
UNIVERSITY OF OSLO
Department of Informatics

Unification and

Matching in Complex

Theories

Research Report No.

Sergiu Bursuc

Cristian Prisacariu

Isbn 82-7368-330-3

Issn 0806-3036

March 10, 2010

March 10, 2010

1

Unification and Matching in Complex Theories

Sergiu Bursuc∗ Cristian Prisacariu†

March 10, 2010

Abstract

The present work studies problems of unification and matching
in equational theories based on idempotent semirings. These theo-
ries include Kleene algebras and extensions of this to model forms
of concurrency, contraint semirings, and synchronous actions algebra.
Generaly the unification problems are undecidable (but different un-
decidability proofs are required) whereas the matching problems are
decidable.

∗School of Computer Science – Univ. of Birmingham, Birmingham B15 2TT, UK.
E-mail: s.bursuc@cs.bham.ac.uk

†Dept. of Informatics – Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mail: cristi@ifi.uio.no

2

Contents

1 Introduction 4

2 Equational Theories Under Consideration 5
2.1 Idempoten semirings . 5
2.2 Kleene algebras . 6
2.3 Synchronous Kleene algebras 6
2.4 Synchronous actions algebras 8
2.5 Concurrent Kleene algebras 9
2.6 Constraint semirings . 10

3 Results 11
3.1 Stratified theories . 13

4 Conclusion 20

3

1 Introduction

Semirings, but mostly idempotent semirings (IS) are the basis of several re-
cent equational theories of higher complexity (i.e., with more defining equa-
tions or extra operators). The theories that we are particulary interested
in are the Kleene algebras (KA) [Con71, Koz79] with their several exten-
sions with tests [Koz97], types [Koz98], non-local flow of control [Koz08], or
local variables [AHK08]; the concurrency extensions of synchronous Kleene
algebras (SKA) [Pri10] and concurrent Kleene algebras (CKA) [HMSW09b];
synchronous actions algebras (SAA) [Pri10]; constraints semirings (CS) and
combinations [BMR97, NFM+05].

Kleene algebras appear in various formalisms in computer science: re-
lation algebras, logics of programs like propositional dynamic logic [FL77,
Pra90], or regular expressions and formal language theory [KS86]. Kleene al-
gebra with tests (KAT) can express while programs [Koz00] and can encode
propositional Hoare logic using a Horn-style inference system. Concurrent
Kleene algebra was recently proposed in [HMSW09b] as a general formalism
for reasoning about concurrent programs. In the same lines, synchronous
Kleene algebra captures the notion of synchrony and synchonously executing
entities. The simplification that looses the regularity of the Kleene star is
the synchronous actions algebra (also investigated in [Pri10]); these actions
are the basis of the contract logic from [PS09]. Contraint semirings have
been proposed in [BMR97] to model various notions of contraints and have
been used in [NFM+05] to define a process algebra with contraints. Semir-
ings alone have been used in [Moh02] for a general algebraic framework for
shortest-distance problems.

For all these formalisms unification and matching problems appear natu-
rally. For example, matching in Kleene algebras is used when on the one side
of the equality we have the specification of the required regular behaviour of
the system and on the other side we have the behaviour of part of our system
(the part that we know) and the unknown behaviour is filled in by variables.
Resolving the matching problem means to discover the unknown parts of our
composed system. In the concurrent extensions of Kleene algebra (the SKA
or the CKA) matching is more desirable as the variables may represent entire
unknown components that run concurrently with the known components.

For the synchronous actions algebra SAA the matching problem was left
open in [Pri10] where a particular matching problem is used in the definition
of the semantics of the contract logic CL in [PS09]. The decidability of the
CL logic was proven relative with the decidability of this particular matching
problem. The matching algorithm that we give here solves in afirmative the
decidability of CL.

4

(1) α + (β + γ) = (α + β) + γ
(2) α + β = β + α
(3) α + 0 = 0 + α = α
(4) α + α = α
(5) α · (β · γ) = (α · β) · γ
(6) α · 1 = 1 · α = α
(7) α · 0 = 0 · α = 0
(8) α · (β + γ) = α · β + α · γ
(9) (α + β) · γ = α · γ + β · γ

Table 1: Axioms of idempotent semirings (IS)

2 Equational Theories Under Consideration

2.1 Idempoten semirings

Definition 2.1 (idempotent semiring) An idempotent semiring is an al-
gebraic structure (A, +, ·, 0, 1) that respects axioms (1)-(9) of Table 1. We
understand the operations as representing respectively nondeterministic choice
and sequence. Henceforth we denote elements of A by α, β, γ, and call them
(compound) actions. The constants 0 and 1 are sometimes called the fail
action respectively the skip action. For an idempotent semiring the natural
order ≤ is defined as:

α≤ β
△

= α + β = β;

and in this paper we usually say that “β is preferable to α”.

An intuitive understanding of the natural order of a semiring is that ≤
states that the left operand has less behavior than the right operand, or
in other words, the right operand specifies behavior which includes all the
behavior specified by the left operand (and possibly more).

