {l(j)

i → r
(j)

i , i = 1..n} be the associated ground AC-rewrite
system, “�⇒j” the corresponding AC-rewrite relation. Then (&) is solvable if
U(j) |�⇒∗

j V (j), for every j = 1..m.
Proof. We again give the proof only for m = 1 (the same reasoning holds for

any m), and omit the indices j in what follows. Let us define the distance between
U and V (w.r.t. the relation �⇒) as the sum of the (minimal) number of rewrite
steps needed for deriving the elements of V from the elements of U . We reason
by induction on this distance. The case of distance 0 corresponds to the base case
U = V , where the assignment Xi = 0, i = 1..n, gives a solution. So assume this
distance d to be nonzero; then there exist u ∈ U and v ∈ V such that u �⇒+ v;
without loss of generality we assume that u = l1u

′ and r1u
′ �⇒∗ v.

Now write U = u+U ′ with u 	∈ U ′; then the sets (r1u
′+U ′) and V are such that

(r1u
′ + U ′) |�⇒∗ V , and the distance (w.r.t. �⇒) from (r1u

′ + U ′) to V is strictly
smaller than d. So, by the induction hypothesis there must exist sets X′

1, . . . , X
′
n

such that

l1X
′
1 + · · · + lnX

′
n + V = r1X

′
1 + · · · + rnX

′
n + (r1u

′ + U ′).

Setting X1 = X′
1 + u′ and Xi = X′

i for all i > 1, we get a solution for the
problem (&). �

Putting these two propositions together, we get the following theorem.

THEOREM 1. Let (&) be a given ACUIHC-unification problem:

(&): l
(j)

1 X1 + · · · + l(j)
n Xn + V (j) = r

(j)

1 X1 + · · · + r(j)
n Xn + U(j),

1 ≤ j ≤ m;
for any j = 1..m, let {l(j)

i → r
(j)

i , i = 1..n} be the ground AC-rewrite system as-
sociated, “�⇒j” the corresponding rewrite relation, and assume that the relation
�⇒+

j is acyclic. Then the problem (&) is solvable if and only if U(j) |�⇒∗
j V (j),

for every j = 1..m.

COROLLARY 1.1. Let a1, . . . , am be commuting homomorphisms. Then the equa-
tion a1X1 + · · · + amXm + ε = X1 + · · · + Xm + W is solvable if and only if W

consists only of strings over the ai, i = 1..m. (The ε here stands for the empty
substitution seen as a ground term.)

In particular, if a, b, c are commuting homomorphisms, then the equation
a(x1) + b(x2) + ε = x1 + x2 + W forces W to consist entirely of terms not
containing c.
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2.2. ACUIHc-UNIFICATION IN TERMS OF ADMISSIBLE REACHABILITY

A ground term in G is said to contain another given ground term of G as a factor iff
the latter is a subterm of the former up to associativity-commutativity.

DEFINITION 1. A marked rewrite rule over the set G is a rule denoted under
the form l → r [a], where the mark a is a given ground term, and l, r are strings
such that l does not contain the mark a as a factor. A rewrite step using the rewrite
rule l → r [a] is said to be admissible iff the string rewritten does not contain the
mark a as a factor.

A rewrite rule with no attached mark may be seen as marked with the empty
string; any ground string can be rewritten with such a rewrite rule. Given a set
of marked rewrite rules over G, we henceforth denote by �⇒ the associated rela-
tion of admissible reduction and by |�⇒∗ the relation of admissible reachability
(or derivability) between sets of terms, defined as in the previous subsection but
here w.r.t. this restricted notion �⇒ of admissible reduction.

THEOREM 2. Let (&): l1X1 + · · · + lnXn + V = r1X1 + · · · + rnXn + U be
a given ACUIHC-unification problem. Let {li → ri} be the associated AC-rewrite
system, each rule marked respectively with either a constant ai or the empty string;
and denote by “�⇒” the associated admissible AC-rewrite relation, which we
assume to be acyclic. Consider then the following constraint on the Xi:

(C) If li → ri is marked with ai , then
Xi does not contain terms in which the mark ai occurs.

Then the problem (&) is solvable under constraint C if and only if we have
U |�⇒∗ V .

The proof of Theorem 1, based on Propositions 1 and 2, goes through verbatim;
we mention here the points to check, for completeness. (We are assuming each
rewrite rule li → ri is marked with an ai , which is a constant or the empty string.)

Proposition 1, case (a): If (X1, . . . , Xn) is a solution satisfying constraint C,
w = l1w1, and X1 = w1 + Y1, then (Y1, X2, . . . , Xn) continues to satisfy the
constraint C, so induction goes through. The same reasoning holds also for case (b).

Proposition 2: The distance from U to V is defined now over admissible rewrite
steps. If u = l1u

′ �⇒ r1u
′ admissibly, then u′ doesn’t contain the mark a1 on the

rule l1 → r1 [a1]; so if (X′
1, X

′
2, . . . , X

′
n) is a solution satisfying constraint C for

the linear equation at the inductive step, then the solution (X′
1 + u′, X′

2, . . . , X
′
n)

for the initial equation also satisfies the constraint C.
We can actually get rid of the mark constraint C above.

LEMMA 1. With the notation of the above theorem, there is a system (&′) of
ACUIHC-linear equations naturally associated to (&) such that

(&) is solvable under the constraint C if and only if (&′) is solvable.
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Proof. It suffices to observe, thanks to Corollary 1.1, that the constraint C
is itself expressible in terms of linear ACUIHC-equations: indeed the following
equation

a1X1 + · · · + aj−1Xj−1 + ε + aj+1Xj+1 + · · · + anXn

= X1 + X2 + · · · + Xn

forces the component Xj of the solution to be free from terms containing aj ,
assuming that the marks ai are all distinct. �

We show in the next section that admissible reachability is undecidable, via
reduction from the Minsky counter machine problem. From this and the above two
results, we will be able to deduce the undecidability of ACUIHC-unification.

2.3. MINSKY COUNTER MACHINES AND ADMISSIBLE REACHABILITY

A Minsky machine with two counters C1, C2 storing nonnegative integer values
executes programs that are finite lists of instructions labeled with the natural num-
bers from 1 to L, each having one of the following forms where 1 ≤ l ≤ (L − 1),
k ∈ {1, . . . , L}, k 	= l, and i is 1 or 2:

(i) l: ADD 1 to Ci and GOTO l + 1;
(ii) l: If Ci 	= 0

then SUBTRACT 1 from Ci and GOTO l + 1;
else GOTO k;

(iii) L: STOP.

Any given program P is assumed to have exactly one instruction “STOP”
labeled L. A configuration of such a two-counter machine, at any given stage of a
computation, can be defined as a triple (l, C1, C2), where l is the (label of the) next
instruction to execute and Ci , i = 1, 2, are the current integer values of the two
counters. The following result on Minsky’s two-counter machines is classical and
will serve our purposes well, after some minor adaptations.

