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We review the conceptual development of (true) concurrency and branching time

starting from Petri nets and proceeding via Mazurkiewicz traces, pomsets, bisimulation,

and event structures up to higher dimensional automata (HDAs), whose acyclic case

may be identified with triadic event structures and triadic Chu spaces. Acyclic HDAs

may be understood as extending the two truth values of Boolean logic with a third value

expressing transition. We prove the necessity of such a third value under mild

assumptions about the nature of observable events, and show that the expansion of any

complete Boolean basis L to L with a third literal ba expressing a = forms an

expressively complete basis for the representation of acyclic HDAs. The main

contribution is a new value× of cancellation, sibling to , serving to distinguish a(b + c)

from ab + ac while simplifying the extensional definitions of termination XA and

sequence A B. We show that every HDAX (acyclic HDA with×) is representable in the

expansion of L to L × with a fourth literal 6a expressing a =×.

1. Introduction

1.1. Sequential and Concurrent Behavior

What distinguishes sequential computation, or for that matter sequential behavior of any
kind, from concurrent? The usual viewpoint draws the following temporal distinction.

Sequential behavior allows only one event to happen at a time. With concurrent behavior

multiple events may occur simultaneously.

Implicit in this distinction is the traditional view of time as evolving steadily and
independently, providing a background against which to observe the processing of infor-
mation. This view makes the behavior of time itself sequential—no two nanoseconds can
overlap—while allowing arbitrarily independent behavior for bits.

The point of view espoused in this paper views time and information more symmet-
rically as two complementary or dual spaces. We view the points of time not so much
as temporal instants as instantaneous events serving as state deltas: an event changes
information but not time. Dually the points of information space are seen as time deltas:
during a given state time passes while information remains fixed. These are of course
idealized events and states; physical events always take time even if only 10−20 seconds
while physical states are never completely stationary.
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While this more symmetric view of time and information favors neither sequential nor
concurrent behavior, it does raise the question of whether they can be distinguished in
a symmetric way. We offer the following symmetric distinction.

Sequential behavior synchronizes the evolution of time and information. With concurrent be-

havior time and information evolve more independently.

In particular the sequential events (transitions) and states of traditional automata
theory alternate in lock step, allowing time to be defined abstractly as the number of
state changes. Concurrency decouples this relationship, with the result that the passage
of both time and information can then be measured in terms of each other only in a
distributed way. With the representation adopted below of processes as matrices over
a set K, time and information are obtained naturally by standardly lifting a suitable
generalized metric on K to respectively rows and columns in the same way to yield
metrics on the respective temporal and information spaces. We shall treat this further in
a more categorically-oriented follow-up paper for CONCUR’02 focusing on enrichment.

1.2. Refinements of Atomic Time

The simplest nontrivial view of atomic time, the view of time from the perspective of
an atomic event, is that of Figure 1(a). Time divides into just two regions or values, 0
and 1, according to whether the event has not or has happened respectively. The event
may pass from 0 to 1 (the figure orients time as flowing upwards), but having done so
it may not return. That is, the (truth) value of the atomic proposition Pa expressing “a

has happened” can only increase monotonically with time. We write K for the allowed
values, so in Figure 1(a) K = {0, 1}.
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Figure 1. Refinements of atomic time

The process a||b, perform events a and b independently, permits the states of a and b

to be any of the four combinations 00, 10, 01, or 11, which appear as the four columns
in the first box of Figure 1. The process ab+ ba, perform a and b in either order, permits
the same states, so this choice of K satisfies a||b = ab+ ba. The process a(b+ c), perform
a and then one of b or c, permits for a, b, c the states 000, 100, 110, and 101, as does
ab + ac, perform one of a then b or a then c, so this K also satisfies a(b + c) = ab + ac.

Figure 1(b) refines this view with the recognition of an intermediate state of transi-
tion. K now has 3 states, whence a||b has 32 = 9 states. ab+ ba has the same states with
the exception of the state denoting a and b simultaneously in transition, and so
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now distinguishes a||b from ab+ba. But even though also furnishes a(b+c) and ab+ac

with additional states, the new states are the same for both, which therefore remain
indistinguishable. Other roles for include distinguishing asymmetric from symmetric
conflict, representation of resource limits, and a satisfactory notion of running time of a
parallel computation.

Figure 1(c) proposes a different way of adding a third state, namely the state × of
cancellation. A choice may necessitate cancelling an event, e.g. choosing a in a + b auto-
matically cancels b immediately, even before a happens. No choice is made in a||b whence
there are no cancellations. But even though ab+ ba entails a choice, both a and b happen
on both branches and so neither is cancelled in either case, leaving a||b = ab + ba.

Now in a(b + c), after a happens (state 100) a choice is required, at which point one
of b or c is cancelled (state 1×0 or 10× respectively). In ab + ac this choice is made at
the beginning, at which time one of b or c is cancelled (state 0×0 or 00× respectively,
with state 100 now disallowed). So × distinguishes a(b + c) from ab + ac. Other roles
for × include a more satisfactory notion of final state leading to improved definitions of
sequence and termination.

Figure 1(d) is the evident amalgamation of 1(b) and 1(c) (though since the relationship
of 1(a) to 1(b) is embedding while to 1(c) it is quotient, it would have to be some sort of
mixed-variance amalgamation or epi-mono square construction.). Tables 1-4, encountered
along the way as our more detailed story unfolds, correspond respectively to Figures 1(a)-
(d).

We associate with the states 0, , 1, × of K the respective literals a, â, a, and 6a,
asserting respectively a = 0, a = , a = 1, and a =×. We shall show that every subset
of KA is representable as a disjunction of conjunctions of these four literals.

The earliest explicit representation of nonperformance we are aware of is Genrich and
Thiagarajan’s notion of L-value for Petri nets (GT84). Much more recently, and closer
to our notion of cancellation, Rodriguez and Anger (RA01) give an analogous account
of branching time in terms of an expansion of Allen’s interval algebra (All84) of the
13 possible relationships between two intervals sliding past each other. The traditional
account of interval algebra derives the 13 relationships from three binary relations <,
=, and > each between two endpoints one from each interval. Rodriguez and Anger
consider a fourth relationship || in which the two endpoints are no longer comparable, as
when the parallel tracks on which the intervals slide diverge at some point, deriving 19
interval relationships. Section 3.7 considers this notion of branching time in more detail,
addressing the meaning of the symmetric relationship || when reinterpreted as a value
of K. We show that it would have the meaning of an event that blocks as opposed to
being cancelled, with the result that using || analogously to× to distinguish a(b+c) from
ab + ac would cause d to block in a(b + c)d, a crucial distinction between the respective
characterizations of branching time by || and×.

1.3. Rationale

For state-of-the-art software and hardware verification, the traditional state-oriented view
of computation is all that is needed. In this view a computer system, implemented in
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either hardware, software, or some mix thereof, is understood abstractly as an edge-
labeled graph G = (V,E). Each vertex u ∈ V denotes a possible state of the system.
Each edge e ∈ E from u to v is labeled with a symbol or action λ(e) = a indicating that
if the system is in state u and action a = λ(e) occurs, the next state of the system will
be v (or can be v in the case of nondeterministic computation).

Correctness of the system so modeled is defined in terms of predicates at program
points L that are required to hold of the system state x whenever the program counter
(whether real or virtual) in x is at L. Only states as the effects of transitions are observ-
able, not the transitions themselves.

The canonical application of this viewpoint is verification, whose function originally
was conceived as an imprimatur certifying the whole program correct once and for all, but
which in recent years has retargeted logical laws to serve as in-laws perpetually finding
fault with the system, rooting out bugs in parallel with evolution of the system design
while exposing tacit assumptions of the system designers. This view serves its intended
purposes well and has become the basis for a thriving (albeit still cottage) verification
industry.

There are however two assumptions tying the system designer’s hands here, namely
fixed granularity and sequential observation.

Fixed granularity. This is the assumption that actions of the system are built up from
atomic actions whose start and end are both observable, but not the period in between—
the transition is quicker than the eye. This assumption justifies the equation a||b = ab+ba

identifying independent occurrence of atoms a, b with their occurrence in either order. A
natural name for the latter is atomic mutual exclusion.

The assumption of fixed granularity is called into question by the widespread practice of
maintaining confidentiality of source code. Confidentiality has two benefits, a competitive
one of trade secrecy and a technological one of being able to improve the implementation
without compromising the specification. However it also has the effect of presenting some
system components as atomic to the user even though the implementor sees them as built
up from smaller atoms. While it certainly suffices for system correctness to organize such
user-atomic components so as to satisfy atomic mutual exclusion, this requirement can
in many cases impose a sufficient burden on both implementors and users as to justify
asking whether the user must assume atomic mutual exclusion in order to verify larger
systems built from such components. The study of concurrent computation bifurcates
according to the answer, with this paper firmly in the camp dedicated to exploring what
is possible without the assumption of fixed granularity, and hence without assuming
atomic mutual exclusion.

Sequential observation. This is the assumption that every dispute can be resolved by
one referee. From a legal standpoint it might seem as though the nationals of any country
with a Supreme Court would be on safe ground with this assumption, at least within their
own borders, since that court will ultimately resolve any dispute of sufficient significance.
But the resolution may come too late to be useful, or the one referee may be overwhelmed
with such requests, or the centralized arbiter may recognize a prior period of time where
one distributed system observed another with results that the arbiter can see in hindsight
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could not have been obtained at the time by a single observer even in principle regardless
of available resources (PP96).

The appropriate operator combining two distributed systems one observing the other
is orthocurrence (Pra85; Pra86; CCMP91; GP93). Orthocurrence can be understood
either symmetrically as the interaction A ⊗B of two processes A and B, or ostensibly
asymmetrically as the observation A−◦B⊥ of states of process B from vantage points of
process A , or the dual observation B−◦A⊥ (giving a sense in which observation is really
symmetric) (Pra01). Besides being the only viable candidate proposed to date for this
role, it has the additional benefits of an intuitive definition in terms of crossword puzzles,
and attractive algebraic and logical properties, specifically both k-2 logic (corresponding
to k-adic Chu spaces) and Girard’s linear logic (Gir87).

Now orthocurrence makes no sense for the standard state-based or transition-system
view of computation because its events consist of pairs of events each taken from one of
two interacting or “orthocurrent” systems. Product does appear in automata theory, but
only for concurrence, which forms the product of state sets; in contrast orthocurrence
multiplies event sets. The incompatibility of orthocurrence with the standard state-based
view of behavior makes it of predictably limited interest for systems designed from that
perspective.