Remarks: It is easy to check that ≤ is a partial order and that it forms a
semilattice with least element 0 and with α + β the least upper bound of α
and β. Moreover, the three operators are monotone w.r.t. ≤.

The axioms (1)-(4) define the choice operator + to be associative, com-
mutative, with neutral element 0, and idempotent. Axioms (5)-(7) define
the sequence operator · to be associative, with neutral element 1, and with
annihilator 0 both on the left and right side. Axioms (8) and (9) give the
distributivity of · over +.

5

(10) 1 + α · α∗≤α∗

(11) 1 + α∗ · α≤α∗

(12) β + α · γ≤ γ → α∗ · β≤ γ
(13) β + γ · α≤ γ → β · α∗≤ γ

Table 2: Axioms of Kleene algebra (KA)

All axioms of Kleene algebra from Table 2
(14) α×(β×γ) = (α×β)×γ
(15) α×β = β×α
(16) α×1 = 1×α = α
(17) α×0 = 0×α = 0
(18) a×a = a ∀a ∈ AB

(19) α×(β + γ) = α×β + α×γ
(20) (α + β)×γ = α×γ + β×γ
(21) (α× · α)×(β× · β) = (α××β×) · (α×β), ∀α×, β× ∈ A

×
B

Table 3: Axioms of synchronous Kleene algebra (SKA)

2.2 Kleene algebras

Definition 2.2 (Kleene algebras) A Kleene algebra (A, +, ·, ∗, 0, 1) is an
idempotent semiring with one extra unary (postfix) operation ∗, which respects
the extra axioms (10)-(13) of Table 2. We understand the Kleene ∗ operation
as representing iteration.

The equations (10) and (11) and equational implications (12) and (13) are
the standard axiomatization of ∗ [Sal66, Koz94] which say that α∗ · β is the
least solution w.r.t. the preference relation ≤ for the equation β + α ·X ≤X
(and dually β · α∗ is the least solution to the equation β + X · α≤X).

2.3 Synchronous Kleene algebras

Definition 2.3 (synchronous Kleene algebra) A synchronous Kleene al-
gebra (SKA) is a structure (A, +, ·,×, ∗, 0, 1,AB) obtained from a Kleene al-
gebra by adding a “×” operation for synchronous composition of two actions.
The new operation× respects the axioms (14)-(21) of Table 3.

Notation: Consider the set A×
B ⊂ A to be the set AB closed under applica-

tion of×. We call the elements of A×
B×-actions and denote them generically

by α× (e.g., a, a×b ∈ A×
B but a + b, a×b + c, a · b 6∈ A×

B and 0, 1 6∈ A×
B).

Note that A×
B is finite because there is a finite number of basic actions in AB

6

which may be combined with the synchrony operator× in a finite number of
ways (due to the weak idempotence of× over basic actions; see axiom (18)
of Table 3). Note the inclusion of sorts AB ⊆ A

×
B ⊂ A. For brevity we often

drop the sequence operator and instead of α · β we write αβ. To avoid un-
necessary parentheses we use the following precedence over the constructors:
+ < · <×< ∗.

Axioms (14)-(17) give the properties of × to be associative, commuta-
tive, with identity element 1, and annihilator element 0 (i.e., (A,×, 1, 0) is
a commutative monoid with an annihilator element). Axioms (14) and (15)
basically say that the syntactic ordering of actions in a ×-action does not
matter. Axiom (18) defines × to be weakly idempotent over the basic ac-
tions a ∈ AB. Note that this does not imply that we have an idempotent
monoid. Axioms (19) and (20) define the distributivity of× over +. From
axioms (14)-(20) together with (1)-(4) we conclude that (A, +,×, 0, 1) is a
commutative and idempotent semiring (NB: idempotence comes from axiom
(4), and the axiom (18) is just an extra property of the semiring).

At this point we give an informal intuition for the actions (elements) of
A: we consider that the actions are “done” by somebody (be that a per-
son, a program, or an agent). One should not think exclusively of processes
“executing” instructions as this is only one way of viewing the actions. More-
over, we do not discuss in this paper operational semantics nor bisimulation
equivalences (like is done in SCCS [Mil83]).

With this non-algebraic intuition of actions we can elaborate on the pur-
pose of×, which models the fact that two actions are done at the same time.
Doing actions at the same time should not depend on the syntactic ordering
of the concurrent actions; thus the associativity and commutativity axioms
(14) and (15) of×. Intuitively, if a component does a skip action 1 then this
should not be visible in the synchronous action of the whole system (thus
the axiom (16)); whereas, if a component fails (i.e., does action 0) then the
whole system fails (thus the axiom (17)).

Particular to×is the axiom (18) which defines a weak form of idempotence
for the synchrony operator. The idempotence is natural for basic actions but
it is not desirable for complex actions. Take as example a choice action
performed synchronously with itself, (a + b)×(a + b). The first entity may
choose a and the second entity may choose b thus performing the synchronous
action a×b. Therefore, the complex action is the same as a + a×b + b (by
the distributivity axiom (19), the commutativity of×and +, idempotence of
× over basic actions (18), and idempotence of +).