THEOREM 3 (Minsky [14]). For every partial recursive function f on natural
numbers there exists a program Q such that applied with (1, 2d , 0) as starting
configuration, Q halts with the final configuration (L, 2f (d), 0) if f (d) is defined
on d, and does not halt otherwise. In particular it is undecidable whether an arbi-
trarily chosen program P will halt when applied with an arbitrarily given starting
configuration (1, 2d , 0).

We introduce a homomorphism symbol hl for every instruction l = 1..L and
add two more homomorphisms hci

, i = 1, 2, for the two counters. Any given
machine configuration (l, c1, c2) is then seen as the commutative string hlh

m1
c1

hm2
c2

.
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Each type of machine instruction of the above form can then be seen as an admis-
sible rewrite step on these strings, using one among the following marked rewrite
rules (where as previously 1 ≤ l ≤ (L − 1), k ∈ {1, . . . , L}, k 	= l; and i is 1 or 2):

(i) For each instruction of type (i) as above, add the rule

hl → hci
hl+1.

(ii) For each instruction of type (ii) as above, add the rules

hci
hl → hl+1, hl → hk[hci

].
Any given machine program can thus be transformed into a rewrite program,

by translating each instruction as a well-determined rewrite rule from this set. Note
that the last sets of rewrite rules are marked; they can be applied only to rewrite
strings with no first (resp. no second) counter. It is important to note also that any
sequence of admissible rewrite steps starting from the configuration string h1h

2d

c1

corresponds to a correct sequence of machine instructions and vice versa. The final
statement of the above theorem of Minsky on two-counter machines can then be
formulated as follows: Given two arbitrary strings s = h1h

2d

c1
and f = hLh2m

c1
over

our ACUIHC-signature, it is undecidable in general whether the latter is reachable
from the former via admissible rewrite steps, using the marked rules of the above
rewrite system.

In order to complete the proof that ACUIHC-unification is undecidable via our
Theorem 2 established above, there remains the hitch that this result made an
assumption of acyclicity on the rewrite relation: this does not hold for the above
rewrite system. To get that property, we introduce a third counter C3, with the idea
that

− initially counter C3 has value 1,
− every instruction of type (i) or (ii) also increments C3 by 2,
− an instruction of type (iii) increments C3 by 1 and goes to a new instruction

(iv),
− where C3 is decremented by 2 as long as possible; else we STOP.

Following the same lines of thinking as above, such a three-counter machine pro-
gram P ′ extending an earlier two-counter program P can be visualized as exe-
cutions of appropriate admissible rewrite steps applying rules from the following
system (where again, 1 ≤ l ≤ (L − 1), k ∈ {1, . . . , L}, k 	= l; and i is 1 or 2):

(i) (Increment C1 or C2, add 2 to C3): hl → hci
hl+1h

2
c3

,
(ii) (Conditional decrement on Ci , add 2 to C3):

hci
hl → hl+1h

2
c3

, hl → hkh
2
c3

[hci
],

(iii) (Pause) hL → hL+1hc3 ,
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(iv) (Decrement C3 by 2 whenever possible, or STOP)

hL+1h
2
c3

→ hL+1, hL+1 → hL+2[hc3].
(The program P ′ has obviously two more instructions than P .) The marks on

the rewrite rules above are hc1, hc2 , and hc3 . It is easily checked that this rewrite
system is acyclic. The following fact is equally obvious: Our earlier two-counter
machine run, on a program P starting from an initial configuration h1h

2d

c1
, halts

with hLh2m

c1
as final configuration if and only if our current three-counter machine,

run on the extended program P ′ from the initial configuration h1h
2d

c1
hc3 , halts with

hL+2h
2m

c1
as final configuration.

We can now formulate our undecidability result, deduced by appealing to the
results we proved in the earlier sections, combined with the above reformulation of
Minsky’s theorem in terms of a three-counter machine.

THEOREM 4. The ACUIHC-unification problem is undecidable.

3. ACUIDl-Unification Is DEXPTIME-Complete

The equational theory ACUIDl we are considering in this section is

x + (y + z) ≈ (x + y) + z, x + y ≈ y + x, x + 0 ≈ x,

x + x ≈ x,

x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z), x ∗ 0 ≈ 0, 0 ∗ x ≈ 0.

Any ACUIDl-unification problem can be transformed into a “standard form,”
that is, one of solving a set of equations where each equation has one of the
following four forms:

(i) x = 0, (ii) x = a, (iii) x = y + z, (iv) x = y ∗ z,

where x, y, z are variables, 0 is the unit element for the ACUI-symbol “+,” and
a is a ground constant. If equations of type (i) do not occur, then the problem is
referred to as a simple unification problem.

DEFINITION 2. (i) A substitution is deciduous if each variable in its domain is
replaced either by 0 or by another variable.

(ii) A unifier θ for an ACUIDl-unification problem S is said to be a discriminat-
ing unifier iff the following holds for all variables in Var(S):

θ(u) 	=ACUIDl 0 and θ(v) =ACUIDl θ(w) iff v = w.

The following lemma is proved in a straightforward manner.

LEMMA 2. An ACUIDl-unification problem S is solvable iff there is a deciduous
substitution η such that

(i) either η is a unifier for S,
(ii) or η(S) has a “discriminating” unifier θ .
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EXAMPLE A. The ACUIDl-problem S ′: V = X + Z,V = W + U,W = X ∗ Y

can be transformed under the deciduous substitution η = {Y �→ X,U �→ X,

W �→ Z} into the problem S: V = X + Z,Z = X ∗ X.

Given any ACUIDl-problem in standard form, our first step is to choose non-
deterministically a deciduous η, which reduces the given problem to a simple
ACUIDl-unification problem. We get then the following.

Instance: A set of equations S, each of the form (ii), (iii), or (iv) defined above.
Question: Does S have a discriminating ACUIDl-unifier?

Given such a unification problem S where the goal is to find a discriminating
unifier, our next step is to transform each equation of the form x = y ∗ z (case (iv)
above) into the equation x = hy(z), where hy is a homomorphism we introduce.
Let H(S) denote the set of all homomorphisms introduced in this way, and let
Vh(S) denote the set of variables for which the homomorphisms get created. We
thus get rid of “∗,” but our new equational theory consists of the ACUI axioms,
plus the additional axioms

{h(u1 + u2) ≈ h(u1) + h(u2), h(0) ≈ 0}, for all h ∈ H(S).

We refer to the transformed unification problem as the h-image of S and denote
it by T . We can define this notion more precisely: Let t be any term over the
signature consisting of ∗, +, the variables, and free constants. We introduce distinct
homomorphisms for the ACUI-equivalence classes of subterms of t and define the
following transformation ξ :

ξ(r) = r if r is a variable or a constant,
ξ(x + y) = ξ(x) + ξ(y),

ξ(s ∗ t) = h[s](ξ(t)), where [s] = class of s modulo ACUI.