We maintain nonetheless that orthocurrence as the multiplicative form of concurrency
is every bit as important as concurrence, its additive counterpart. (This distinction is that
of multiplicative-additive linear logic or MALL, where concurrence and orthocurrence are
called respectively plus and tensor and a third operation perp is introduced whose action
on processes is to interchange the perspectives of observer and observed, with the side
effect of interchanging events and states.)

Our standard example of orthocurrence has long been that of trains passing through
stations, which this paper spices up with examples involving pigeons choosing holes
subject to various constraints. Further evidence for the utility of orthocurrence appears
in (Pra00; RA01) where Allen interval algebras for various models of time, previously
obtained tediously by ad hoc manual methods (AR91; RA93b; RA93a), are all obtained
uniformly and automatically using orthocurrence.

To these two assumptions of the standard model one might add a third, discrete time.
The standard model assumes that time passes in discrete steps, justified by the behavior
of digital systems which are understood abstractly as so behaving. Yet flip-flops, Schmitt
triggers, etc. are implemented from analog transistors, signal processing and image pro-
cessing involve the digitization of analog signals, and buses need to decide quickly which
of two independently arriving pulses arrived first on two request lines in order to grant a
shared resource to one requester without inadvertently granting it also to the other. The
transition-based view of computation has been coerced by many to this analog viewpoint
in recent years, but not gracefully in the sense that the usual approach has been to inter-
leave small intervals of the continuum, which only exacerbates the problems created by
the assumptions of fixed granularity and sequential observation. A suitable framework for
this purpose that is more robust than interleaved intervals is generalized metric spaces
(CCMP91).
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2. Extant Models of Behavior

2.1. Petri Nets

The earliest extant model of concurrency is the Petri net (Pet62), a structure consisting
of statements† and transitions. Truth values of statements are natural numbers, and a
statement holds when its truth is nonzero. A marking or state of a Petri net is a truth
assignment to its statements. An event is the firing of a transition. Firing is regulated by
associating to each transition two sets of statements, its preconditions and its postcon-
ditions. When all the preconditions of a transition hold it can fire, and when it does so
it decrements its preconditions and increments its postconditions.

A sequential run of a Petri net is a sequence of firings. A concurrent run is a so-called
occurrence or causal net, an acyclic Petri net each of whose statements is postcondition to
just one transition and precondition to just one other, whose transitions now constitute
events in the sense that they can each fire at most once. Variations in width of a run
express the varying degrees of concurrency during the run, i.e. the number of transitions
that can be firing concurrently.

2.2. Mazurkiewicz Traces

Just as many different state automata can all exhibit the same sequential behavior, so
can many different Petri nets all manifest the same concurrent behavior. One therefore
seeks a more abstract notion of behavior that minimizes irrelevant implementation detail.

Just as formal languages abstract state automata by modeling the latter’s runs as
strings, so do Mazurkiewicz traces (Maz77) abstract Petri nets by modeling their
runs as equivalence classes of strings. Consider for example a Petri net consisting of two
isolated transitions labeled respectively a and b, a transition being considered isolated
when it has a true precondition and a false postcondition each shared with no other
transition. Whereas the sequential behavior of this Petri net would consist of the two
strings ab and ba, its Mazurkiewicz behavior would consist of the single Mazurkiewicz
trace resulting from identifying these two strings by way of indicating that a and b had
fired independently.

The basis for this identification is action independence, defined as an irreflexive sym-
metric binary relation I on an alphabet Σ of actions. Action independence induces a
congruence ∼=I (with respect to concatenation) on the monoid Σ∗ of all finite strings on
Σ, namely the least congruence ∼= for which ab ∼= ba for all (a,b) ∈ I. (We distinguish
between actions a as event labels and events a as action instances using boldface vs.
italics respectively.) That is, two strings are I-congruent when one can be obtained from
the other by a series of exchanges of adjacent independent actions. The quotient Σ∗/ ∼=I

consisting of the congruence classes of ∼=I constitutes the monoid of all Mazurkiewicz
traces over Σ induced by I. A concurrent behavior is then a set of such traces, i.e. a
subset of Σ∗/ ∼=I .

A fundamental limitation of Mazurkiewicz traces is that independence is global: if

† Stellen, traditionally translated more literally as places.
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actions a and b are independent anywhere they are independent everywhere. Consider
the four actions one would use to model the transmission and receipt of bits through an
asynchronous (buffered) channel, namely T0,T1 (transmission of 0 or 1) and the corre-
sponding receipts R0,R1. Receipt of the first bit necessarily depends on its transmission,
but for proper asynchrony that same receipt should be independent of the transmission
of the second bit. So if both transmitted bits are the same, say zero, both bits are trans-
mitted via the same action, namely T0. But then the action of receipt of the first bit,
namely R0, must be both dependent on and independent of T0 as the common action
of both the first and second transmitted bits, an impossibility for Mazurkiewicz traces.

2.3. Pomsets

Pomsets (Gra81; Pra82; Pra86; Gis88) overcome this limitation of Mazurkiewicz traces
by being based on independence not of actions but of action instances or events. A pomset
or partially ordered multiset is a Σ-labeled poset (A,≤, λ) where ≤ partially orders a set
A of events, with a ≤ b indicating that a necessarily happens before b, and λ : A → Σ
labels each event a ∈ A with an action λ(a) ∈ Σ. A string over Σ is the special case of
a pomset which is finite and linearly ordered. A Mazurkiewicz trace in Σ∗/ ∼=I is the
special case of a pomset which is finite and for any pair a, b of distinct events, if a and
b are order-incomparable then λ(a) and λ(b) are independent, and if λ(a) and λ(b) are
independent and a ≤ b then there exists a third event c satisfying a < c < b. When I is
empty all events are order-comparable, i.e. the order is linear, in which case Mazurkiewicz
traces are ordinary strings as expected. Strings, Mazurkiewicz traces, and pomsets thus
form increasingly more general kinds of behaviors.

From the perspective of true concurrency, pomsets (and hence strings and Mazur-
kiewicz traces) represent behaviors that are not only deterministic but nonbranching:
there is no element of choice whatsoever. Whereas “width” in an automaton results from
disjunctive branching (just one branch is taken), the visually similar “branches” in a
pomset are all taken concurrently, thereby constituting conjunctive branching. We will
shortly settle on processes containing both kinds of branching. In that setting it is both
customary and natural to hide conjunctive “branching” by lumping together strings,
Mazurkiewicz traces, and pomsets under the general heading of traces, understood as
deterministic nonbranching behaviors, and to reserve the term “branching” exclusively
for its disjunctive form.

2.4. Branching Time and Bisimulation

Prior to the last two decades or so, nondeterminism and choice were customarily modeled
abstractly in terms of sets of traces denoting the possible alternative runs. The abstract
behavior of an automaton was taken to be the set of strings it accepted, and that of a
Petri net the set of its permitted firing sequences. This catered for nondeterminism and
branching by effectively making all choices blindly at the outset. To handle the case of
a decision predicated on the outcome of a test performed during the behavior, if that
outcome turns out to conflict with the choice made in the beginning, the trace blocks,
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which means not that it terminates successfully but rather that it is abandoned as having
been a bad choice, like a prospector giving up on an unproductive mining claim. The
distinction between successful termination and blocking is observable in the construct
A B, perform A then B, in that when process A terminates successfully process B may
proceed, whereas if A blocks then so does A B and B does not get to start.

Models of behavior that make their decisions in the beginning in this way are said to
obey trace semantics. The litmus test for trace semantics is the equation a(b + c) =
ab+ac, meaning that choosing one of b or c after performing a is the same as choosing one
of ab (perform a then b) or ac. Students of automata theory will recognize this equation
as holding for formal languages (sets of strings) where ab is concatenation and a + b

union, but it also holds for processes as sets of traces of any kind including pomsets.
Every model of computation considered thus far obeys trace semantics.

Now it is common sense that a prematurely made decision may adversely limit one’s
options by committing one to a path before sufficient information is available to justify
that decision. In that respect a(b + c) is more prudent than ab + ac, making a(b + c) =
ab + ac inappropriate.

A finer equivalence than trace equivalence that recognizes the impact of decision timing
is bisimilarity (Mil80; Par81), which satisfies only (a + b)c = ac + bc and not a(b + c) =
ab + ac.

Bisimilarity is defined not on events but on states of an automaton or transition graph,
via the notion of simulation. For the purpose of this definition we take an automaton to
be a vertex-and-edge-labeled graph X = (X, E) whose vertices are states x ∈ X labeled
with predicates λX(x) and whose edges in E are transitions from x to x′ labeled with
actions a, denoted x

a→ x′. A binary relation R ⊆ X × Y relating states of X to states
of Y is a simulation between X and Y when for all (x, y) in R, (i) λX(x) = λY (y), and
(ii) for every transition x

a→ x′ in EX there exists a like-labeled transition y
a→ y′ in EY ,

the simulating transition, for which (x′, y′) ∈ R. State y in Y simulates state x in X
when there exists a simulation between X and Y containing (x, y). For automata with a
specified initial state, when the initial state of Y simulates the initial state of X we say
that Y simulates X .

For an example of simulation consider the automaton X = ◦��
a

HHa
• b•
• c• realizing the behavior

ab+ac and Y =◦ a •��b
•

HHc • realizing a(b+c), with states labeled vacuously (the same predicate
on every state). Each of their states is reached from its parent initial state by exactly
one of the strings ε, a, ab, ac. Take R ⊆ X × Y to consist of all pairs (x, y) such that x

and y are reached by the same string (one such pair for each state of X , in fact R is
a surjection from X onto Y that is injective except for identifying the two states of X
reached by a). R is easily verified to be a simulation, and furthermore it relates initial
states and so is a simulation of X by Y. However the converse of R is not a simulation
of Y by X because the (x, y) in R for which x is the midpoint of ab is such that y has a
c transition from it while x does not. Moreover there exists no simulation at all of Y by
X , the price of X ’s imprudently early decision.

A bisimulation is a simulation whose converse is also a simulation. Processes with
initial states are bisimilar when there is a bisimulation between them that makes their
initial states bisimilar. Semantics making finer distinctions than trace equivalence have
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been provided for both CSP (BHR84) and CCS (Mil80). Such semantics are distinguished
from trace or linear time semantics under the rubric of branching-time semantics, with
bisimilarity being the finest such, at least for ordinary yes-no nondeterminism as opposed
e.g. to probabilistically governed choices.