Particular to our concurrency model is axiom (21) which synchronizes
sequences of actions by working in steps given by the · constructor. This
encodes the synchrony model.

7

α + (β + γ) = (α + β) + γ
α + β = β + α
α + 0 = 0 + α = α
α + α = α
α · (β · γ) = (α · β) · γ
α · 1 = 1 · α = α
α · 0 = 0 · α = 0
α · (β + γ) = α · β + α · γ
(α + β) · γ = α · γ + β · γ

α×(β×γ) = (α×β)×γ
α×β = β×α
α×1 = 1×α = α
α×0 = 0×α = 0
a×a = a ∀a ∈ AB

α×(β + γ) = α×β + α×γ
(α + β)×γ = α×γ + β×γ
(α× · α)×(β× · β) = (α××β×) · (α×β), ∀α×, β× ∈ A

×
B

Table 4: Axioms of SAA

Definition 2.4 Consider SKA ⊢ α = β to mean that the SKA equation can
be deduced from the axioms of SKA using the standard rules of equational
reasoning (reflexivity, symmetry, transitivity, and substitution), instantia-
tion, and introduction and elimination of implication. Consider henceforth
the relation ≡ ⊆ TSKA × TSKA defined as: α ≡ β ⇔ SKA ⊢ α = β.

Remark: The proof that ≡ is a congruence is straightforward, based on
the deduction rules, and we leave it to the reader.

2.4 Synchronous actions algebras

Definition 2.5 (synchronous actions algebra) The synchronous actions
algebra is the synchronous Kleen algebra from Definition 2.3 where we re-
move the Kleene ∗ operator. The complete axiomatization of SAA is given
by axioms (1)-(9) of Table 2 together with axioms (14)-(21) of Table 3. We
collect these axioms in Table 4.

SAA is finitely generated by a fixed set AB ∪ {0, 1}. The synchronous
actions of SAA are sometimes called ∗-free actions and are terms constructed
with the grammar below:

α ::= a | 0 | 1 | α + α | α · α | α×α

where a ∈ AB is a basic action. SAA = (A, +, ·,×, 0, 1) is formed as two
idempotent semirings (A, +, ·, 0, 1) and (A, +,×, 0, 1) with three extra ax-
ioms: commutativity of×(15), weak idempotence for×(18) over basic actions
AB, and the synchrony axiom (21).

The canonical form (defined below) gives us a more structured way of
viewing the ∗-free actions and makes easier the formulation and proofs of the
unification and matching results for SAA.

8

Definition 2.6 (canonical form for SAA) We say that a ∗-free action α
is in canonical form, denoted by α, iff it has the following form:

α = +
i∈I

αi
× · α

i

where αi
× ∈ A

×
B are pairwise distinct and αi ∈ SAA is in canonical form.

The indexing set I is finite as the compound actions α are finite; i.e., there
is a finite number of applications of the + operator. Actions 0 and 1 are
considered in canonical form.

Theorem 2.7 ([Pri10]) For every ∗-free action α ∈ SAA there is corre-
sponding α in canonical form and equivalent to α (i.e., SKA ⊢ α = α).

Corollary 2.8 ([Pri10]) For any ∗-free action α there exists an equivalent
action β ∈ SAA (i.e., β ≡ α) which is of the following form:

β = +
i∈I
·

j∈J
αij
× .

Lemma 2.9 ([Pri10]) For any action α that has the form of a sequence of
synchronous actions (i.e., α = α1

× · · · · · α
n
×) then α×α = α. In other words,

× is idempotent for actions of this form.

2.5 Concurrent Kleene algebras

The definitions that we give here are taken from [HMSW09b], and more
recent theoretical results can be found in [HMSW09a].

Definition 2.10 (quantales) A quantale (A, +, ·, 0, 1) is an idempotent
semiring where, in addition, (A,≤) forms a complete lattice under the nat-
ural order of the semiring (+ coincides with the supremum operation of the
lattice) and sequential composition distributes over arbitrary suprema.

A quantale has 0 as its least element and being a complete lattice it has
also a greatest element.

Definition 2.11 (concurrent Kleene algebra) A concurrent Kleene al-
gebra (A, +, ·,×, 0, 1) is two quantales, (A, +, ·, 0, 1) and (A, +,×, 0, 1), linked
by the exchange axiom:

(α×β) · (α′×β ′)≤(β · α′)×(α · β ′) (1)

9

α + (β + γ) = (α + β) + γ
α + β = β + α
α + 0 = 0 + α = α
α + α = α
α · (β · γ) = (α · β) · γ
α · 1 = 1 · α = α
α · 0 = 0 · α = 0
α · (β + γ) = α · β + α · γ
(α + β) · γ = α · γ + β · γ

(22) α + 1 = 1
(23) α · β = β · α

Table 5: Axioms of constraint semirings (CS)

Proposition 2.12 ([HMSW09b]) The following equalities hold for a CKA.