It is not difficult to see that ξ is well defined and ξ(t) is unique up to =ACUI . This
definition of ξ can now be extended to sets of equations of terms. Thus, for the
unification problem S, we have h-image(S) = ξ(S). In what follows, we drop the
square brackets for the indices of homomorphisms and consider them as defined
modulo =ACUI. The transformed terms are terms over an ACUIH signature and free
constants, where H is the set H(S) of (noncommuting) homomorphisms intro-
duced above for the variables in Vh(S). It follows from the definitions that if t1, t2
are any two terms in the ACUIDl-signature and free constants, then t1 =ACUIDl

t2 if
and only if ξ(t1) =ACUIH ξ(t2).

The transformed problem T = h-image of S is thus an ACUIH-unification
problem. However, it is not hard to see that the solvability of T modulo ACUIH
does not automatically ensure solvability of the original ACUIDl problem. We need
to impose additional constraints on the ACUIH-problem, which are reformulations
of the usual occur-check condition on the variables: for instance, the substitution
for a variable x in Vh(S) must not contain hx , the homomorphism introduced for x.
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Cycles – for example, of the form x replaced by a term containing hy , and y

replaced by a term containing hx – should not occur either.
These occur-check constraints are formulated as requirements that the unifia-

bility problem of T = ξ(S) w.r.t. ACUIH be solved subject to linear constraints
(specifying conditions like) x  hx for every homomorphism hx ∈ H(S); that is,
a unifier θ of T should satisfy the condition that for every x ∈ Var(T ), θ(x) does
not contain any occurrence of hx .

DEFINITION 3. (i) Given a simple ACUIDl-unification problem S, and its
h-image T modulo ACUIH, a linear constraint C is a total order C over the
set Var(T ) ∪ H(S) such that x C hx for all variables x in Vh(S).

(ii) Let T be an ACUIH-unification problem. A substitution β whose domain is
Var(T ) is said to satisfy a linear constraint C if and only if the following holds:
for every x ∈ Var(T ), β(x) does not contain any of the function symbols below x

in C. In other words, if x C hj , then β(x) does not contain any occurrence of hj .

These linear constraints are similar to the linear constant restrictions of [7].
The following two theorems relate the unification problem S over ACUIDl to its
h-image T over ACUIH (recall that H denotes the set of homomorphisms H(S)).

THEOREM 5. If a simple ACUIDl-unification problem S has a discriminating
unifier, then its h-image T is solvable as an ACUIH-unification problem. Further-
more, there is a linear constraint C that the ACUIH-unifier satisfies (naturally).

Proof. Let θ be a discriminating ground unifier of S. One could imagine defining
a substitution α on T as α(x) = ξ(θ(x)). But α is not (yet) a unifier for T : Consider
an equation x = y∗z in S; its h-image is x = hy(z); but ξ(θ(y∗z)) is hθ(y)(ξ(θ(z)))

and not hy(ξ(θ(z))).
However, such an α can be “transformed” into an ACUIH-unifier β by replac-

ing, for every variable v in Vh(S), hθ(v) by the corresponding hv in every term. This
mapping is one-to-one because θ is assumed to be a discriminating unifier.

To derive a linear constraint that β must satisfy, assume a total AC-simplification
ordering > on ground terms (cf., e.g., [16]); and add a new constant, say ⊥, smaller
than every other symbol. Now order the terms in the set

{θ(x) | x ∈ Var(S)} ∪ {θ(x1) ∗ ⊥, . . . , θ(xn) ∗ ⊥}
using >, where {x1, . . . , xn} = Vh(S). All these terms will be distinct because θ is
a discriminating unifier. Note also that any term that properly contains θ(xi) is >

θ(xi) ∗ ⊥. Replacing the θ(xi)’s by the corresponding xi , and replacing the terms
(θ(xi) ∗ ⊥) by the corresponding hxi

, we get a linear chain. The linear constraint
C is obtained by reversing the ordering relation on this chain. �
EXAMPLE A (contd.). Consider the ACUIDl-unification problem V = X + Z,
Z = X ∗ X, whose h-image is the ACUIH-problem V = X + Z, Z = hX(X). The
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former admits a discriminating unifier θ : X �→ a,Z �→ a ∗ a, V �→ a + (a ∗ a).
Following the above reasoning, we derive the ACUIH-unifier α: X �→ a, Z �→
hX(a), V �→ a + hX(a) for the latter problem.

As for the linear constraint that α satisfies (naturally), observe that, in the
notation of the above proof, we have θ(V ) > θ(Z) > (θ(X) ∗ ⊥) > θ(X); so,
again following the lines of reasoning used above, we deduce the constraint C:
V ≺ Z ≺ hX ≺ X.

THEOREM 6. Let S be a simple ACUIDl-unification problem, and T its h-image,
which is an ACUIH-unification problem. If T has a solution satisfying a linear
constraint, then S is solvable.

Proof. Let β be a ground ACUIH-unifier of T that satisfies a linear constraint C.
From C, we get a subconstraint C ′ on the variables in Var(T ). Assume without loss
of generality that C ′ = xn  · · ·  xi  · · ·  x1. Now we use induction on C ′ to
form a substitution θ as a discriminating unifier for S.

Let us first consider the variable xn in C ′. Since xn is the first variable, and β(xn)

should not contain any item below xn in C, it must be that β(xn) does not contain
any of the homomorphisms that were introduced, and we define θ(xn) := β(xn).

Assume that we have already constructed all the θ(xj ′), j ≤ j ′ ≤ n. For variable
xj−1, β(xj−1) could contain constants and some hxwi

for xwi
∈ Vh(S) where each

hxwi
 xj−1. Since xwi

 hxwi
, we have xwi

 hxwi
 xj−1. By the induction

hypothesis, we have already constructed these θ(xwi
)’s. Therefore, we can define

θ(xj−1) := rep(β(xj−1)), where the function rep is defined as

rep(a) = a, where a is any constant

rep(A + B) = rep(A) + rep(B)

rep(hxwi
(A)) = θ(xwi

) ∗ rep(A),

where A,B stand for any terms. It can be shown that θ is a solution for S. Indeed
consider each equation in T of the form xui

= hxwi
(xvi

). Since β(xui
) =ACUIH

hxwi
(β(xvi

)), we have θ(xui
) =ACUIDl

θ(xwi
) ∗ (θ(xvi

)) by definition of θ . �
The next step in our reasoning is to prove that the linear constraints over the

ACUIH-signature – which express the condition that certain variables of the
ACUIH-problem should not get replaced with terms containing certain given sets of
homomorphism symbols – can themselves be formulated as instances of ACUIH-
unification problems. This is done by using the following lemma, similar to the
propositions and lemma we used earlier in Section 2.1; its proof goes along similar
lines.

LEMMA 3. Let a1, . . . , am be homomorphisms and c be a free constant. Then the
equation a1(X1) + · · · + am(Xm) + c =ACUIH X1 + · · · + Xm + W is solvable if
and only if W ∈ Terms({+, a1, . . . , am, c}).
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Putting together the above two theorems and the fact that ACUIH-unification is
DEXPTIME-complete (proved in [6]), we may now make the following deduction.