Bisimilarity breaks the symmetry of time inherent not only in traditional automata
theory based on sets of strings but also in accounts of concurrency based on sets of
Mazurkiewicz traces and sets of pomsets—in general on sets of traces. It characterizes
branching time intensionally by making us write (a + b)c ∼= ac + bc expressing the bisim-
ilarity of (a + b)c and ac + bc and a(b + c) 6∼= ab + ac for the non-bisimilarity of a(b + c)
and ab+ ac when an extensional characterization would permit the conceptually simpler
(a + b)c = ac + bc and a(b + c) 6= ab + ac.

2.5. Event Structures

Our program at this point is to characterize both concurrency and branching time ex-
tensionally. We take as our basic framework for this program that of event structures
(NPW81; Win80; Win86; Win88a).

An event structure‡ (A,≤,#) consists of a partial order (A,≤)§ equipped with a
symmetric irreflexive binary relation # of conflict, satisfying the following condition.

Axiom ES . For all events a, b, c ∈ A, a#b and b ≤ c implies a#c.
A configuration of an event structure (A,≤,#) is a conflict-free downset x ⊂ A.¶

That is, given a ∈ x, if b ≤ a then b ∈ x (the notion of downset), and if a#b then b 6∈ x

(the meaning of conflict).
The set X of all configurations of an event structure, called a family of configurations,

can be understood as the states of an acyclic automaton realizing the event structure.
The initial state of this automaton is the empty set of states, which is vacuously conflict-
free and a downset and hence a configuration. Its transitions are the inclusions between
configurations, oriented to pass from the smaller state to the larger.

Event structures as such are unlabeled. They may be labeled with labels drawn from
an action alphabet Σ, exactly as with pomsets. A labeled event structure (A,≤,#, λ)
is an event structure together with a labeling function λ : A → Σ. As for pomsets,
labeling specifies for each event the action it performs. Many events may perform the
same action, e.g. while a communication channel may transmit any number of bits each
transmission is an instance of one of two actions T0 and T1 denoting transmission of
respectively 0 or 1.

Labels carry over to the family of configurations in a straightforward way. A transition
from x to y is labeled with the multiset of labels of the events in y−x (those events that

‡ Subsequently described as prime coherent event structures, to distinguish this basic class from larger
classes of event structures introduced later.

§ Note the absence of cardinality restrictions: A may be finite (even empty), countably infinite, or
uncountable.

¶ Configurations represent states. For uniformity we shall write states as lower-case x, y, z, . . . indepen-
dently of whether they take the form of vertices of a graph or configurations of an event structure.
We reserve upper case X for sets of states.
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happened during the passage from x to y). This multiset can be defined as the restriction
of λ to y − x.

Labels make it easy to distinguish a||b from ab + ba and a(b + c) from ab + ac. For
the former we take a||b to consist of two events labeled respectively a and b, and ab+ba
to consist of four events labeled respectively a, b, b, and a with the event order and with
every event of one branch of the choice in conflict with every event of the other. For the
latter we take a(b + c) to consist of three events labeled a, b, and c, with a preceding
both b and c, and with b and c in conflict, and we take ab+ac to consist of the evident
four-event event structure.

Now these distinctions are made by the questionable practice of breaking what is in-
tuitively a single event into multiple events, the copies of which are then kept track of
via the labels. The question then arises as to whether a more conservative accounting
of events is possible without having to duplicate an event which then needs to be kept
track of with labels. We answer this in the affirmative by accounting for both concur-
rency and branching time entirely with unlabeled event structures. As will become clear
in due course, Figure 1 shows that this is not possible with ordinary or dyadic event
structures, but becomes possible when further qualia besides 0 and 1 are added to time,
corresponding to the constructs before (may happen), during (is happening), after (has
happened), and instead of (won’t happen). The states themselves are those of initializa-
tion, transition, termination, and cancellation.

2.6. Nature of Prime Coherent Event Structures

Before embarking on this project it will help fix ideas to bide a while with the dyadic
case, and furthermore with the original prime coherent subcase.

The nature of prime coherent event structures is brought out by their following prop-
erties, leading up to the observation of Corollary 5 that prime coherent event structures
are extensional (distinct event structures have distinct interpretations).

Lemma 1. Every principal downset of an event structure is a configuration of that event
structure.

(A downset is principal when it contains its sup, equivalently when it contains an
element a such that the downset can be expressed as {b|b ≤ a}, written ↓a.)

Proof. For if not, that downset must contain a conflicting pair both below a. Two
applications of Axiom ES yield a#a, contradicting irreflexivity of #.

Corollary 2. a ≤ b and a#b are mutually exclusive. (For otherwise the principal downset
↓b would not be a configuration.)

Lemma 3. If a and b do not appear together in any configuration of an event structure
then a#b in that event structure.

Proof. If a and b do not appear together in any configuration then ↓a ∪ ↓b must not
be a configuration. But it is a downset and hence can only fail to be a configuration by
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containing two events in conflict. By Lemma 1 one must be in ↓a and the other in ↓b.
Two applications of Axiom ES then yield a#b.

Lemma 4. If a does not appear in any configuration of an event structure without b

then b ≤ a in that event structure.

Proof. By Lemma 1, ↓a is a configuration, which by hypothesis contains b, so b ≤ a.

Corollary 5. An event structure is uniquely determined by its family of configurations
(straightforward given Lemmas 3 and 4).

Lemma 6. The number of event structures on a given set having one or two events is
respectively one or four.

Proof. A singleton admits only one partial order and one irreflexive binary relation. A
doubleton admits three partial orders and two irreflexive symmetric binary relations for
a total of six, but the two of these in which the events are in conflict and the order is
linear are ruled out by Corollary 2. The four survivors are then seen by inspection to be
event structures.

The four two-event structures are succinctly characterized as those that omit no con-
figurations or one non-empty configuration. These are clearly nonisomorphic with the
exception of the two linearly ordered event structures, so up to isomorphism there are
only three event structures on two events.

2.7. Event Structures via Logic

Event structures have evolved with time and experience to successively larger classes,
most notably through the work of Glynn Winskel (Win80; Win82; Win86; Win88b).
A uniform framework from which to view this evolution casts an event structure as
a Boolean operation‖ whose satisfying assignments meet certain plausible restrictions.
One such restriction might insist on the all-zero assignment (the initial state) being
among the satisfying assignments. Another might require that every satisfying assignment
be reachable from the all-zero assignment via a monotone Hamming path through the
satisfying assignments, one that proceeds by changing one atom at a time from false to
true. (Prime coherent event structures meet both of these restrictions.) The evolution of
more general event structures can then be described simply as the gradual removal of
such restrictions.

In more detail, an event structure E on a set A of events is viewed as a Boolean
operation fE on A, namely a function of type 2A → 2, equivalently a set of sets of type
22A

. The elements of A are reinterpreted as atoms or propositional variables. Event a

is understood as an atomic proposition Pa expressing “a has happened.” We abbreviate
Pa to a and rely on context to disambiguate. The configurations of E then become the

‖ Boolean operations are used in preference to Boolean formulas because the former as restricted are in
one-one correspondence with event structures while with the latter the correspondence is many-one.
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satisfying assignments of fE , those assignments α : A → 2 of truth values to atoms such
that fE(α) = 1.

Prime coherent event structures, the class treated above, are translated as follows.
Each temporal precedence a ≤ b is rendered as the implication b → a between atoms (or
a → b between literals), namely if b has happened then a has happened. (The implication
arrow thus points backwards in time.) Each conflict a#b is expressed as the proposition
a ∧ b, or a → b, or b → a. And Axiom ES simply disappears, being absorbed into the
general Boolean framework as the application of transitivity to a → b and b → c.

We then define TE to be the least literal-implication theory on A containing the above
implications of E . To this end we define a literal-implication theory on A to be a
reflexively transitively closed set of implications P → Q between literals P,Q each of the
form a or a for some a ∈ A. We further require that such a theory also be closed under
modus tollens, meaning that if P → Q is in the theory then so is Q → P .

The associated Boolean operation fE holds (evaluates to 1) just where every implication
in TE holds, i.e. fE is the denotation of

∧
TE .

We say that a Boolean formula on A holds in an event structure E when it is a
consequence of the Boolean operation fE associated to E , that is, when it holds in every
assignment (of truth values to atoms of A) satisfying fE .

Any literal-implication theory of a prime coherent event structure must satisfy the
following three conditions. It may not contain any implication a → b from a negative
literal to a positive (equivalently disjunctions of positive literals) because these are fal-
sified by the empty (initial) configuration. It may not contain any implication a → a as
this expresses a#a which by Lemma 3 violates irreflexivity of #. And it may not contain
both implications a → b and b → a (equivalently a ≡ b cannot hold in E), by Lemma 4
and antisymmetry of ≤.

Theorem 7. Every literal implication theory satisfying the above three conditions arises
as the translation of some prime coherent event structure.

Proof. Given such a theory T on A, construct the event structure E on A for which
a ≤ b holds when b → a is in T and for which a#b holds when a → b is in T . Claim:
T = TE . This follows because for every a ∈ A, a → a and a → a must be present by
reflexivity, while a → a and a → a must be absent by two of the conditions. For all a 6= b

we only need consider all implications from signed a to signed b and no implications from
signed b to signed a since the latter set is completely determined from the former by
modus tollens. a → b is forbidden, and the conditions allow at most one of a → b, a → b

(equivalent to b → a), and a → b. That one will clearly be in TE if and only if it was in
T .

A useful formula not expressible with prime coherent event structures is b → (a ∨ c).
This asserts that b cannot happen until one of a or c has happened, e.g. the vending
machine will not produce a soft drink until either a dollar bill or four quarters are
inserted. Yet another is (a∧c) → b, which asserts that a and c are in conflict (cannot both
happen) until b happens, e.g. you can’t buy both the candy and the pen you want with
the dollar you have until you get a second dollar. This could be called either temporary
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conflict or deferred concurrency. Neither of these are expressible as a conjunction of literal
implications. In view of the evident utility of such constructs it is natural to look for ways
to broaden the definition of event structures to admit them.