α×β = β×α (2)

(α×β) · (α′×β ′) ≤ (α · α′)×(β · β ′) (3)

α · β ≤ α×β (4)

(α×β) · γ ≤ α×(β · γ) (5)

α · (β×γ) ≤ (α · β)×γ (6)

2.6 Constraint semirings

The definitions and examples that we consider are taken from [NFM+05]
where is presented an application of contraint semirings in the definition of a
process algebra for specification of systems where the quality of service is an
important factor. Technical foundations of constraint semirings have been
given in [BMR97].

Definition 2.13 (contraint semirings) A constraint semiring (A, +, ·, 0, 1)
is an idempotent semiring where 1 is absorbing element from +, i.e., ax-
iom (22), and · is commutative, i.e., axiom (23).

Examples of useful constraint semirings for specifying quality of service
parameters are:

• Network availability (boolean): ({true, false},∨,∧, false, true).

• Consts and delays (opmization): (R+, min, +,∞, 0).

• Bandwidth: (R+, max, min, 0,∞).

10

• Performance and failure rates (probabilistic): ([0, 1], max, ·, 0, 1).

• Access rights (powerset): (2S,∪,∩, ∅, S).

Combinations of constraint semirings offers the posibility to reason about
different types of QoS requirements.

3 Results

In this section we show that unification in idempotent semirings is unde-
cidable. On the other hand, we give a simple algorithm for the matching
problem in idempotent semirings which runs in NP-time. We add a third
operator which makes a second idempotent and commutative semiring. This
theory is the basis for many theories used in practice, like: Q-algebras, c-
semirings, concurrent Kleene algebras, or synchronous Kleene algebra (SKA).
For the later one we show that general unification remains undecidable by
using a similar argument as for one idempotent semiring. This argument is
possible because of the semantics of SKA. The matching problem for SKA
is decidable.

To prove undecidability we use the method (addapted to our theories) of
[ANR04] which uses reduction from the modified Post correspondence prob-
lem (MPCP). We recall this problem here. Consider a list of pairs (wi, w

′
i),

for 0 ≤ i ≤ n, of nonempty finite strings over some alphabet. Determine
whether there exist i1 . . . ik with 0 ≤ ij ≤ n for j ∈ 1, k s.t.

w0wi1wi2 . . . wik = w′
0w

′
i1
w′

i2
. . . w′

ik
.

This problem is undecidable. Intuitively the problem says that from the n
pairs of strings one can pick some of these pairs (maybe several times the
same pair and not necessarily all the n pairs, i.e., there is no condition on k
and ij may denote the same index) and concatenate the left strings together
and the paired right strings together to obtain the same string. The modified
PCP says that these two strings must start with some choosen pair (w0, w

′
0).

Proposition 3.1 For a MPCP one can build another MPCP’ which has the
w0 and w′

0 at the end of the strings s.t. any solution for MPCP’ is a solution
for MPCP and vice versa.

Proof : The proof is simple by just mirroring all the strings in all the pairs
in the original MPCP. For these new pairs the MPCP’ problem is

←−w i1
←−w i2 . . .←−w ik

←−w 0 =
←−
w′

i1

←−
w′

i2 . . .
←−
w′

ik

←−
w′

0,

11

where w represent the mirror words comming from w. The solution for
MPCP’ is also a solution for MPCP. 2

Remark: For any term α ∈ IS (i.e., built with + and · in the theory of
IS) one can find a normal form α↓ that looks like a sum of products:

α ≡ α↓= +
i∈I
·

j∈J
tij

where tij ∈ AB if α is ground, otherwise tij is a variable. Moreover, all the
products ·j∈J tij are different because of the idempotence (4) of +.

Definition 3.2 (types of variables) We define a type AL, where L is a
list of operators, to be the set of all terms built only with the operators from
L. For a variable X we say that X is of some type AL, and denote it X : AL,
iff X can take values only from AL.

Theorem 3.3 (undecidability of IS) Unification with constants, modulo
the theory IS of idempotent semirings is undecidable.

Proof : The proof that we give here is basically the same as in [ANR04] only
that we need to treat also the axiom (6) for the unity element 1.

Consider a MPCP (w0, w
′
0) . . . (wn, w

′
n) in the mirrored style of Proposi-

tion 3.1 with the assumption, wlog., that w0 6= w′
0. Construct the following

IS -unification problem:

w1 ·X1 · 1 + · · ·+ wn ·Xn · n + w0 ·# = X1 + · · ·+ Xn + V ,
w′

1 · Y1 · 1 + · · ·+ w′
n · Yn · n + w′

0 ·# = Y1 + · · ·+ Yn + V ,

where 1, . . . n, # are new constants not appearing in wi or w′
i and the capital

letters are variables of type A{+,·} (this means, cf. remark above, that any
substitution replaces these variables with tearms α↓ in normal form drawn
from A{+,·}; i.e., are sets of strings over ground terms and variables of A{+,·}).