PROPOSITION 3. ACUIDl-unification is decidable in EXPTIME.
Proof. From the cited result of [6] and the two above theorems, we get that any

simple ACUIDl-unification problem is solvable in EXPTIME. Now any arbitrarily
given ACUIDl-unification problem can be transformed into a standard form in lin-
ear time. Subsequent transformation into a “simple” problem is done by the choice
of a deciduous substitution; and the number of possible deciduous substitutions is
exponential. �

In order to show that ACUIDl-unification is DEXPTIME-complete, it only re-
mains to establish a DEXPTIME lower bound. For this purpose, we propose once
again to use the result of [6] mentioned above, by formulating any given ACUIh-
unification problem as a suitable instance of an ACUIDl-problem. We can do so in
a natural manner, as is illustrated by the following example:

EXAMPLE B. Let f, g be two (noncommuting) homomorphisms over an ACUI-
signature, and consider the following ACUIh-unification problem:

f 2g2a + f 2b + gY = f Y + gf X,

where a, b are free constants, and X,Y are the unknowns. We then introduce
additional free constants c, d and visualize f (resp. g) as the homomorphism hc

(resp. hd) of left-multiplication by c (resp, by d) in an ACUIDl-signature with free
constants a, b, c, d. From the given ACUIh-problem we then deduce the following
ACUIDl-problem:

c ∗ (c ∗ (d ∗ (d ∗ a))) + c ∗ (c ∗ b) + (d ∗ Y ) = (c ∗ Y ) + d ∗ (c ∗ X).

Now suppose the ACUIDl-problem (obtained by our translation) is solvable, and
let X′, Y ′ be a solution; then substituting for X′, Y ′ in the ACUIDl-equation and
checking for equality, we get from “pattern-matching” considerations that X′, Y ′
are sets of right-parenthesized terms over “∗” and the constants, where the con-
stants that are in the original problem appear only at the rightmost position. Thus,
in our current example we obtain Y ′ = (c ∗ X′) and then c ∗ (c ∗ X′) = c ∗ (c ∗
(d ∗ (d ∗ a))) + c ∗ (c ∗ b), so X′ = d ∗ (d ∗ a) + b. From this ACUIDl-solution for
the translated problem, we naturally deduce a solution to the ACUIh-problem we
started with, by reversing the translation: Replace hc by f and hd by g, and deduce
the solution X = g2a + b and Y = fg2a + f b.

In other words, if the ACUIDl-problem obtained through such a translation from
a given ACUIh-problem is solvable, then we can naturally deduce from its solution
a solution for the ACUIh-problem itself; and the reverse assertion holds, too, by
reversing the lines of reasoning.
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THEOREM 7. ACUIDl-unification is DEXPTIME-hard.
Proof. (The lines of reasoning are those developed in Example B.) Consider

any ACUIh-unification problem – where ACUIh is the theory over an AC-symbol
“+,” assumed idempotent with a unit U = 0, h is any given finite family of non-
commuting homomorphisms w.r.t. “+,” and given free constants. Represent the
set of homomorphisms h as {hc, hd, . . .}, indexed by finitely many free additional
constants. We consider then an ACUIDl-signature for {+, ∗} to which we add the
given free ground constants as well as the additional constants {c, d, . . .}. Now, the
given ACUIh-problem consists in solving equations of the form

l1(X1) + l2(X2) + · · · + ln(Xn) + T = r1(X1) + r2(X2) + · · · + rn(Xn) + S,

where the unknowns are the Xi , the {li , ri}i=1..n are right-parenthesized strings
over the homomorphism symbols {hc, hd, . . .}, and S, T are sets of terms obtained
by applying such strings to the given ground constants. To this ACUIh-problem
we can naturally associate a unification problem over ACUIDl , by replacing each
homomorphism of h by left-multiplication under “∗” with its indexing constant.

(Proceeding as in Example B above) One can check that if the associated ACUIDl-
problem is solvable, then it admits a solution X′

i , i = 1..n, where each X′
i is

a set of right-parenthesized terms over “∗” and the given constants, these latter
appearing only at the rightmost position in these terms; from such a solution one
can then deduce naturally a solution to the ACUIh-problem we started with. The
converse assertion is just as easy to check. So ACUIh-unification can be seen as
an instance of ACUIDl-unification. The former problem has been shown to be
DEXPTIME-complete in [6]; so the latter is DEXPTIME-hard. �

4. The ACUID-Unification Problem: Some Special Cases

We turn our attention to the unification problem w.r.t. the following theory that we
denote ACUID.

x + (y + z) ≈ (x + y) + z, x + y ≈ y + x,

x + x ≈ x, x + 0 ≈ x, x ∗ 0 ≈ 0, 0 ∗ x ≈ 0,

x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z), (u + v) ∗ w ≈ (u ∗ w) + (v ∗ w).

This set of equations can be converted naturally to a convergent rewrite system,
modulo the AC-axioms for “+”; every ground term (over any given set of free
constants) in normal form w.r.t. this system can be viewed as a finite set of terms
over “∗” and the constants: indeed “+” can be viewed as set union. An ACUID-
unification problem with free constants is that of solving modulo the above equa-
tional theory, a family of equations of the form {s1 = t1, . . . , sk = tk}, where the
terms in the equations or the solutions can involve the free constants.

Note. When we eliminate the element 0 and drop the equations involving it
in ACUID, we get the theory that we denote as ACID.
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4.1. UNDECIDABILITY IF “∗” IS, IN ADDITION, AC OR ASSOCIATIVE

In this section we prove that the ACUID-unification problem is undecidable if we
assume that the symbol “∗” is, in addition, either AC or associative. The AC-case
follows easily from our previous results on ACUIHC-unification.

THEOREM 8 (With the above notation). Unification modulo the theory E ob-
tained by adding the axioms of associativity-commutativity on “∗” to ACUID is
undecidable.