In this view of the evolution of the class of event structures by removal of the less
natural or undesired restrictions, there is no clear-cut boundary for what counts as “nat-
ural.” This makes the inevitable limit that of no restrictions, i.e. any infinitary Boolean
operation may be allowed. This is the point of view taken in (GP93) and (vGP95), which
study event structures at this level of generality from the viewpoint of extensional Chu
spaces over a two-letter alphabet K = {0, 1}, a connection that is not the central point
of this paper but whose notation and concepts we shall borrow from.

Taking this viewpoint here, we may summarize the development thus far by charac-
terizing event structures on a set A of events as precisely the Boolean operations on A,
that is, entities of type 22A

. The automaton associated with such an event structure has
for its states the set X of satisfying assignments of that operation, and its multi-event
transitions or steps are all pairs (x, y) of states for which x ≤ y coordinatewise: each
event may stay in its present state, or pass from 0 to 1, but not from 1 to 0. Note that
the step relation is transitive for now, but this will change later on when we introduce

.
We make a point of distinguishing f : 2A → 2 from g : 2B → 2 for A 6= B, even when

f and g are both constantly true or both constantly false. Now 2A → 2 and 22A

are
isomorphic via the obvious pairing of f : 2A → 2 with (A, {x ∈ 2A | f(x) = 1}). We shall
abuse type and speak as though f and its matching (A,X) were identical. From now on
we treat event structures and (abstract) Boolean propositions as one and the same.

One benefit of this identification is simplification of concepts. One drawback that we
shall go into in more detail shortly is that the naming conventions of process algebra and
logic are not fully compatible: the constant 0 and the atom a denote different entities
in each. We deal with this by assuming the process algebra interpretation by default,
indicating any exceptions explicitly.

One way of presenting (A,X) is as an A×X matrix whose entry at (a, x) is the value
of a in state x. Thus the independent behavior a||b of two states a, b is presented as
the matrix a 0101

b 0011 while the sequence ab removes the 01 state to give a 011
b 001. (This matrix

viewpoint brings out the duality of events and states mentioned in the introduction better
than either the event structure or Boolean formula viewpoint.) Since the columns arise as
subsets of A, any two columns of such a matrix must be distinct (whence there can be at
most exponentially many more columns than rows); this however is the only restriction
on such matrices for the case of general Boolean operations.

We call two formulas A ,B isomorphic when there exists a bijection g : A → B,
understood as a 1-1 renaming of atoms, such that X = {y ◦ g | y ∈ Y }, that is, when
they have the same satisfying assignments modulo the renaming.

We conclude this section with a systematic enumeration of the types this paper is
primarily about, namely processes, events, states, and values.

At the top level are processes A ,B,C . In a more categorically oriented version of
this paper these would form a category furnished with structure via morphisms between
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processes. In this version processes are organized into a process algebra via the operations
treated in the next section.

The principal constituents of a process are its events a, b, c, forming a set A, and its
states x, y, z forming a set X. Thus far we have viewed states extensionally as sets of
events, making A the only primitive set with X ⊆ 2A. However they can also be viewed
intensionally as independent entities sibling to events, so that we now have two primitive
sets A and X. In this case we no longer have set membership defining the relationship
between events and states; instead we provide its intensional counterpart explicitly, as an
arbitrary binary relation or matrix R ⊆ A×X between A and X. Natural notations for
R(a, x) are a.x as inner product in a Hilbert space as mathematicians write it, or 〈a|x〉
as physicists write it, with the value however being not a complex number but a truth
value.

The extensional view is the special case of the intensional view with X ⊆ 2A and
R = ∈. In this paper we forego the appealing symmetry of the intensional view†† and
stick to the extensional view, whose benefit is that a process is just a pair (A,X) with
X ⊆ 2A instead of a triple (A,R, X) with R ⊆ A×X.

Implicit in the above are the values 0 and 1 taken on by the formulas a ∈ x and
R(a, x). As these values will later be joined by and ×, we make them more explicit
here, collecting them as the set K = {0, 1} of values. We omit the customary prefix
”truth” as these values are schizophrenic, having temporal significance when varying
down a column of R and propositional or truth significance when varying across a row.

Summarizing in reverse order, the types are values, events, states, processes, and process
operations.

Besides the above, we have also encountered labels a,b,c forming an alphabet Σ. How-
ever these only appear with labeled event structures, which we touch on only tangentially
in this paper. We also have logical operations, which play an important role in expressive-
ness, permitting every process to be named even when |K| = 4 as we shall show later,
but which are less natural for programming purposes than the process operations, the
topic of the next section.

2.8. Process Algebra

Process algebra (BK84; BW90; BPe00) provides a way of assembling complex processes
from simpler ones. This is in contrast to Amir Pnueli’s temporal logic (Pnu77), which
describes a single complex process from the perspective of a single neutral observer of
that process’ universe. This distinction has been described by Pnueli as respectively ex-
ogenous vs. endogenous specification, constituting the crucial element of temporal logic
that distinguishes it from dynamic logic (Pra76; HKT00), a similar modal logic of pro-
grams extending temporal logic with the ability to state properties of compositional or
algebraic programs.

Temporal logic’s neutral-observer viewpoint intrinsically entails an interleaving view

†† The extensional view can be symmetrized by forbidding repeated rows (“little chu” in the jargon of
Chu spaces (Bar91)), thus allowing events to be viewed as sets of states.
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of the progress of the universe. Process algebra restores compositionality of programs in
a way that works equally well for interleaving semantics and true concurrency, even when
both the observer and observed are distributed as catered for by orthocurrence. Process
algebra is a popular subject with a rich literature, many workshops, a comprehensive
handbook (BPe00), and many skeptics whose purposes are adequately served by the
interleaving viewpoint of concurrency as discussed in Section 1.3.

Before considering the operations for growing bigger processes from smaller, let us
consider the smallest processes, those without a plurality of events, of which there are six.
The two without any events are (in process algebra notation) 0 and •, having respectively
one and no states, corresponding respectively to the truth constants (zeroary operations)
1 and 0. (So without any events at all we already have a naming discrepancy between
the notations of process algebra and logic.)

The four processes with one event are, in logical notation, a, a, 1, and 0 (the latter
two as constant unary operations). Formula a holds only when event a is 1, and therefore
denotes the “stuck-at-one” process which starts in the state in which a has already
happened and stays there. Formula a is the counterpart for the process that stays in one
state in which a has not happened. Formula 1 is the unconstrained process, having both
possible states 0 and 1. Formula 0 is the inconsistent process, having no states.

Of the above four, process algebra notation only offers a name for the third, the
unconstrained process. When processes are named only up to isomorphism, the name 1
has the same denotation in process algebra and logic.‡‡ In this paper however we will
generally not consider processes as being defined only up to isomorphism. Instead we
name one-event processes by their one event, since when there are several events a, b, c

floating around we will want to keep track of which processes have which event. We
therefore call each such process by the name of its one event.

We then have a second naming discrepancy: logically a denotes the already-done pro-
cess, whereas process algebraically a denotes the unconstrained process.

We now define four basic process algebra connectives: concurrence A ||B, sequence A B,
choice A + B, and orthocurrence A ⊗B. For all four definitions we assume A = (A,X)
and B = (B, Y ) where X ⊆ 2A and Y ⊆ 2B . Given our identification of event structures
with Boolean operations, this makes process algebra connectives also logical connectives,
though not necessarily via the most obvious connections—A + B is not A ∨ B for
example, concurrent process algebra does not enjoy the logical simplicity of sequential
dynamic logic (Pra76).

We define A ∧B as (A∪B, {z∈2A∪B | z \A ∈ X ∧ z \B ∈ Y }), where z \A denotes the
restriction of z (whose domain is A∪B) to the subdomain A. One extreme of this is when
A and B are disjoint, in which case A ∧B is isomorphic to (A+B,X×Y ), understanding
(x, y)(a) = x(a) and (x, y)(b) = y(b), which is coproduct in the category of extensional
Chu spaces over 2. The other extreme is when A = B, for which A ∧ B simplifies
to (A,X ∩ Y ), ordinary conjunction as intersection of state sets. Hence conjunction is

‡‡ Well, almost: the latter requires the additional information that this is the unary constant 1 as opposed
to some other arity. This process incidentally is the tensor unit when these processes are organized
into a ∗-autonomous category (Bar79; GP93) to form a model of linear logic (Gir87).
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idempotent: A ∧ A = A . Similarly we define A ∨ B as (A ∪ B, {z∈2A∪B | z \A ∈
X ∨ z \B ∈ Y }), similarly idempotent. Both ∧ and ∨ are clearly also commutative, and
almost as clearly associative.

For occasional use in this paper we also define “external” implication A ` B, A entails
B, as simply X ⊆ Y . This only makes sense when A = B but we shall only need it for
this case in what follows. (There is more than one internal implication, one being A−◦B,
definable in terms of orthocurrence and perp as (A ⊗ B⊥)⊥. It is not needed for this
paper however.)

Concurrence A ||B is defined as A ∧ B. This makes A ||B the joint behavior of A

and B: the events of both are performed subject to the constraints of each. Concurrence
inherits the commutativity, associativity, and idempotence of ∧; in particular a||a = a, a
corollary of this being an algebra of unlabeled events. We shall discuss this disconcerting
equation after treating the other operations.

In the case A = a, B = b (viewing a and b as processes, not formulas, the practice we
follow for process algebra) there are no constraints on a or b separately and hence a||b is
equally unconstrained, i.e. is the constantly true binary operation.

Sequence A B is defined as A ∧B ∧ (B = 0 ∨XA ). Here B = 0 denotes the process
(B, {0B}) having just the one all-zero state, expressible as

∧
i bi taken over all atoms

bi ∈ B. However XA is a more delicate notion, which we define for this dyadic case as
(A, {x ∈ X | ∀z ∈ X[x ≤ z → x = z]}). So XA holds at just those states at which
A holds and for which there is no greater (later) state at which A holds; these are
considered the final states of A . B = 0 ∨XA holds at those states where either B has
not yet started or A has finished. The meaning of A B is therefore A ||B subject to the
additional constraint that B remain in its initial state until A has entered a final state.

Whereas B = 0 is a local or first-order notion of initiality, XA is a global or second-
order notion of finality necessitated by the limited scope of dyadic logic, K = {0, 1}. The
cancel state × introduced later will permit a simpler and more robust first-order notion
of termination.

When A = a and B = b the corresponding formula simplifies to 1 ∧ 1 ∧ (b ∨ a) (1
denoting true when used in formulas), or b → a. This suggests the logical interpretation
of sequence A B as a new internal implication B → A .