The key observation for the theory of IS is that none of the variables can
contain 1 (one can think of 1 as the empty string) among their summands.
This is because otherwise we would have on the rhs a 1 which has to match
on the lhs. This is not possible because all the summands on the lhs start
with some wi or w′

i and all these are just strings over a set of constants and
1 is not part of them because of the axiom (6) which removes any occurence
of 1 in a sequence.

The rest of the proof follows [ANR04] faithfuly. We restate it here to be
complete. Another important observation is that not all the Xi can be 0 in
the solution of the unification problem because then V would be w0 ·#. This

12

means that also all Yi have to be 0 because V does not contain any string
ending in one of the special constants {1, . . . , n}. But this would imply that
V = w′

0 ·# which is a contradiction as w0 6= w′
0.

Therefore, V contains at least one word ending in one of the constants
{1, . . . , n}. Take from the rhs of the first equation the word v of maximal
length; this must come from V and not be in any of the Xi. Otherwize, if v
is in Xi then in the lhs there must be the word wi · v · i and hence also in the
rhs. But his word has greater length than v and ends in the same constant
i, hence the contradiction.

Take the word v ∈ V of maximal length which is of the form wi · w · i,
for some i ∈ 1, n; otherwize, for v = w0 · # our recursive resoning stops.
Therefore, v = wi · w · i with w ∈ Xi appears in both parts and can be
removed. We remain with w in the rhs and all the words in (the solution
for) V have now length smaller than v. We continue a similar reasoning for
w which must also be a the form wj · w · j with j 6= i. In the end we reach
w0 ·# and stop with a word in V of the form wi1 · · · · ·win ·w0 ·#s, where s
is a word over the special constants {1, . . . , n} (corresponding to the indexes
{i1, . . . , in}). With the same reasoning we find for the second equation that
the word w′

i1
· · · · ·w′

in
·w0 ·#s is in V with the same s. This would give the

solution to the MPCP. Therefore, if we can decide the unification problems
as the above we ca decide the MPCP. 2

We go on to prove the decidability of the matching problem for IS . The
matching problem is to decide if there exists a substitution solution (and give
an algorithm to find it if the answer is afirmative) for an equation u =IS t
where t is a ground term and u may contain variables. One can normalize
the two terms in IS , cf. the remark above, and the problem becomes

+
k
·
l
ukl =IS +

i
·
j
tij (MIS)

for some i, j, k, l ∈ N and i ∈ 1, n. Moreover, we can search for only ground
substitutions (i.e., substitutions that for any variable introduce a ground
term) that introduce only terms in normal form.

3.1 Stratified theories

Definition 3.4 (factors,subterms) Let F be a signature and f ∈ F . For
a term u, we define the multiset of its f -factors by:

• Factf (u) = {u}, if top(u) 6= f

• Factf (u) = Factf (u1) ⊎ . . . ⊎ Factf (un), if u = f(u1, . . . , un)

13

The multiset of f -subterms of u is given by:

• Stf(u) = Stf(u1) ⊎ . . . ⊎ Stf(un), if u = g(u1, . . . , un) and g 6= f

• Stf(u) = Factf(u) ⊎ Stf(Factf(u)), otherwise.

We have used the notation Stf(M) = ⊎t∈MStf(t), for a multiset of terms M .

The goal of f -subterms is to collect all the occurences of terms that are not
headed with f and are under an f in a given term.

Example 3.1

Definition 3.5 (Stratified theories) Let f be a function symbol from a
signature F . We say that a theory E , based on F , is f -stratified if for each
term t there exists a term u s.t.

• t =E u and

• u = C[u1, . . . , un], where C ∈ T ({f},X) and u1, . . . , un ∈ T (F \
{f},X).

• |Stf (t)| ≤ n

We will say that u is a canonical form of t, denoted by t.

The first two conditions express the fact that any term can be transformed
into an equivalent one where the symbol f occurs only in the upper part.
The third condition ensures that, in this transformation, the number of f -
subterms does not decrease. This intuitively means that the rewriting did
not destroy the existing f -subterms, but only possibly recombined them into
new ones.

Example 3.2 (or lemma) IS, SKA and SAA are +-stratified.

In the following, we consider a +-stratified theory, for a given AC-symbol
+, with a neutral element 0. The +-factors will be called simply factors and
denoted by Fact instead of Fact+. Our first goal is to show that the matching
problem in such a theory is NP -reducible to the matching problem in the
“bottom” layer:

Definition 3.6 (bottom layer) Given a +-stratified equational theory E ,
its bottom layer is defined by the set of equations E⊥ ⊆ E such that + does
not appear in E⊥.

14

Example 3.3 IS⊥, SKA⊥ and SAA⊥ are . . .