Proof (Similar to that of Theorem 7). Suppose given any ACUIHC-unification
problem, where ACUIHC is the theory over AC-symbol “+” assumed idempo-
tent, with a unit U = 0, H is any given finite family of commuting homomor-
phisms w.r.t. “+,” and given free ground constants. Represent the set of homo-
morphisms H as {hc, hd, . . .}, indexed by finitely many additional free constants.
Consider then the theory for {+, ∗} consisting of the equations in E to which we
add the given free ground constants as well as the additional constants {c, d, . . .}.
Now, the given ACUIHC-unification problem consists in solving equations of the
form

l1(X1) + l2(X2) + · · · + ln(Xn) + T = r1(X1) + r2(X2) + · · · + rn(Xn) + S,

where the unknowns are the Xi , the {li, ri}i=1..n are associative-commutative strings
over the homomorphisms {hc, hd, . . .}, and S, T are sets of terms obtained by ap-
plying such strings to the given ground constants. To this ACUIHC-problem we can
naturally associate an E-unification problem, by replacing the hc, hd, . . . ∈ H by
multiplication under “∗” with the corresponding indexing constants in {c, d, . . .}.
Assume that the associated E-problem is solvable, and let X′

i , i = 1..n, be a solu-
tion; then from each X′

i one can deduce naturally a set of ground ACUIHC-terms
Xi , by proceeding as follows. Suppress the “∗”-symbol from the terms in X′

i , and
replace the indexing constants c, d, . . . by the corresponding homomorphism sym-
bol hc, hd, . . . in H ; then, the following claim is easily checked: The Xi, i = 1..n,
thus obtained, satisfy the ACUIHC-unification problem that we started with; this is
because “∗” has been assumed AC and the homomorphisms of H commute. And
the reverse claim holds, too. We thus get a contradiction to Theorem 4, where we
proved that ACUIHC-unification is undecidable. �
THEOREM 9 (With the above notation). Unification modulo the theory E ob-
tained by adding the equations of associativity on “∗” to the theory ACUID is
undecidable.

Proof. The proof is by reduction from the so-called modified Post correspon-
dence problem (MPCP). Recall that the formulation of MPCP goes as follows:
Given a list of pairs {(wi, w

′
i), 0 ≤ i ≤ n} of nonempty (finite) strings over some

alphabet �, it is undecidable in general to determine whether there exist indices
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i1, . . . , ik , with 0 ≤ ij ≤ n for all j = 1..k, such that

w0wi1 wi2 . . . wik = w′
0w

′
i1

w′
i2

. . . w′
ik
.

Let (w0, w
′
0), . . . , (wn,w

′
n) be any given instance of MPCP; we may assume with-

out loss of generality that w0 	= w′
0. Consider then the E-unification problem

defined by the following two equations:

w1 ∗ X1 ∗ 1 + · · · + wn ∗ Xn ∗ n + w0 ∗ # = X1 + X2 + · · · + Xn + V, (1)

w′
1 ∗ Z1 ∗ 1 + · · · + w′

n ∗ Zn ∗ n + w′
0 ∗ # = Z1 + Z2 + · · · + Zn + V, (2)

where the unknowns are the Xi,Zi , and V and the #, 1, 2, . . . , n are some fixed
new symbols. Assume this E-unification problem to be solvable.

We observe first that not all of the Xi can be 0 in the solution of (1); otherwise
V will have to be w0 ∗ #, so V contains none of the new symbols 1, 2, . . . , n; but
then, all the Zi in the second equation have to be 0, and V would have to be w′

0 ∗ #,
which would contradict the assumption we made above.

Consequently, V must contain words ending with symbols from {1, 2, . . . , n}.
We then look at the solution for equation (1) and observe that words of maximal
length over the rhs (right-hand side) of (the solution for) this equation must come
from the set V and can be in no instance of any Xj over the rhs: indeed, if v is a
word from an Xj , then wj ∗ v ∗ j will be an element of some set over the lhs (left-
hand side) and so must also be an element over the rhs and necessarily of bigger
length than the word v.

Let then v ∈ V be a word of maximal length over the rhs of (1). If v is not
equal to w0 ∗ #, then it has to be of the form wi ∗ w ∗ i for some unique i. We may
suppose i = 1, write v = w1 ∗w ∗ 1, and set X1 = X′

1 +w, for a w ∈ X1, w 	∈ X′
1.

Then v has a unique occurrence in both the lhs and rhs of the equation, so we can
cancel it from each side. After such a cancellation, we get an equality of the form

w1 ∗ X′
1 ∗ 1 + · · · + wn ∗ Xn ∗ n + w0 ∗ # = X′

1 + X2 + · · · + Xn + V ′,

where V ′ = (V \ {w1 ∗ w ∗ 1}) + w.
Now (the solution for) V ′ is smaller than (that of) V for the multiset ordering

over the lengths of words. Thus we can apply an inductive argument to deduce that
each element of V has to be a word of the form wi1 ∗ · · · ∗ win ∗ w0 ∗ # ∗ s, where
s is some string over the symbols 1, . . . , n. A similar reasoning with Equation (2)

leads us then to the assertion that each such element of V must also be, at the same
time, of the form w′

i1
∗ · · · ∗ w′

in
∗ w′

0 ∗ # ∗ s, with the same sequence of indices for
the w′

i as for the wi , because of the new symbols introduced i.
In other words, if our above E-unification problem were solvable (with a non-

zero value for at least one unknown), then the solution for V contains a solution
for the instance of MPCP we started with. Conversely from a solution of MPCP
we can build a solution to the E-unification problem defined by the above two
Equations (1), (2), in terms of sets of terms over “∗” and the constants. �
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5. ACUID-Unification: The General Case

We assume henceforth that no further laws other than two-sided distributivity over
“+” are assumed on the binary symbol “∗” in ACUID. An ACUID-unification
problem is said to be in standard form iff every equation in the problem has one of
the following forms (respectively referred to as of type product, sum, or constant):

x = y ∗ z, u = v + w, u = c,

where u, v,w, x, y, z are variables and c is any constant or 0. A given ACUID-
unification problem can be reduced to a standard form in more than one manner
(through normalization and decomposition steps). Since “+” is idempotent and “∗”
distributes left and right over “+,” we may view this ACUID-unification problem
as a set constraint problem; for example, in the first case, if y and z are interpreted
as sets of terms over ∗ and the constants, then y ∗ z = {s ∗ t | s ∈ y, t ∈ z}.

The set constraints in this context are with union only, following the terminology
introduced in [9], with the additional restriction that all sets must be finite. When
the unification problem is modulo the theory ACID, these sets must also be non-
empty. The problem of satisfiability of set constraints in general, that is, allowing
arbitrary sets in the solutions, has been studied intensively over the past decade,
in particular in [1, 2, 8, 10, 13, 9], although not all known positive results give a
complexity estimate. However, very few results seem to be known for solvability
in terms of finite sets or finite nonempty sets. The only result we know of is very
general and is based on the �-graph automata of Gilleron, Tison, and Tommasi; see
Proposition 13 [13]; by appealing to this result we may formulate our next result,
although without any complexity estimate.

PROPOSITION 4. The AC(U)ID-unification problem is decidable.

Actually the results of [6] give also a lower bound for the complexity of unifica-
tion modulo ACUID; indeed the proof of Theorem 7 above goes through verbatim
for ACUID as well.

PROPOSITION 5. ACUID-unification is DEXPTIME-hard.

Remarks 2. (a) The undecidability results of Theorems 8 and 9 remain obviously
true, for unification modulo the theories extending ACID by assuming “∗” to be AC,
or associative: indeed, decidability in the absence of 0 implies decidability in its
presence.