Just as a||a = a we also have aa = a, unlike the situation with the string aa which
in the present context is understood as two consecutive actions constituting a labeled
event structure with two distinct events. Viewed in this light, the notational conventions
of automata theory make the letters of a regular expression such as (a(a + b))∗ actions
rather than events; a finite regular expression understood as a labeled event structure
will always have finitely many actions, but in general infinitely many action instances or
events.

Unlike concurrence, the above definition of sequence makes it not idempotent but only
transitive (A A ` A ), witness A = ab which allows a = 1, b = 0 unlike abab which forces
a = b. It can be made idempotent by replacing B = 0 by B−A = 0 in the definition,
but this destroys associativity: a(ba) is ab while a(ba) is a ≡ b. We will defer the further
pursuit of this issue until we add× to K, permitting a better definition of XA . Sequence
is of course not commutative.
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Normally concurrence and sequence are defined in terms of the disjoint union or marked
sum of their event sets. This is the appropriate combination in the case of labeled event
structures where the labels are the primary identifying features and the identities of the
individual events fade into the background. The present approach is therefore something
of a novelty, especially the resulting idempotence or near-idempotence of these operators,
which are customarily thought of as analogous more to addition than to union. The
difference is in our focus on events a, b instead of actions a,b. Whereas multiple references
to an event a all denote the same event, multiple references to an action a are understood
to denote distinct instances of that action, i.e. distinct events. Thus whereas aa denotes
the single event a preceding itself (vacuous by reflexivity of precedence), aa denotes two
instances of action a one preceding the other. This paper restricts attention to events.

Choice A + B is defined as

A ∪B = 0 ∨ (A 6= 0 ∧ B−A = 0) ∨ (B 6= 0 ∧ A−B = 0).

Here A = 0 denotes (A, {0A}), the process having just the one state 0A in which all events
are zero, while A 6= 0 denotes (A,X − {0A}), A stripped of its zero state if any, “A

under way.” The states of A + B can therefore be partitioned into three disjoint blocks:
the initial state in which all events of A ∪ B are zero; those states whose restriction to
A is a nonzero state of A and for which those events of B not in A are all zero; and
likewise with A and B interchanged. The role of the initial state is to permit A + B to
remain undecided prior to taking its turn. Once it is A + B’s turn, one of A or B must
be selected and all events absent from the selected process cannot occur.

Substituting a for A and b for B in this definition of choice yields (a∧b)∨(a∧b)∨(b∧a),
that is, ¬(a ∧ b), expressing conflict a#b.

For A,B disjoint and at least one of A or B having the all-zero state, A +B coincides
with the choice operation A t B defined in (GP93; Gup94), namely as a 2 × 2 block
matrix whose two diagonal blocks are A and B and whose off-diagonal blocks are all
zero.

At the other extreme, A = B, we have A + A = A + 0 (where 0 is the process with
no events and one state), and if A has the zero state we have A + A = A . So choice
is idempotent up to presence of the zero state. By the symmetry of the definition it is
commutative. To see that it is associative we may describe A + B + C as having for its
nonzero states the nonzero states of exactly one of the three arguments, with all events
not in that argument held at zero.

Orthocurrence A ⊗B is (A×B, {z∈KA×B | z(λ,∀) ∈ X ∧z(∀, λ) ∈ Y }), where z(λ,∀)
denotes λa.z(a, b) with b universally quantified in the containing proposition, and dually
for z(∀, λ). This makes z(λ,∀) and z(∀, λ) respectively the columns and rows of the A×B

matrix z, making z in effect a “bilinear” form on A×B, analogous to Halmos’ approach
to defining tensor product of vector spaces (Hal74, §25). The states of A ⊗ B may be
thought of as all A×B crosswords that can be formed by taking the states of A as the
“down” dictionary and the states of B as the “across” dictionary.

For A = a, B = b, orthocurrence gives an unconstrained process consisting of the single
event (a, b). Any unconstrained one-event process acts as the unit for orthocurrence, and
as such corresponds to the linear logic constant 1.



Vaughan R. Pratt Stanford University 18

Orthocurrence is a versatile operation which extends smoothly to ternary (A ⊗B⊗C )
and higher arities as well to continuous (real-valued) time (CCMP91). It is associative
because the states of A ⊗B⊗ C , viewed as “bricks,” are constrained symmetrically by
each of X, Y , and Z along the respective axis. It is symmetric in the sense of being
commutative up to isomorphism. It is not at all idempotent however.

Orthocurrence can be understood as either interaction A ⊗B or observation A−◦B =
(A ⊗B⊥)⊥ where B⊥ is the transpose or dual of B and −◦ is the previously mentioned
internal implication (Pra01). As interaction it describes the collision of systems of parti-
cles or events, while as observation it describes the dependence of view on viewpoint: the
state z(a, λ) of B in A ⊗B (or point or event z(a, λ) of B in A−◦B) as seen from A

depends on which point a of A it is seen from. Whereas interaction is an explicitly sym-
metric notion, observation is an ostensibly asymmetric notion with an implicit symmetry
corollary to the linear logic isomorphism A−◦B ∼= B⊥−◦A⊥. Although orthocurrence
is not customarily regarded as one of the basic process algebra operations, the author
has maintained for many years (Pra85; Pra86; CCMP91) that it should be, long before
realizing (GP93) that this created a compelling link between process algebra and linear
logic.

The operations of concurrence and orthocurrence make no assumptions about K other
than that it is a set. However orthocurrence differs from concurrence (as defined in this
paper) in that it makes no structural difference whether the two arguments are disjoint.
Sequence depends on state 0 being viewed as initial and state 1 as final, and also involves
a second-order notion of finality for process states. Choice depends only on state 0 being
initial.

The definitions are for the unlabeled case. We have paid little attention to the labeled
case because labeling is a simple process with no impact at all on the portion of process
algebra treated here. Labels for the events of processes built with concurrence, sequence,
and choice are straightforward because events retain their identity between the inputs
and output of those operations: the labels on the events of the result are simply those on
the events of the inputs. For orthocurrence, labeling is defined as λ(a, b) = (λ(a), λ(b)),
namely the label at a pair of events is the pair consisting of their respective labels as
provided in the processes input to orthocurrence.

We have not suggested any particular choice of iterative or recursive construct because
the topic even of least fixed points, let alone greatest, optimal, etc., of terms built up from
processes understood as arbitrary Boolean operations using the above process algebra
connectives is sufficiently substantial as to warrant its own paper. Here the reader will
need to settle for the account of a∗, (ab)∗, and a + b∗ in Section 3.4 to get at least some
idea of what an infinitely generated process should look like, and how it is affected by
the additional states and×.

The original Chu semantics took the point of view when combining processes that
they had disjoint sets of events, or more precisely that events from distinct processes
were unique entities bearing no relationship to each other. The recognition here that
processes may share events permits a straightforward account of terms such as ba + ca

and ab + ac. Such sharing is certainly expressible categorically with pushouts in place of
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coproducts, but ordinary union and intersection achieve the same end with less fuss and
greater familiarity to most.

These definitions give rise to the semantics shown in Table 1 below for particular
formulas in atoms a, b, c, expressed as a matrix whose rows are the atoms and whose
columns are the permitted states (the same notation as used for Chu spaces).

Note that this process algebra is an algebra of unlabeled event structures, in the sense
that its variables range not over actions a but events a. Thus in expressions such as
ab + ac and ab + ba containing more than one occurrence of a variable, all instances of
that variable refer not just to the same action but to the same event.

The atomic process a has two states, 0 for not done and 1 for done. The states of a||b
are all subsets of {a, b}. ab forbids the state 01 in which b happened without a, while
a+b forbids the state 11 in which both a and b happened. The set of states of a||(b+c) is
(isomorphic to) the cartesian product of the state sets of a and b + c, six states. (b + c)a
forbids the state 100 of a||(b + c) in which a has happened and neither of b or c have
happened; this is equivalent to ba + ca and not at all controversial. a(b + c) similarly
forbids 010 and 001 and similarly is equivalent to ab + ac, which is consistent with trace
semantics but not with bisimilarity. And ab + ba is equivalent to a||b, consistent with
interleaving concurrency but not with true concurrency.

a a 01 ba + ca
a 00101
b 01100
c 00011

a||b a 0101
b 0011 a(b + c) a 0111

b 0010
c 0001

ab a 011
b 001 ab + ac

a 0111
b 0010
c 0001

a + b a 010
b 001 ab + ba a 0101

b 0011

a||(b + c) a 010101
b 001100
c 000011

ab⊗ cd
ac 011111
ad 000111
bc 001011
bd 000001

(b + c)a a 00101
b 01100
c 00011

(a + b)⊗ (c + d)
ac 0000101
ad 0001010
bc 0010010
bd 0100001

Table 1. 2-valued process algebra

The orthocurrence ab⊗ cd describes the flow of ab through cd. Each of a and b passes
each of c and d, and these four visits constitute the events of ab⊗ cd, respectively (a, c),
(a, d), (b, c), and (b, d). If a and b are trains and c and d stations then this describes two
trains moving along a track between two stations. As can be seen from the states, train
a arrives at station c first, then a arrives at d concurrently with b visiting c, and finally
b arrives at d.

The orthocurrence (a + b)⊗ (c + d) realizes the analogous process with choice in place
of sequence. If a and b are pigeons and c and d are pigeonholes, then a + b represents
choosing a pigeon (chosen at each hole) while c + d represents the choice of hole (chosen
by each pigeon). With these constraints we can either put pigeon a in hole c and pigeon
b in hole d, or a in d and b in c, as reflected in the two final states.

A variant of the one-pigeon-one-hole discipline allows multiple pigeons per hole while
not permitting the same pigeon in two holes simultaneously. With two pigeons a, b and
two holes c, d the only way this can happen is as (a||b)⊗ (c + d), which works out to be
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ac 000010011
ad 000101100
bc 001000101
bd 010001010

. The final states are the last four. Pigeon a has to be in either hole c or hole

d, and likewise for pigeon b, a total of four possibilities.
We have tacitly capitalized on two-valued logic here. While the final states of (a||b)⊗

(c + d) are as claimed, they are constructed from states of a||b that are not always final
(but c + d is kosher). The problem arises in any hole that does not receive two pigeons.
The one final state of a||b has both pigeons, which is fine for a hole receiving two pigeons
but not one receiving one or no pigeons. We could try to fix this by replacing a||b by
0 + a + b + (a||b) so as to allow each hole to receive anywhere from 0 to two pigeons, but
when we do so we find that nothing changes. K = {0, 1} is too small to appreciate these
fine distinctions, allowing us to be sloppy without penalty. The introduction of × later
on will oblige us to count pigeons more carefully.

