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Pat tern matching and unification are two key primitive operations used 
in many inference based systems including theorem provers, term rewriting 
systems, computer algebra systems, deductive data  bases, Prolog, logic 
programming systems, functional language systems, systems for analysis 
of specifications and program synthesis, and program verification systems. 
In this note, we give results recently obtained in studying the complexity 
of matching and unification problems for first-order terms especially when 
some function symbols are interpreted. For further details and proofs, the 
reader may wish to refer to a forthcoming paper by the authors. 

Both matching and unification problems for first-order terms built solely 
from uninterpreted function symbols have been known to be linear in the 
sum of the sizes of the input terms [PW]. When function symbols have 
properties such as associativity, idempotency, etc., both the problems turn 
out to much harder (in fact, intractable in most cases). 

Given a theory E (presented usually as a finite set of equations), the 
matching problem is defined to be: Given a term (pattern) p and another 
term (subject) s, does there exist a substitution a for variables in p such 
that  

a(p) = s in E? 

The unification problem is defined to be: Given two terms s and t, does 
there exist a substitution a for variables in s and t such that  

. ( , )  = o(t) in E? 

In the following table, symbols are used to stand for theories. The 
associated axiom(s) with each of the symbols is given below. For example, 
the symbol A implies that  some of the function symbols in the terms under 
consideration are associative. 
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A :  f ( x , f ( y , z ) ) =  f ( y ( x , y ) , z )  

C:  f ( x , y ) =  f ( y , x )  

I :  f ( x , x )  = x 

U:  f ( x ,  1) = x 

D :  f ( x ,g ( y , z ) )  = g ( f ( x , y ) , f ( x , z ) )  

When more than one symbol is used to stand for a theory, it means that  
the axioms corresponding to each of the symbols are conjuncted. For exam- 
ple, ACI ,  stands for the theory in which some function symbols appearing 
in the theory are assumed to be associative, commutative and idempo- 
tent. AC matching is an NP complete problem even if each variable in the 
pat tern is restricted to have only at most two occurrences. AC1 stands 
for the theory in which function symbols may be associative-commutative 
and terms under consideration for unification and matching have unique 
occurrences of each variable. 

Set matching problem is defined as the problem of checking, given a set 
of pat terns (sp) and a set of subjects (ss), whether there exists a substitu- 
tion a such that  the set of terms obtained by applying a on sp is the same 
as the set 8s. Similarly, set unification problem is defined as the problem of 
checking, given two sets of terms st and ss, whether there exists a substitu- 
tion a such that  the set of terms obtained after applying a on st is the same 
as the set of terms obtained after applying a on ss. Bag matching and bag 
unification are defined analogously except that  bags of terms, instead of 
sets of terms, are considered, i.e., number of occurrences of a term also be- 
comes relevant. As should be evident, set matching and set unification are 

special cases of A C I  matching and A C I  unification, respectively, whereas 
bag matching and bag unification are special cases of AC matching and 
AC unification, respectively. 

Most of the results obtained by the authors are shown by reducing 
the matching and unification problems to NP-complete problems such as 
3SAT, Mono-3SAT, one-in-three 3-SAT, etc. Showing that  these prob- 
lems can be done in NP has been quite easy in general except in the case 
of associative-commutative (and associative-commutative-unity as well as 
associative-commutative-idempotent) unification, where it turns out to be 
quite nontrivial. 

As the table indicates, in most cases, both matching and unification 
problems turn out to be of the same order of complexity even though match- 
ing problem is a special case of the unification problem. The complexity 
does not seem to grow even when additional properties of function symbols 
are assumed in some cases. 

It also appears that  for linear terms (terms in which every variable ap- 
pears uniquely), both matching and unification problems are easier than for 
nonlinear terms (for matching, only the pat tern has to be linear). This per- 
haps suggests that  one of the main sources of complexity is the nonlinearity 
of terms. 
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There is one anomaly in this table, which is with respect to associative 
matching and unification. As the table states, associative matching is NP- 
complete, whereas associative unification (solvability of word equations over 
free semigroups) is only known to be decidable. The only complexity result 
known about associative unification is that it is primitive-recursive. A 
better upper bound is not known. 

In the table, results are also given for unification problems over finitely 
presented algebras. In a finitely presented algebra, the presentation con- 
sists of a finite set of generators, a finite set of relations expressed using 
generators and the operator symbols of the algebra. Variables are not al- 
lowed in the relations. Terms under consideration for unification are "ele- 
mentary terms," i.e., they can have variables but they do not have any 
uninterpreted function symbols. For example, F P A G  is a finite presenta- 
tion of abelian groups generated by a finite set of generators with a finite set 
of relations expressed in terms of generators and the operators of abelian 
groups. F P B R  stands for finitely presented boolean rings. F P C S G  stands 

Table: Complexity  of Matching and Unification Problems 

E Matching Uni f i ca t i on  

¢ 

U 
I 
C 
A 

CU 
CI  
AU 
A I  
AC 

ACU 
A C I  

D 
DU 
Set 
Bag 
AC1 

F P C S G  
F C S G  

F C S G I  
F C M I  
F P A G  
F B R  

F P B R  
F P A  
S R  

linear 
NP-complete [AT] 
NP-complete [KN87] 
NP-complete [BKN] 
NP-complete [BKN] 
NP-complete [KNS7] 
NP-hard [KN861] 
NP-complete [KN87] 
NP-hard [KN861] 
NP-complete [BKN], [CK] 
NP-complete [KN862] 
NP-complete [KN862] 
NP-hard [AT] 
NP-hard [AT] 
NP-complete [KN861] 
NP-complete [KN87] 
P [BKN] 
decidable [KN87] 
NP-complete [KN862] 
P [KN87] 
P [KN87] 
P [KKN] 
NP-complete [KKN] 
NP-hard [KKN] 
NP-complete [K] 
NP-complete [KN87] 

linear [PW] 
NP-complete [AT] 
NP -complete [KN87] 
NP-complete [S] 
decidable [Makanin] 
NP-complete [KNS7] 
NP-hard [KNS61] 
decidable [Makanin] 
NP-hard [KNS61] 
NP-complete [KN862] 
NP-complete [KN862] 
NP-complete [KN862] 
NP-hard [AT] 
NP-hard [AT] 
NP-complete [KNS61] 
NP-complete [KNS7] 
P [KN862] 
decidable [KNS7] 
NP-complete [KN862] 
P [KN87] 
P [KN87] 
P [KKN] 
NP-complete [KKN] 
NP-hard [KKN] 
NP-complete [K] 
NP-complete [KNS7] 

- 8 -  



for finitely presented commutative semigroups. FPA stands for arbitrary 
finitely presented algebras. If a finitely presented algebra does not have any 
relation, it is said to be freely generated. FCSG stands for finitely gen- 
erated free commutative semigroups; FCSGI stands for finitely generated 
free commutative semigroups with idempotency; similarly, F C M I  stands 
for finitely generated free commutative monoids with idempotency. F B R  
stands for finitely generated free boolean rings. 

SR is a theory presented by a finite complete (canonical) term rewriting 
system in which for each rule, the right-hand-side is either a ground term 
or a subterm of the left-hand-side. 
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