(b) The proof of the DEXPTIME lower bound for ACUIh-unification, as given
in [6], makes explicit use of the “unit” 0 and therefore cannot be carried through
as such for ACIDl or ACID. An argument adapting its lines of proof to deduce
a DEXPTIME lower bound for ACIDl- or ACID-unification is presented in
the Appendix.
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We show in the following section that ACID-unification is NEXPTIME-decid-
able. Our approach is based on solving the equations of any problem P given in
standard form, in an “incremental” manner with the help of a graph representing the
dependency relations between the variables of P . We begin by “pruning” the prob-
lem, in order to eliminate syntactically some unsolvable cases, but more important
also to introduce a notion of height equivalence between some of the variables of
the “sum”-equations. Part of the pruning operation is in a sense comparable to the
occur_check of standard unification.

6. ACID-Unification Is NEXPTIME-Decidable

We assume that all our ACID-unification problems are given in standard form.

6.1. PRUNING AN ACID-UNIFICATION PROBLEM

Pruning an ACID-unification problem P (given in standard form) is based on a
dependency graph associated to P . The variables {u, v,w, x, y, z, . . .} appearing
in P form the nodes of the graph; its edges are directed and labeled by one of
the two symbols “{∗,⊃}” as follows: For any two variables u, v, (u, v) is an edge
labeled with “∗” (resp. ⊃) iff there is an equation of the form u = v ∗ w or u =
w ∗ v (resp. u = v + w) in our ACID-problem. The arcs of the graph are called
dependency arcs. A variable of the problem from which there is no outgoing edge
is called an end-variable of P .

If u, v are any two variables in P , we set u  v iff there is a directed path on
the graph from u to v. We set u ∗ v iff at least one edge on such a directed path is
labeled with “∗,” and we set u ≥ v iff either v = u or all the edges on a path from
u to v are labeled only with “⊃.” If u ≥ v, we say that v is a subset-variable of u; if
there is a path from u to v with only “∗”-edges all along, we say that v is a factor-
variable of u. Pruning the problem P consists of carrying out four operations on
P or its associated dependency graph, with a view to diminishing the number of
variables and eliminating syntactically some of the unsolvable cases.

Prune-0: If there is a variable u in P and a path on the graph from u to itself,
along which we have only “⊃”-edges, then replace all the variables at the interme-
diary nodes on the path by u.

For instance, if X1 = X2 + X3, X2 = U + V and U = X1 + W are in P , then
we replace everywhere the variables X2 and U by X1. This pruning step eliminates
part of the redundancy in P .

Prune-1: Return “Fail”:

− if u ∗ v for some v, and u = a is in P ;
− if there is a variable u such that u ∗ u;
− if there exist nodes u, v,w such that u ≥ v and u = v ∗ w.
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The first check ensures that the problem P is “coherent” with its “constant”-
equations; the two others correspond to conditions obviously necessary for the
variables concerned to have finite, nonempty set solutions: a subset-variable of u

cannot also be a factor-variable of u.

EXAMPLE 1a. Prune-1 returns “Fail” on the following three problems:

(i) z = a, z = x + y, y = u ∗ v,
(ii) z = x + y, x = z ∗ v,

(iii) z = x + y, z = x ∗ u.

Next, if the problem P admits a solution in terms of finite sets, then for every
“sum”-equation Z = X + Y in P , terms of maximal height in Z have to be in X

or in Y ; hence we cannot have both Z ∗ X and Z ∗ Y . This gives the following
check on P :

Prune-2: Return “Fail”:

if there is a “sum”-equation Z = X + Y in P such that Z ∗ X and Z ∗ Y .

The final pruning step consists in “locating” the variable(s) to the right of every
“sum”-equation Z = X + Y in P , which can contribute terms of maximal height
to Z in a finite, nonempty solution for P . For doing that, we consider all possible
relations ∼ between the set variables such that for every “sum”-equation Z =
X + Y in P , we have X ∼ Z or Y ∼ Z or both, nonexclusively; we refer to these
as height relations. If ∼ is such a given relation, then for every Z = X + Y in P ,
if X ∼ Z (resp. Y ∼ Z), then we introduce a ∼ -arc from X (resp. from Y ) to Z.

Prune-3: Choose nondeterministically a height relation ∼ on the set of variables
of P . If there is a node X on the dependency graph of P such that

there is a path from X to X with ⊃, ∗, or ∼ -edges, and
at least one of them is a “∗”-edge, then return “Fail.”

EXAMPLE 1b. The following ACID-problem does not pass “Prune-3”:

V = X + Y, V = W ′ + U ′, V = W ′′ + U ′′,
W ′ = X ∗ Z′, W ′′ = Y ∗ Z′′.

The failure is caused by the first “sum”-equation; indeed, if we assume X ∼ V , we
get the cycle X ∼ V ≥ W ′ ∗ X; while if we assume Y ∼ V , we get the cycle
Y ∼ V ≥ W ′′ ∗ Y .

We say that pruning fails on P iff “Fail” is the value returned by one of the
above four pruning operations. The problem P is said to be in pruned form oth-
erwise. In such a case, we choose nondeterministically a height relation “∼” for
which Prune-3 does not fail, and we introduce the corresponding “∼”-arcs on the
dependency graph. We henceforth assume that such arcs are taken into account by
the strict ordering “∗.” The following proposition is then immediate.
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PROPOSITION 6. Let P be an ACID-unification problem given in standard form.
Then:

(i) Pruning the problem P can be performed in time NP w.r.t. the number of
variables in P .

(ii) If P is in pruned form, then the dependency graph is “∗”-loop free: there is
no node u such that u ∗ u.

The dependency graph being “∗”-loop free for a pruned problem, we can asso-
ciate a height and a co-height (also called depth) to any of its variables w.r.t. any
given height relation “∼” that passes Prune-3:

DEFINITION 4. Let P be a pruned ACID-problem with a given height rela-
tion ∼; and let X be any given variable in P . We then define the following:

• ht(X) = height of X in P = the maximal integer m such that there is a path on
the dependency graph from X to some end-variable of P with m “∗”-edges.

• Ht(P ) = height of the problem P = max{ht(Y ) | Y is a variable in P }.
• coht(X) = co-height (or depth) of X in P = Ht(P ) − ht(X).

Please note: Ht(P ) is independent of any height relation, but ht(X) and
depth(X) depend in general on the given “∼.”

EXAMPLE 1c. The problem P : V = X + Z, V = W + U , W = X ∗ Y , is in
pruned form. Indeed V ∼ Z in the first “sum”-equation, while W ∼ V and U ∼ V

in the second; and the dependency graph satisfies the “∗”-loop-free condition.
We get ht(X) = 0 = ht(Y ), and ht(W) = 1 = ht(V ) = ht(Z) = ht(U). So
Ht(P ) = 1; and X and Y are the only variables at nonnull depth for this problem.

We shall see below that this problem is actually solvable.

6.2. A NEXPTIME-ALGORITHM

In this section we present a NEXPTIME-algorithm for solving any pruned ACID-
unification problem P . Let h = Ht(P ) be the height of the problem P as defined
above. We have h ≤ n = the number of variables in P , thanks to Prune-0 and
Prune-1. The following observation is also a direct consequence of Prune-1.