To achieve full-separation of the bottom layer from + we need the follow-
ing independence conditions:

Definition 3.7 (+-separability) Let E be an +-stratified theory and E⊥ be
its bottom layer. We say that E⊥ is +-separable if:

• for all terms u, t ∈ T (F \ {+}), we have

u =E t⇔ u =E⊥ t

• for all terms u1, . . . , uk, t1, . . . , tn ∈ T (F \ {+}) s.t. t1 6=E 0, . . . , tn 6=E

0, we have

u1+. . .+uk =E t1+. . .+tn ⇔ {u1, . . . , uk} =E {t1, . . . , tn}⊎{ui |ui =E 0}

where the second =E is the equality of multisets modulo E and ⊎ is the
multiset union.

• for all term t, we have

top(t) 6= + & 0 /∈ St+(t) & 0 ∈ Fact+(t) =⇒ t =E⊥ 0

The first separability condition is natural. The second condition ensures
that, once + is on top, it does not interfere with other operators. The last
condition is more technical: it will be used to show that we can concentrate
on solutions with “persistent” variables.

Example 3.4 (or lemma?) IS⊥, SKA⊥ and SAA⊥ are +-separable.

Definition 3.8 (persistent variables, persistent solutions) Let E be an
+-stratified theory. Let u be a term and σ be a ground substitution. We call
a variable X of u persistent for σ iff X appears in a factor v of u such that
vσ 6=E 0.

Given a matching problem u = t and one of its solutions σ, we say that
σ is a persistent solution of u = t if all the variables of u are persistent for
σ.

We first show that, when reducing matching modulo E to matching mod-
ulo E⊥, it is sufficient to consider persistent solutions:

Lemma 3.9 Let E be a +-stratified theory such that E⊥ is separable. A
matching problem u = t is E-solvable iff there are terms u1, . . . , un ∈ Fact(u)
and a substitution ρ such that:

15

• ρ is a solution of u1 = 0, . . . , un = 0 modulo E⊥

• uρ↓ = t has a persistent solution modulo E .

Proof : The “if” direction is obvious.
Now let σ be a (normalized) solution of u = t. We choose u1, . . . , un to

be the set {v | v ∈ Fact(u), vσ =E 0}. We define the substitution ρ as follows
.

Let us show first that ρ is a solution of u1 = 0, . . . , un = 0 modulo E . By
the choice of u1, . . . , un, we have u1σ↓ = 0, . . . , unσ↓ = 0. 2

Therefore, in the following, we only consider persistent solutions.
Because of the axiom (7) the other variables dissapear whenever they

appear in a product with some variable substituted with 0.

Lemma 3.10 (width lemma) For any solution σ for the matching prob-
lem MIS it holds that for any X a persistent variable for σ in the lhs of MIS ,
the ground term σ(X) is a v1 + · · ·+ vn(X), with vi : A{·}, s.t. n(X) ≤ n.

Proof: The lemma puts a bound on the width (i.e., the number of summands
in a normal form) of the variables in the lhs of MIS .

Recall that all tij are different (and the same for ukl). This means that in
the rhs of MIS there is a sum of n products. We prove the lemma by reductio
ad absurdum and assume that for some X, σ(X) = v1 + · · ·+ vn+1. This X
appears in the lhs in one of the products, say in u1l = u′ ·X · u′′. After the
substitution, by way of normalization, u1l becomes u′ ·v1 ·u

′′+· · ·+u′ ·vn+1 ·u
′′.

Because vi are different pairwise and are not 0, it implies that the products
u′ · vi · u

′′ are different. Hence we have n + 1 different products on the lhs
and only n products on the rhs of MIS . 2

Theorem 3.11 (matching in IS) The matching problem modulo IS is de-
cidable in NP-time.

Proof : We give a nondeterministic algorithm for finding (if one exists)
a substitution solution for the matching problem MIS . We think of the
matching problem from before as

+
k

uk =IS +
i
ti (MIS)

where uk is a product containing variables and ti are ground products.

16

1. Guess some of the variables Xi in MIS and replace them in lhs of MIS

by 0. Remove all products uk in lhs of MIS that contain 0. We are left
with a problem M ′

IS where variables are of type A{+,·} \ {0}.

2. For each variable X in the lhs of M ′
IS ,

(a) guess a number n(X) ≤ n, cf. Lemma 3.10;

(b) introduce n(X) fresh variables X1, . . . , Xn(X) of type A{·} \ {0}
(i.e., the new variables can be substituted only with terms that
are products; no + involved and no 0);

(c) replace X with X1 + · · ·+ Xn(X) in M ′
IS

;

(d) normalize the lhs of M ′
IS

;

We have now a new matching problem:

+
k′

u′
k′ =IS +

i
ti (M ′′

IS
)

where all variables are of type A{·} \ {0}.

3. Guess an n-partition of the set of products u′
k′.

Test using an NP-algorithm for matching modulo A(·)+U(1) for the ·
to see if each ti can be matched with all the uk from the corresponding
partition (see Narendran [KN87]). Return the answer.

2

The synchronous actions algebra SAA of Table 4 increases the complexity
of the IS theory by adding an operator that models synchronous execution
of actions. This algebra was investigated in [Pri10] and is essential in giving
the semantics of the action-based contracts language CL of [PS09].

Theorem 3.12 (undecidability of SAA) Unification with constants mod-
ulo the theory of SAA is undecidable.