Three pigeons a, b, c any two of which can occupy the same hole can be described as
(a||b) + (b||c) + (c||a) = a 0101010

b 0011001
c 0000111

. But we still can’t put a pigeon in two holes d, e at the

same time, so we have ((a||b) + (b||c) + (c||a))⊗ (d + e) =
ad 0000001000000001111000111
ae 0000010000011110000111000
bd 0000100001100010001011001
be 0001000110001000100100110
cd 0010000010100100010101010
ce 0100000101010001000010101

.

This process has six final states (the six at the right each with three 1’s), corresponding
to the three choices of lone pigeon and the two holes it can go in.

Again we have the sloppiness permitted by K = {0, 1} that (a||b) + (b||c) + (c||a) is
indistinguishable from a + b + c + (a||b) + (b||c) + (c||a). Again the appearance of× later
on will oblige greater care in counting pigeons.

2.9. Higher Dimensional Automata

An ordinary state automaton or transition system can be viewed as an edge-labeled
graph. Geometrically the vertices and edges are both cells, of dimension respectively 0
and 1, with the vertices supplying the edges with boundaries, two per edge except in the
case of self-loops.

A higher dimensional automaton (Pra91) or HDA is an automaton that admits
cells of higher dimension, having as their boundaries cells of lower dimension representing
the immediately preceding or following more quiescent states. Related prior art includes
Papadimitriou’s geometric treatment of concurrency control (Pap86), van Glabbeek and
Vaandrager’s ST-bisimulation (GV87), and the deterministic asynchronous automata of
Shields (Shi85). Since its introduction higher dimensional automata have been treated
by a number of authors (vG91; GJ92; GC93; Gou93; Gun94; Gou95b; Gou95a; Gou96a;
Gou96b; SC96; BJ96; Tak96; SC96; FGR98; Pra00) and have led to two conferences and
a special issue of this journal (Gou00).

The basic example of an HDA is the representation of independence a||b as a solid
square. The boundary of this square represents the sequential or interleaving interpreta-
tion of a||b, equivalent to ab+ba, while the interior represents the temporally overlapping
or independent or concurrent occurrences of a and b.

More generally, a cubic cell of dimension n expresses the simultaneous occurrence of
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n events, and its boundaries, as cubes of dimension less than n, represent simultaneous
occurrence of some of those events with the remaining events each either not yet started
or completed.

In full generality a higher dimensional automaton is a cubical complex, namely a set of
cubes permitted to share boundaries, creating the possibilities of sequencing, branching,
rejoining, and cycles.† The case of all cells of dimension at most one is just that of
ordinary graphs (with multiple edges permitted between any two vertices). Each cube
may be finite- or infinite-dimensional, and there may be infinitely many of them.

The usual notion of transition as an edge of a graph now gives way to that of a
transition as any cell of nonzero dimension, with the dimension indicating the number of
events participating jointly in that transition. A transition t may be said to run between
its boundaries, the precise definition of which we give only for acyclic HDAs, which we
now define.

2.10. Acyclic HDAs and Triadic Event Structures

Higher dimensional automata seem at first sight orthogonal to event structures. Indeed at
the talk where the author first presented HDAs (Pra91), Boris Trakhtenbrot asked from
the front row at question time what relationship these higher dimensional automata had
to event structures‡, for which we had no good answer. More recently we have described
(Pra00) what we feel to be the correct connection, via acyclic HDAs and triadic event
structures, which the present paper develops further. We sketch the essentials of this
connection before proceeding to the main results of this paper.

In outline the reconciliation of HDAs and event structures on A is accomplished by
restricting the former while generalizing the latter. HDAs are restricted to their acyclic
case by defining them not as a set of cubes allowing sharing of cells but rather as a subset
of a single cube 3A. And event structures are generalized from two-valued to three-valued
states, dyadic to triadic, by expanding the set 2 = {0, 1} of possible values for membership
of events in states to 3 = {0, , 1}. The new state is understood as transition, making
our logical formulation three-valued, with the “edge” in what electrical engineers call
edge-triggered logic connecting the “levels” 0 and 1.

An acyclic HDA is a pair A = (A,X) where A is a set of events and X is a subset
of 3A whose elements are understood as the states of A . In particular the cube 3A itself
is the acyclic HDA (A, 3A) on A realizing the independent or unrestricted occurrence of
the events of A. Each A-tuple (configuration, state) x of 3A is a cell whose dimension is
the number of s in x and whose boundaries are all tuples in 3A obtainable from x by
setting one or more s in x to either 0 or 1. What makes 3A acyclic is the linear ordering
0 < < 1 on 3, which lifts to the natural partial ordering on 3A entirely analogously to
that on 2A.

† A very elegant characterization beyond the scope of this paper of a cubical complex is as a functor
F : Bip → Set where Bip is the category of bipointed sets or 0-0 algebras, algebras with two constants
and no nonzeroary operations. The category of cubical complexes and their homomorphisms can then
be taken to be the functor category SetBip, a topos by virtue of being a presheaf category.

‡ More precisely, to event spaces, a variant of event structures we had recently introduced.
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A triadic event structure is defined exactly as for an acyclic HDA. Henceforth we use
the terms interchangeably, preferring the latter when viewing the process geometrically.

The event a as the proposition “a has occurred” now has three truth values. If a has
not yet started the truth value is 0. If a is ongoing or in transition the truth value is .
And if a has finished its value becomes 1.

The removal of states from 3A may be understood as furnishing 3A with a certain
structure, namely that structure which is disrespected by precisely the removed states.
This is the view of a state as a morphism from A to 3 respecting whatever structure is
imputed to A by the omission of certain states. While in many cases such structure may
be independently characterized in more conventional ways, e.g. with ≤ and # as with
prime coherent event structures, this subsetting or “sculpture” approach to specifying
structure has three important benefits: simplicity, generality, and categorical algebra.
This last arises by formulating acyclic HDAs as triadic Chu spaces, inheriting their
notion of morphism f : (A,X) → (B, Y ) as a function f : A → B that is continuous in
the sense that for all y ∈ Y , y ◦ f ∈ X (−◦ f being the inverse-image function f−1). For
a more detailed account of this perspective visit http://chu.stanford.edu/.

Triadic event structures make it very simple to distinguish a||b from atomic mutual
exclusion ab + ba. The difference is that only the former admits the state (a = ,
b = ). In all other respects they are the same.

Although this distinction is a central benefit of the intermediate state, there also exist
other phenomena not expressible with two states that become expressible with three, for
example asymmetric conflict and numeric semaphores.

Asymmetric conflict. Asymmetric conflict is the condition that if a has happened then
b cannot happen. Two-valued logic admits only the interpretation that the state
(a = , b = ) is disallowed, which automatically makes this condition symmetric.
However three-valued logic admits the meaning that the state 1 is disallowed. That is,
the actual occurrence of b (b = as opposed to its completion b = 1) is ruled out by the
completion of a. If b happens first taking us to 01, a can still happen afterwards via 1
then 11, a route that avoids the forbidden 1 .

Strong asymmetric conflict. This is asymmetric conflict with the additional condition
of mutual exclusion, i.e. state is proscribed. This begins to look like sequential com-
position ba, but differs from it in that a without b is permitted. In fact strong asymmetric
conflict is expressible in basic process algebra as a + ba and so is not needed as a primi-
tive, unlike its weaker cousin. Whereas dyadic event structures identify all three of a+ba,
ab + ba, and a||b, triadic event structures distinguish all three.

Numeric Semaphores. When n processes are competing for m resources, for example
three children taking turns riding two ponies, it is natural to regulate the processes
with a semaphore initialized to m. Each process obtains one of the resources from the
pool by decrementing the semaphore, and returns it to the pool by incrementing it. The
requirement that the semaphore remain nonnegative at all times limits allocation to the
available resources.

This system is representable with triadic event structures by the requirement that the
number of ’s (events in transition) in a state be at most m, or from the HDA perspective
that dimension not exceed m. The 3-children-2-ponies example has the three events of
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each child taking a turn riding a pony. There are a total of 27 possible configurations,
and the limit of two ponies rules out just one of these, the one in which all three children
are in the intermediate state of riding a pony. Geometrically we have the surface of a
cube, whose dimension is the number of ponies. For want of a pony the interior is lost.
We may write this process in 3-2 logic as ¬(â∧ b̂∧ ĉ). Pushing the negation down expands
this to a ∨ a ∨ b ∨ b ∨ c ∨ c expressing that the process must confine its activities to the
six faces of the cube.

No change is needed to the definitions of the four process algebra operations in order
to accommodate this new intermediate state, since only sequence and choice assume
anything about K, and they look only for initial and final states; is neither. However the
insertion of that additional state permits a reasonable notion of “step” of a computation
to be defined as already discussed. And it considerably increases the number of process
states for multi-event processes, illustrated in Table 2 with the same examples as before.

a a 0 2 ba + ca
a 000 100 1
b 0 1110000
c 00000 111

a||b a 0 10 10 1
b 000 111 a(b + c) a 0 11111

b 000 100
c 00000 1

ab a 0 111
b 000 1 ab + ac

a 0 11111
b 000 100
c 00000 1

a + b a 0 100
b 000 1 ab + ba a 0 1010 1

b 000 111

a||(b + c) a 0 10 10 10 10 1
b 000 111000000
c 000000000 111

ab⊗ cd
ac 0 11111111111
ad 00000 11111
bc 000 10 10 111
bd 00000000000 1

(b + c)a a 000 100 1
b 0 1110000
c 00000 111

(a + b)⊗ (c + d)
ac 0000000 10000 11
ad 00000 100 110000
bc 000 10000 1 10000
bd 0 10000000000 1 1

Table 2. 3-valued semantics of concurrency

The transitional state distinguishes a||b from ab+ba according respectively to whether
or not state is present. We still have a(b + c) = ab + ac however.

The thirteen states of ab⊗ cd constitute the thirteen elements of Allen’s basic interval
algebra (All84; Pra00). And the states 0 0 and 00 of (a+b)⊗ (c+d) represent both
pigeons in the process of simultaneously entering their respective holes.