LEMMA 4. If P contains a “constant”-equation X = a, then for any height
relation ∼, the depth of X in P is h = Ht(P ).

Let C be the set formed by all the ground constants appearing in P , plus an
additional dummy constant that we denote �. For every k ∈ {0, . . . , h}, define Tk

as the set of all ground terms formed of “∗” and the constants in C, of height at
most (h − k); in particular we have Th = C. For (any given height relation ∼ and)
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any k ∈ {0, . . . , h}, we define Pk as the ACID-problem formed of the equations in
P that involve only the variables at depth ≥ k in P ; in particular P0 = P .

Let H be the set of all possible height relations on P that pass Prune-3. The
algorithm given below starts by guessing a height relation ∼ in H and then follows
a downward iterative loop from k = h = Ht(P ), to k = 0.

ALGORITHM A.

Choose: Guess non-deterministically a height relation ∼ in H.
Init: Set k = h = Ht(P ).
Step 1: Guess non-deterministically the terms in Tk

that can be added to the set-variables of Pk

such that the equations in Pk are all satisfied.
Step 2a: Case k > 0: Propagate to variables of Pk−1 the

terms of Tk−1 using the ‘product’-equations
in Pk−1. Decrement k by 1. GOTO Step 1.

Step 2b: Case k = 0: RETURN ‘Success’.

As concerns the complexity of this algorithm A, we observe the following:

• Guessing a height relation in H can be done in time NP w.r.t. the number of
variables in the problem P (cf. Proposition 6).

• Guessing incrementally the sets of ground terms assigned to the variables of P ,
so that the equations in P are all satisfied, can be done in NEXPTIME w.r.t. the
number of variables in P .

The NEXPTIME estimate above is due to the fact that the number of ground
terms of height at most h is bounded exponentially w.r.t. the number n of variables
in the problem P . The algorithm A is obviously sound. We shall prove that it is also
complete, but before doing that we show how it works on a couple of examples.

EXAMPLE 1c (contd.). We get back to the pruned problem P : V = X + Z,
V = W + U , W = X ∗ Y . We saw above that Ht(P ) = 1; X and Y are the only
variables at depth 1 for this problem, the others being at depth 0.

The above algorithm starts thus with k = 1 and T1 = {�}. At Step 1a, we assign
� to X and Y ; at Step 2a, W gets the term �∗�, and then k gets decremented to 0.
We go back to Step 1a with T0 = {�,� ∗ �} and finish with the successful guess
U = {�}, Z = {� ∗ �}, V = {�,� ∗ �}.

Here is a “more complete” example where the problem passes pruning but
where the algorithm detects unsolvability.

EXAMPLE 2. Let P be the following ACID-problem:

(i) X1 = a, (ii) X2 = b, (iii) X3 = X1 + X2,

(iv) X4 = X1 ∗ X2, (v) X5 = X3 ∗ X2, (vi) X6 = X3 + X4,

(vii) X6 = X1 + X5.
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Figure 1. Dependency graph for the problem in Example 2.

This problem is pruned, and only one height relation passes Prune-3:
X1 ∼ X3, X2 ∼ X3, X4 ∼ X6, X5 ∼ X6. See Figure 1 for its dependency
graph: each edge is numbered with that of the corresponding equation; the “∗”-
edges are labeled explicitly, while the “⊃”-edges are left implicit; and the “∼”-arcs
are supposed to go in the opposite direction w.r.t. the arrows.

For the heights we get h(X1) = 0 = ht(X2) = ht(X3); and ht(X4) = 1 =
ht(X5) = ht(X6). So Ht(P ) = 1, and the former are the variables at depth 1.

At the first step of iteration, the algorithm gives X1 = {a}, X2 = {b}, X3 =
{a, b}, which satisfies the subproblem of P formed of equations (i)–(iii) involving
only the variables at depth 1. At the second iteration, we propagate the values
via the “product”-equations and get X4 = {a ∗ b}, X5 = {a ∗ b, b ∗ b}, and
subsequently X6 = {a ∗ b, a, b} from equation (vi), while X6 = {a ∗ b, b ∗ b, a}
from equation (vii). The algorithm fails, since no other height relation is available.

6.3. THE ALGORITHM A IS COMPLETE

Let P be any ACID-unification problem given in standard (pruned) form, and let
n be the number of its variables. Suppose that P is solvable, and let Xi = Si, i =
1..n, be a given solution of P . Observe first that this given solution determines a
unique set of height relation arcs ∼ on the dependency graph of P . Our objective
in this subsection is to prove that the algorithm of the previous subsection, when
run on P with this uniquely determined height relation as H , will end up with
success. As above, we denote by h the height of the problem P .

The following notions will be used in proving this completeness. Let t be any
ground term over “∗” and the set C of constants (cf. above); by height of t we
mean the usual height of the term t , denoted as ht(t); if t ′ is any subterm of t ,
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we set deptht (t
′) = ht(t) − ht(t ′); we then say that t ′ is a subterm of t at depth

deptht (t
′).

DEFINITION 5. Let k be any given integer such that 0 ≤ k ≤ h. Then, for
any ground term t over “∗” and the constants, tk is the ground term of height ≤ k

obtained by replacing every subterm of t at depth k by the constant �.
For any set T of ground terms over “∗” and the constants, we set Tk =

{tk | t ∈ T }.

LEMMA 5. Let X,Y,Z be any finite nonempty sets of ground terms over “∗” and
the constants. Then

(i) If Z = X + Y , then for any k ∈ {0, . . . , h} we have Zk = Xk + Yk.
(ii) If Z = X ∗ Y , then for any k ∈ {1, . . . , h} we have Zk = Xk−1 ∗ Yk−1.

Proof. Only the second assertion needs (perhaps) to be justified. Observe first
that the depth of a subterm t ′ of any given ground term t is the length of the path
from the root node of t to the root node of t ′. Now, any t ∈ Z is of the form u ∗ v,
with u ∈ X, v ∈ Y ; thus a subterm of t at depth k ≥ 1 must be a subterm either of
u or of v at depth k − 1. Hence, the term tk (by definition the ground term obtained
by setting all the subterms of t at depth k to �) is none other than uk−1 ∗ vk−1.
(Note that if a ground term s is such that k > ht(s), then sk = s, by definition.) �
PROPOSITION 7. Let P be an ACID-unification problem in standard (pruned)

form. Suppose P is solvable, and let σ be a solution given as finite nonempty sets of
ground terms for the variables in P . For any variable Xi in P , let hi be its height in
P w.r.t. the unique height relation induced by the given solution (cf. Definition 4),
and define a ground substitution σ̂ such that, for every i ∈ 1..n, σ̂ (Xi) = σ (Xi)hi

.
We then have the following:

(ii) The substitution σ̂ satisfies the equations of the problem P .
(ii) For every i ∈ {1, . . . , n}, σ̂ (Xi) is a nonempty finite set.