Proof : We use the same reduction from the MPCP as in the proof of
Theorem 3.3. In the case of SAA the alphabet over which the words wi

and w′
i are built is P(AB); or equivalently, elements of A×

B. Consider the
following unification problem in SAA:

w1 ·X1 · 1 + · · ·+ wn ·Xn · n + w0 ·# = X1 + · · ·+ Xn + V ,
w′

1 · Y1 · 1 + · · ·+ w′
n · Yn · n + w′

0 ·# = Y1 + · · ·+ Yn + V ,

17

The same arguments as before can be made to say that no X of Y can be 1
and there must exists at least one X and one Y not equat to 0.

The proof is based on Corollary 2.8; i.e., ground terms of SAA can be
rewritten as a sum of products of synchronous actions:

+
i∈I
·

j∈J
αij
×

with αij
× ∈ A

{×}. We consider as before only ground substitutions.
Thus, the solution for V must contain products ending with symbols from

{1, . . . , n}. It is clear that products of maximal length from the rhs of the
equality must come from V , for otherwise if they come from some X then
there would be some longer word in lhs which would have to match some
word in the rhs; impossible.

Take a word of maximal length from the rhs, thus from V ; this must
be of the form wi×w×i with w = ·j αj

× for some j; i.e., w is a product of
synchronous actions. In consequence, w is part of the solution for Xi. The
argument continues as in [ANR04]. 2

Definition 3.13 (length of terms) The length of a ground term α is de-
fined (inductively) as a function len : SAA→ N:

• len(1) = len(0) = 0,

• len(a) = 1, for any constant a of AB,

• len(α×β) = len(α + β) = max(len(α), len(β)),

• len(α · β) = len(α) + len(β).

The length of a ground term is calculated in time linear in the number of
constants and function symbols that constitute the term. Intuitively, for a
term in normal form as in Corollary 2.8 (i.e., a sum of products of synchronous
actions) the length function counts the dimension of the maximal product
among all the summands.

Lemma 3.14 (length lemma) For a matching problem

+
k

uk =SAA +
i
ti (MSAA)

with len(+i ti) = m and all variables of type A{·,×}, if σ is some solution for
MSAA then for all variables X the value σ(X) = w1 · · · · · wlen(σ(X)), with
wi ∈ A

{×}, has length len(σ(X)) ≤ m.

18

Proof : The proof is simple using reductio ad absurdum. The main idea is
that if any variable is assigned a term with length greater than m then it is
not possible to find a matching product in the rhs as all have length less or
equal to m. 2

Theorem 3.15 (matching in SAA) The matching problem modulo SAA
is decidable in NP-time.

Proof: We follow similar arguments as those from the proof of Theorem 3.11
ony that for SAA we use the normal form of Corollary 2.8. The matching
problem for SAA is translated as:

+
k

uk =SAA +
i
ti (MSAA)

for some i, k ∈ N and uk ∈ A
{·,×} with variables of type X : A{+,·,×}. Consider

the bound on i to be n, where n can be calculated in time linear in the size
of the rhs of MSAA.

1. Guess some of the variables Xi in MSAA and replace them in lhs of
MSAA by 0. Remove all products uk in lhs of MSAA that contain 0. We
are left with a problem M ′

SAA
where variables are of type A{+,·,×} \ {0}.

2. For each variable X in the lhs of M ′
SAA

,

(a) guess a number n(X) ≤ n, cf. width Lemma 3.10;

(b) introduce n(X) fresh variables X1, . . . , Xn(X) of type A{·,×} \ {0}
(i.e., the new variables can be substituted only with terms that
do no contain + or 0, but only · and/or×);

(c) replace X with X1 + · · ·+ Xn(X) in M ′
SAA

;

(d) normalize the lhs of M ′
SAA.

We have now a new matching problem:

+
k′

u′
k′ =SAA +

i
ti (M ′′

SAA
)

where all variables are of type A{·,×} \ {0}. We can use the length
Lemma 3.14 and simplify the matching problem even more.

3. For each variable X ′ in the lhs of M ′′
SAA

,

(a) guess a number len(X ′) ≤ len(rhs), cf. length Lemma 3.14;

19

(b) introduce len(X ′) fresh variables X ′
1, . . . , X

′
len(X′) of typeA{×}\{0}

(i.e., all the variables in the lhs can be replaced only with terms
build from basic actions of AB using×);

(c) replace X ′ with X ′
1 · · · · ·X

′
len(X′) in M ′′

SAA
;

(d) normalize the lhs of M ′′
SAA

.

The more simple matching problem is now

+
k′′

u′′
k′′ =SAA +

i
ti (M ′′′

SAA
)

where all variables in the lhs are of type A{×}.

4. Guess an n-partition of the set of products u′′
k′′.

We are left with a matching problem over the two operators · and×
which do not interact. This means that we have disjoint theories for the
two: for · we have AU(1) and for×we have the theory ACU(1)I(AB).
We can apply a technique for combining the NP algorithms for the
two theories into one as described in [BS96]. In this way we check to
see if each ti can be matched with all the u′′

k′′ from the corresponding
partition. Return the answer.