2.11. Step and Run

Triadic event structures permit a notion of computation that is both richer and more
refined than for their dyadic counterparts. We define a step to be a pair (x, y) of distinct
elements of 3A (not necessarily in X) such that every coordinate of (x, y) is one of 0, 0,
0, , , , , 1, or 1, 1, i.e. equal or adjacent in Figure 1(b). (Thus (00, 0 ), (00, ),
( , 11), (0 , 01), and (0 , 1) are all steps, but not (0 , 0 ), (0 , 00), or (00, 01).) The
step graph of (A,X) is the graph with vertex set X and edge set all steps (x, y) with
x, y ∈ X. A run of an acyclic HDA (A,X) is a path in its step graph.

The example steps (00, ) and (0 , 1) suggest the following notions illustrating the
richness possible with triadic event structure computations. A step (x, z) (and hence any
run containing that step) bypasses a state y when (x, y) and (y, z) are both steps. A run
synchronizes events a and b when a ≡ b at every state of the run; such a synchronizing
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run thus bypasses all states in which a and b have “drifted out of synch.” Event a segues

into event b in a run when that run includes at least one state with a = , b = 0 and
another with a = 1, b = but bypasses all states in which a = 1, b = 0. Seguing can be
thought of as a staggered form of synchronization: the termination of a is synchronized
with the starting of b.

Disallowing (0, 1) as a step makes concurrent computational complexity a meaningful
notion for triadic event structures. In the dyadic case the transitions were just inclu-
sions and hence closed under composition, in which case only sequential computational
complexity makes sense, where one counts the total number of events performed without
acknowledging the performance benefit of concurrency. (One could allow credit for inde-
pendence of participating events, but what is the right notion of independence here, and
how should partial independence be weighted?) In the triadic case steps are in general
not closed under composition (bypassing provides only “local” composition) and hence
more than one step may be needed to accomplish a given run. In particular ab takes
at least three steps: a starts, then b starts (with a possible step in between in which a

stops before b starts), and finally b stops; in general a1a2 . . . an takes n + 1 steps when
all intermediate quiescent states are bypassed and 2n steps when they aren’t. However
a1||a2|| . . . ||an can be accomplished in two steps, start and stop, provided they all stay
in synch, though it can also be as slow as a1a2 . . . an when there is no synchronization
at all (the run confines itself to the edges of 3A thereby losing the performance benefit
of the higher dimensional cells.)

These notions of step and run can be described very efficiently for all four atomic
automata in Figure 1. Treat all of them as reflexive graphs whose non-identity edges are
drawn explicitly, oriented to point upwards, and whose identity edges are left undrawn
as understood. Do not however view these figures as the Hasse diagram of a poset, i.e.
do not take transitive closure. This is unavoidable for 1(a) and 1(c) because there are
no paths of length 2 needed to violate transitivity and so they are automatically Hasse
diagrams, but for 1(b) and 1(d) it takes two steps to get from 0 to 1.

We can in this way succinctly define the step graph on A to be the irreflexive hull of the
product graph formed by multiplying A copies of the reflexive graph K, that is, KA less
the identity steps, which we disallowed only to avoid meaninglessly long runs. Whereas
the step graphs produced in this way from the graphs in 1(a) and 1(c) are transitive
(since the product of transitive graphs is transitive), those from 1(b) and 1(d) are not
transitive and contain shortest-paths of length up to 2|A|.

A run is then a path in the step graph KA, and a run of a process is a maximal path
in X understood now as the intersection of the step graph with the states of the process.
The advantage of this viewpoint is its independence of the details of K, which can be
added to as needed to accommodate notions of behavior beyond the scope of the present
paper such as exceptions and aborting.

3. Results

In this section we state and prove two elementary results about triadic event structures
or acyclic HDAs, concerning respectively the necessity of three values for distinguishing
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concurrent from interleaving behavior (their sufficiency being implicit in our discussion
of their use), and the basis problem for a concrete language of the associated three-valued
logic. We then reassign the transitional state to a different role, that of cancellation, as a
semantics for branching time. We conclude with a 4-valued logic combining concurrency
and branching time, having as its four values before, during, after, and cancel, coded as
respectively 0, , 1, and×.

3.1. Necessity of Three-valued Event Structures

The above connection between triadic event structures and acyclic HDAs (Pra00) demon-
strates the sufficiency of three values, leaving open whether there might be some other
approach that did not require leaving two-valued event structures. We felt intuitively
that the passage to three values was not capricious but necessary, but made no attempt
to bring that intuition closer to the surface. Here we give a precise sense in which this
passage is necessary.

Although a single bit can’t express much, sufficiently many bits can express any picture,
concept, or fact that can be found in cyberspace or on a hard drive. Since any bit string
of length 2n can be expressed as the truth table of a Boolean formula in n atoms, any
negative result about the expressive power of Boolean formulas must necessarily depend
on assumptions about how the formulas are used. And if some obstacle is overcome by
passing from two values to three, those assumptions must include accounting carefully
for every bit or it will be possible to refute the result by allowing two bits (binary digits)
to simulate a trit (ternary digit).

We make the following assumptions. First, we assume that each event is associated to
a single atom.

This assumption is popularly violated by the encoding of a “long” event a as a pair of
“short” events, namely the start and end of a, which admits the possibility that a has
started but not yet ended. To avoid the opposite possibility one adds the restriction that
if a has ended then it must have (previously) started. This eliminates one of the four
assignments or states possible for two atoms, which boils this encoding down to exactly
the three-valued case.

Three-valued logic can thus be understood as a two-bit start-end encoding of events
in which one of the four configurations of two bits is disallowed. Viewing this situation
as three values for one atom instead of two values for each of two atoms has several
benefits. It simplifies language by halving the number of Boolean atoms. It simplifies
logic by replacing the global axiom start-precedes-end with a cardinality adjustment to
the set of truth values. And it exposes the underlying geometry of concurrency by turning
disagreement of start and end into dimension of state: dimension 0 for agreement (with
before the event has neither started nor ended while with after the event has both started
and ended), dimension 1 for disagreement (with during the event has started but not
ended).

The complete independence of a‖b makes it a concurrent activity. The implicit mutual
exclusion of ab + ba is naturally understood as a choice followed by sequential behavior.
Event structures would not appear able to draw this distinction.
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However the one-atom-one-event assumption has a loophole: if we can’t duplicate
atoms, let’s duplicate the events themselves. Treat the events in the ab choice as be-
ing distinct from those in the ba choice and call the latter b′a′ to make this distinction
explicit. Then ab + b′a′ contains four events while its automaton contains five states, {},
{a}, {a, b}, {a′}, and {a′, b′}.

A drawback of this approach to distinguishing the concurrent behavior of a‖b from the
interleaving behavior of ab+ ba is that labeling now becomes necessary if any connection
between a and a′ is to be made. Otherwise the claimed distinction is really between a‖b
and ab + cd, a distinction not between concurrency and interleaving but simply between
activities performing different tasks.

But labeling used in this way conflicts with the use of labeling to indicate when two
unambiguously distinct events perform the same action. For example aa consists of two
consecutive occurrences of the action a, whereas the two appearances of a in ab + ba are
of the same occurrence in different temporal relationships to b. The labeling mechanism
should be reserved for truly distinct occurrences of the same action.

Another drawback is that the automaton cannot forget the order in which ab or ba was
made. Ideally there would be a state {a, b} reached by performing a and b sequentially in
either order and then forgetting the order as being immaterial. Treating as distinct the
events associated with each order necessarily creates a permanent record of the choice
because the two branches of the choice then arrive at distinct states.

With these concerns in mind we make a second assumption, that the distinction be-
tween interleaving and concurrency already arises for the unlabeled case of event struc-
tures. With this assumption we can no longer meaningfully clone an event of an event
structure as above.

The obvious correspondences famously confuse a‖b with ab + ba. This however leaves
open the possibility that event structures as a two-valued logic of event occurrences have
some other interpretation that makes the desired distinction. Our theorem is the stronger
result that concurrency-interleaving confusion must occur no matter how event structures
are interpreted, subject only to the above two assumptions, that events have only two
values, and that identity across choices is maintained extensionally at the event level (as
opposed to intensionally with the aid of labels).

The first result of this paper comes in two parts, for prime coherent event structures
and for general event structures.

Theorem 8. Prime coherent event structures cannot distinguish interleaving from con-
current behavior.

Proof. It suffices to consider ab + ba and a||b themselves. Both evidently call for sym-
metric event structures, but there are only two such on two events, independence (no
forbidden configurations) and conflict ({a, b} forbidden). But we can hardly say a and b

are performed concurrently if one of them does not happen, and in any event conflict is
assigned a separate meaning. This leaves independence as the only possibility. It can serve
to denote either concurrent behavior or interleaving or both, but it cannot distinguish
the two notions.
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Now event structures are of limited expressive power compared to general Boolean
logic. The question then arises as to whether the latter has sufficient additional room to
permit the concurrent behavior a‖b to be represented by some formula that is available
by virtue of representing no interleaving behavior.

Here a reasonable candidate presents itself, namely a ≡ b, which was unavailable
with prime coherent event structures. This describes so-called step concurrency in which
concurrent events occur synchronously, starting and ending together. (This is a different
notion of step from the 0-to- , -to-1 notion of step used in this paper since does not
enter into step concurrency.) We now must confront what we expect of a‖b. If we are
satisfied with step concurrency then since logical formulas cannot confuse synchronized
activity with interleaving activity, it follows that concurrent activity cannot be confused
with interleaving either.

But if a‖b is understood as permitting a to precede b, meaning that there can be a
state in which a has happened and b has not, then it must be distinct from a ≡ b, as the
latter insists on simultaneity, allowing only the state in which neither are done and the
state in which both are done.

Without making any commitment to one interpretation or another, we can nevertheless
ask whether it is possible to distinguish between the interleaving behavior ab+ba (atomic
mutual exclusion), a ≡ b (synchronization), and a||b (independence). We show here that
there are not enough dyadic event structures to draw all three distinctions: one of them
must be either omitted or identified with one of the other two.

Theorem 9. Dyadic event structures cannot distinguish between all three of interleav-
ing, synchronous, and independent behavior.