Proof. We assume (as we may) that the height h of the problem P is at least 1. In
order to prove assertion (i), it suffices to apply Lemma 5 above, in conjunction with
the following fact: If P has a “constant”-equation X = a, then σ̂ (X) = σ (X) =
{a}, since the depth of X in P is h > 0 (cf. Lemma 4). Assertion (ii) then gets
proved, too, under the same argument via (i). �
COROLLARY 7.1. Algorithm A of Section 6.2 is complete.

Proof. This follows by the above proposition: indeed for any variable X in P at
maximal depth, σ̂ (X) contains only the constants from C; so one of the branches
of the search mechanism will end up with success, by adding the ground terms of
σ̂ (Xi) to the set variable Xi , for each i ∈ {1, . . . , n}. �
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THEOREM 10. ACID-unification and ACUID-unification are decidable in
NEXPTIME.

Proof. For ACID-unification, the assertion follows from what we just estab-
lished. As concerns ACUID-unification, one can reason as follows: Choose nonde-
terministically the set of variables that are assigned the value U = 0, and solve for
the others using the NEXPTIME-algorithm just described for ACID. �

Note that we have already observed that ACUID-unification and ACID-unifica-
tion are both DEXPTIME-hard; cf. Proposition 5 above and Proposition 8 in the
Appendix.

7. Conclusion

Distributivity (along with other axioms) has been addressed in many papers, the
earliest being the undecidability results of Siekmann and Szabo [21] for the theo-
ries AD, ACD, and ACUD. Unification modulo one-sided distributivity was shown
to be decidable by Tiden and Arnborg [23]. When associativity and commutativity
are added (i.e., the theory ACUDl , with no idempotence assumption for the ACU-
symbol), the problem is again undecidable [15]. D-unification, which remained an
open problem for a long time, was finally settled by Schmidt-Schauss, who showed
it to be decidable [18, 19].

Our concern in this paper has been the unification problems w.r.t. the theories
ACUID and ACUIDl , which seem to be of practical interest in the analysis of
programs modeled as process algebras, thanks to the added idempotence assump-
tion. Both the problems are DEXPTIME-hard; we have shown unification modulo
ACUIDl (resp. ACUID) to be decidable in EXPTIME (resp. in NEXPTIME). For
ACUIDl , the results obtained are by reduction to the ACUIH-unification problem –
where H is a finite set of noncommuting homomorphisms over the ACUI-symbol
“+” – which was treated completely in [6]. Unification modulo ACUID, where “∗”
is assumed two-sided distributive over “+,” cannot be handled in such a manner;
our lines of reasoning are based on interpreting the problem as a special class of
set constraints.

We have also shown that unification becomes undecidable if the axioms of
associativity-commutativity, or just of associativity, on the distributing symbol “∗”
are added on to AC(U)ID. However, over the theory obtained by adding the com-
mutativity axiom of “∗” to AC(U)ID, unification remains decidable: the algorithm
presented in Section 6 of this paper seems to remain valid modulo the commuta-
tivity of “∗.” The approach presented in [4], based on the construction of a labeled
dag automaton, LDA, remains valid, too: it suffices to check the progression con-
ditions on the states of the LDA modulo the commutativity of “∗.” We also men-
tion that unification remains decidable modulo the theory PAC(U)ID obtained by
adding monadic function symbols (prefixes) to the AC(U)ID-signature: indeed,
it suffices to add suitable unary transitions between the states of the LDA in the
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approach of [4], corresponding to every monadic function symbol. We believe that
unification modulo PAC(U)ID can be used as a tool for the analysis of informa-
tion flow between processes, when they are modeled as (value-passing) process
algebras.

Appendix: The DEXPTIME Lower Bound without U = 0

PROPOSITION 8. The unification problem over ACID or ACIDl is DEXPTIME-
hard.

Proof. We show that the proof of the DEXPTIME-hardness of unification mod-
ulo ACUIh, as given in [6], can be adapted so as to get rid of the role played by the
unit element U = 0 of the theory.

Recall that this proof relies on Seidl’s result [20] that if Ai, i = 1..k are given
finitely many DTTA’s (deterministic top-down tree automata), then deciding the
emptiness of their intersection is DEXPTIME-hard. In [6], an ACUIH-equation
Ei is constructed for each of the Ai ; these equations share exactly one common
variable X. Solutions to any equation Ei are assignments of finite unions of “run
tree sets” constructed from finite trees accepted by the corresponding automaton
Ai ; the unique common variable X serves to glue these different assignments to-
gether into a single one, whenever there is a common solution for all the equations
Ei, i = 1..k. A single global equation combining all these equations is defined
such that it is solvable iff there is a common tree t accepted by all the Ai, i = 1..k,
in which case the run tree set derived from t is assigned to this unique common
variable X; if the acceptance of this common tree t by any of the Ai does not
involve all the transitions in the DTTA Ai , then the value assigned to this variable
X is U = 0. We propose to restructure this reasoning in such a manner that the
solvability of the global equation amounts to the existence of one run tree set
common to the assignments for the different variables (which is weaker than asking
for a common accepted tree t).

First we show that Seidl’s result holds even if we restrict to signatures with one
binary symbol g, one unary symbol s, and one constant ‘#’. The key idea is this:
suppose have a set of binary function symbols {g1, . . . , gn}. Then we can replace
each gi with λ(x, y).s(s(. . . s(g(x, y)))), with i occurrences of the symbol s. (In
other words, the term is si (g(x, y)).) A DTTA on the original alphabet can thus be
converted into a DTTA on the new alphabet in polynomial time.

Next, we form the equations Ei for each DTTA Ai as in [6] and following the
notation therein, except that the variables are all disjoint:

{qf }·Xi ∪
⋃

(q,g)∈Q×�

{q} · Xi
(q,g)

= {q0} ∪
⋃

δ(q,g)=(q1,...,qk)

{q11g, . . . , qkkg} · Xi
(q,g).
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(Recall that the {qf }·Xi in each of these equations Ei will be “storing” finite unions
of run tree sets.) We then form an additional DTTA A with qf as its only state and
with the transitions δ(qf , g) := (qf , qf ), δ(qf , s) := qf . We form an equation for
this DTTA, too:

{qf } · Z ∪ qf · X(qf ,g) ∪ qf · X(qf ,s)

= {qf } ∪ {qf 1g, qf 2g} · X(qf ,g) ∪ {qf 1s} · X(qf ,s).

Then we add the following equations, which express the conditions that {qf } · Z

is a subset of all the other {qf } · Xi , for the variables Xi coming from the various
equations Ei , i = 1..k:

{qf } · Xi = {qf } · Z ∪ {qf } · Xi.

The rest of the reasoning in [6] can now be carried through: we can solve all these
equations simultaneously with nonempty run tree sets for the variables if and only
if there is a common run tree set that can be assigned to the variable Z, that is, iff
the DTTAs Ai , i = 1..k and A have a nonempty intersection. �
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