2

Theorem 3.16 (general matching algorithm)

4 Conclusion

References

[AHK08] Kamal Aboul-Hosn and Dexter Kozen. Local variable scop-
ing and kleene algebra with tests. J. Log. Algebr. Program.,
76(1):3–17, 2008.

[ANR04] Siva Anantharaman, Paliath Narendran, and Michaël Rusinow-
itch. Unification Modulo ACUI Plus Distributivity Axioms. J.
Autom. Reasoning, 33(1):1–28, 2004.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi.
Semiring-based constraint satisfaction and optimization. Jour-
nal of ACM, 44(2):201–236, 1997.

20

[BS96] Franz Baader and Klaus U. Schulz. Unification in the Union of
Disjoint Equational Theories: Combining Decision Procedures.
J. Symbolic Computation, 21(2):211–243, 1996.

[Con71] John Horton Conway. Regular Algebra and Finite Machines.
Chapman and Hall, 1971.

[FL77] Michael J. Fischer and Richard E. Ladner. Propositional modal
logic of programs. In 9th ACM Symposium on Theory of Com-
puting (STOC’77), pages 286–294. ACM, 1977.

[HMSW09a] C. A. R. Hoare, Bernhard Möller, Georg Struth, and Ian
Wehrman. Foundations of Concurrent Kleene Algebra. In
Rudolf Berghammer, Ali Jaoua, and Bernhard Möller, editors,
International Conference on Relations and Kleene Algebra in
Computer Science (RelMiCS’09), volume 5827 of Lecture Notes
in Computer Science, pages 166–186. Springer, 2009.

[HMSW09b] Tony Hoare, Bernhard Möller, Georg Struth, and Ian
Wehrman. Concurrent Kleene Algebra. In Mario Bravetti
and Gianluigi Zavattaro, editors, 20th International Confer-
ence on Concurrency Theory (CONCUR’09), volume 5710 of
LNCS, pages 399–414. Springer, 2009.

[KN87] Deepak Kapur and Paliath Narendran. Matching, Unification
and Complexity. ACM SIGSAM Bulletin, 21(4):6–9, 1987.

[Koz79] Dexter Kozen. On the duality of dynamic algebras and kripke
models. In Logic of Programs, Workshop, volume 125 of LNCS,
pages 1–11. Springer-Verlag, 1979.

[Koz94] Dexter Kozen. A completeness theorem for kleene algebras and
the algebra of regular events. Information and Computation,
110(2):366–390, 1994.

[Koz97] Dexter Kozen. Kleene algebra with tests. ACM Transac-
tions on Programming Languages and Systems (TOPLAS’97),
19(3):427–443, 1997.

[Koz98] Dexter Kozen. Typed kleene algebra. Technical Report 1669,
Computer Science Department, Cornell University, March
1998.

21

[Koz00] Dexter Kozen. On hoare logic and kleene algebra with tests.
Transactions on Computational Logic, 1(1):60–76, July 2000.

[Koz08] Dexter Kozen. Nonlocal flow of control and kleene algebra with
tests. In 23rd IEEE Symposium on Logic in Computer Science
(LICS’08), pages 105–117. IEEE Computer Society, 2008.

[KS86] Werner Kuich and Arto Salomaa. Semirings, Automata, Lan-
guages. Springer-Verlag, Berlin, 1986.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theoreth-
ical Computer Science, 25:267–310, 1983.

[Moh02] Mehryar Mohri. Semiring frameworks and algorithms for
shortest-distance problems. J. Automata, Languages and Com-
binatorics, 7(3):321–350, 2002.

[NFM+05] Rocco De Nicola, Gian Luigi Ferrari, Ugo Montanari, Rosario
Pugliese, and Emilio Tuosto. A Process Calculus for QoS-
Aware Applications. In Jean-Marie Jacquet and Gian Pietro
Picco, editors, 7th International Conference Coordination Mod-
els and Languages (COORDINATION’05), volume 3454 of Lec-
ture Notes in Computer Science, pages 33–48. Springer, 2005.

[Pra90] Vaughan R. Pratt. Dynamic algebras as a well-behaved frag-
ment of relation algebras. In Clifford H. Bergman, Roger D.
Maddux, and Don L. Pigozzi, editors, Algebraic Logic and Uni-
versal Algebra in Computer Science, volume 425 of LNCS, pages
77–110. Springer-Verlag, 1990.

[Pri10] Cristian Prisacariu. Synchronous Kleene Algebra. The Journal
of Logic and Algebraic Programming, 2010. (to appear).

[PS09] Cristian Prisacariu and Gerardo Schneider. CL: An Action-
based Logic for Reasoning about Contracts. In Workshop
on Logic, Language, Informations and Computation (WOL-
LIC’09), volume 5514 of LNCS, pages 335–349. Springer, 2009.

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of
regular events. Journal of ACM, 13(1):158–169, 1966.

22