Proof. As before we take as our counterexample the case of two events where we
wish to draw these distinctions. We have already argued that concurrent behavior must
accept the configuration a = b = 1 in order that both events happen. Dual reasoning
forces acceptance of a = b = 0, since without that configuration one of a or b cannot
happen during the behavior because “happening” entails passing from state 0 to state
1. This leaves only two symmetric Boolean operations, true and a ≡ b, not enough for a
three-way distinction.

Synchronous behavior should of course be associated with a ≡ b, and the interleaving
behavior ab+ba clearly should not. We have the choice of identifying independent behav-
ior with either synchronous behavior or interleaving behavior, but there are not enough
event structures to keep all three separate. If it is acceptable to identify concurrent with
synchronized behavior then two-valued logic can satisfactorily realize ‖ as ≡. If not then
two values are not enough, i.e. three values are necessary, and we have the necessary
justification for the 3-2 logic of concurrency.

3.2. A Basis for 3-2 Logic

The passage from two logical values to three is invariably assumed to apply to both
the inputs and outputs of logical operations. This follows a long tradition of simplicity
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through homogeneity: n-ary mathematical operations on a set K are customarily taken
to be of type Kn → K, even for such operations as division whose type would be more
appropriately K ×K 6=0 → K.

For three-valued logic this tradition suggests taking the appropriate abstract Boolean
formulas to be some if not all of the A-ary operations on 3, i.e. functions 3A → 3. And
indeed this has been the standard practice in all explorations of three-valued logic we
are aware of, with the semantics of a binary operation such as a → b being given as a
3× 3 truth table with entries drawn from 3.

However natural this homogeneity may seem, the set 33A

is considerably larger than
needed to describe and reason about concurrent behavior. For that purpose, and arguably
for other situations calling for a logic with three-valued atoms, the smaller set 23A

,
i.e. functions 3A → 2, is adequate. And at least as importantly, it fits perfectly with
acyclic HDAs, triadic event structures, and triadic Chu spaces.

Extending the practice of referring to logics whose operations are of type kkA

as k-
valued logics, we shall refer to logics whose operations are of type kjA

as j-k-valued
logics, or just j-k logics, with j = 3, k = 2 for the case at hand.

In practice one works not with the whole of kjA

but rather with just a few basic
operations from which the remainder are then obtained by composition. For j = k = 2,
ordinary Boolean logic, Scheffer stroke or NAND forms a complete basis for A nonempty,
though the traditionally preferred basis is ∧,∨,¬, or

∧
,
∨

,¬ when A is infinite.
In fact this preferred basis remains complete even under the restriction that ¬ be ap-

plied only to atoms. This follows from the completeness of the unrestricted basis (however
proved) by the method of pushing negations down to the atoms with the help of the De
Morgan laws P ∨Q = P ∧Q and its dual.

However the completeness of this restricted case can also be proved ab initio by ex-
pressing the operation f : 2A → 2 as a disjunction f =

∨
f(t)=1 gt each of whose disjuncts

denotes an operation gt : 2A → 2 which is 1 at exactly one A-tuple t of 2A. Each disjunct
gt is in turn expressed as a conjunction of literals (possibly negated atoms), one for each
a ∈ A, taking the sign of the a-th literal to be positive if ta = 1 and otherwise negative.
In fact this is an excellent way of proving completeness of the unrestricted basis (and
circumvents the De Morgan laws into the bargain.)

An equivalent syntax for literals writes a as a = 1 and a as a = 0. For fixed a and i,
the formula a = i is made an element of 2A → 2 by defining it as λt.ta = i, the input
to which is an A-tuple t whose a-th component ta is to be compared with i. The literals
then consist of all such elements of 2A → 2, forming a set isomorphic to A× 2.

This technique extends immediately to j-2 logic by allowing i to range over j values
instead of 2. The set of such literals is then isomorphic to A× j, with the obvious choice
of name for the (a, i)-th literal being simply a = i. (Although we have been writing 3 for
{0, , 1}, in the present context it is more natural to take j to be {0, 1, . . . , j − 1}.)

Theorem 10. The operations
∧

,
∨

, and the literals a = i form a complete basis for j-2
logic.
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Proof. Every A-ary j-2 operation f : jA → 2 is evidently representable as

f =
∨

f(t)=1

∧
a∈A

a = ta.

For any given t ∈ jA, the function
∧

a∈A a = ta from jA to 2 is 1 at t and 0 elsewhere.∨
f(t)=1 enumerates those t at which f is 1. When j = 2 this construction forms the

complete disjunctive normal form (DNF) of f , where “complete” means that every a ∈ A

appears with the appropriate sign in every needed disjunct. Evidently there is nothing
special about the choice of 2 for j in this notion of normal form.

For 3-2 logic it suffices to expand any complete basis L for 2-2 (ordinary Boolean) logic
to L by adjoining the unary operation â understood as the literal a = (reverting to
3 = {0, , 1}). L thus has three forms of literal: negative a, transitional â, and positive
a.

The simplicity of this expansion is one of the benefits of 3-2 logic over homogeneous
3-3 logic, which requires operations other than ordinary conjunction and disjunction in
order to generate all three output values.

A more practical basis allows literals to be combined with other Boolean operations
besides

∧
and

∨
, allowing atomic mutual exclusion ab + ba for example to be expressed

as ¬(â∧ b̂). Pushing this negation down to the literals blows this formula up to a∨a∨b∨b,
a blow-up not encountered with 2-2 logic. This blown-up formula, which geometrically
confines the process to the four sides of the ab+ba square, makes clear why atomic mutual
exclusion is not distinguishable from a||b using dyadic event structures: it expresses a
dyadic tautology but not a triadic one, whereas a||b is both a dyadic and triadic tautology.

Though we shall not need it here, Chu spaces being adequately served by j-2 logic,
the above construction for the j-2 case generalizes to j-k with the reinterpretation of

∧
and

∨
as max and min and the addition of suitable constants and a selection operation.

Theorem 11. The operations
∧

understood as max,
∨

as min, selection m ∗ n defined
by m ∗ 1 = m, m ∗ n = 0 for n 6= 1, the literals a = i, and the constants 0, 1, . . . , k − 1
form a complete basis for j-k logic.

Proof. Represent f as ∨
f(t)=m

m ∗
∧
a∈A

a = ta.

3.3. Branching Time: 3-2 Logic for the Unlabeled Case

The basic example ◦��
a

HHa
• b•
• c• of early branching appears to require event labels to relate the

two transitions leaving the start state. Now with ab + ba, the two occurrences of a were
understood as being the same event in two alternatives, and likewise those of b. In the
present situation we have two occurrences of a in ab+ac that we would like to understand
as being the same event in two alternatives differing only in their choice of whether b or
c happens. Making this connection with labels again conflicts with the use of labels to
account for the string aa as two distinct occurrences of the same action a, thus entailing
two events, the same argument we made when considering concurrency. We were able to
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make the two occurrences of a in ab + ba the same event via 3-valued event structures;
can we do the same here?

We shall show how this can be done with 3-2 logic. We neglect concurrency for the
time being.

We take the three event values to be before, after, and cancel, which we code as re-
spectively 0, 1, and × as in Figure 1(c), with respective literals a, a, and 6a defining the
language L× by analogy with L . Each event starts out in state 0, and passes to one of
1 or× depending respectively on whether it happens or is cancelled. Thus 0 is the initial
state of an event and× and 1 are its two final states. Since event structures of this kind
are structurally different from acyclic HDAs or triadic event structures we shall call them
cancelling event structures.

A process is in its initial state when all its events are in the initial state, as with the
2-valued case. However we can now say that it is in a final state when each of its events
is in one of the two possible final states. Without the × state we had no comparably
simple and local test of finality: an event could be in state 0 either because it had been
cancelled or because it had not yet got around to starting. The best we could do in that
case was to declare a state to be final if it was not included in any larger state. Thus one
benefit of× is that it permits a local definition of final state.

The process algebra operations for cancelling event structures are as for dyadic event
structures with the following changes.

We first define XA more locally as A with the added requirement that every event be
either completed (in state 1) or cancelled (in state ×). This is equivalent to saying that
XA is obtained from A by removing all states in which at least one event is 0 (or when
that is included). We can now simplify XA in the definition of sequence to X[A], defined
as the process on A consisting of all possible final states (of which there 2A since every
event is optionally cancellable). (The square brackets in X[A] indicate that X is applied
to each member of its set argument, with the results then conjoined.) This simplification
is possible because the definition of sequence independently imposes the constraint of
being a state of A . (The second-order notion of final state rules out this simplification,
as does the popular method of explicitly labeling every state according to whether it is
final as done with traditional automata theory.)

Sequence. Now we could keep our original definition of sequence A B, modified to
A ∧ B ∧ (B = 0 ∨ A = X) with the above trick for termination, but then we still have
only transitivity of sequence instead of idempotence. Instead we shall free up A B a little
in the case that there are any shared events, but not as much as with B−A = 0 ∨ X[A].

We define A B to be A ∧ B ∧ (B−A = 0 ∨ X[A]) ∧ (B = 0 ∨ X[A−B]).
A little algebra shows this to be equivalent to A ∧ B ∧ (B = 0 ∨ X[A] ∨ (B−A =

0 ∧X[A−B]), i.e. the original definition weakened to liberate events common to A and
B provided the rest of A has finished and the rest of B has not yet started.

For A and B disjoint we have the ordinary notion of sequence. For A = B however
we have A A = A ∧A = A (since all events are common and therefore liberated) and
therefore we have idempotence. But the symmetry of the definition also overcomes the
counterexample a(ba) 6= (ab)a we encountered with only B−A = 0 ∨ X[A]; both sides
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now denote a ≡ b. A little more algebra demonstrates associativity (exercise). As always
sequence is not at all commutative.

Thus we have the surprising result that sequence behaves conventionally with dis-
joint arguments (the normal case in automata theory) but nevertheless is an idempotent
operation!

The operation is now sufficiently rational to allow us to define a new internal implica-
tion which we write as A → B, defined to be the process algebra operation BA . (To
avoid conflict with material (Boolean) implication the latter can be written A ⊃ B.)

We did not dare to explore the consequences of this notion based on the definition
of sequence we were using for dyadic event structures because of its awkward notion
of termination. This implication depends in an essential way on having cancellation
as an alternative termination state to 1. However in the absence of conflict, i.e. when
termination requires all events to happen, A B simplifies to just A ||B with the additional
requirement that every event of A precede every event of B, which can be written

A ∧B ∧
∧

a∈A,b∈B

(b → a),

(making this case of A B clearly associative). This simpler notion can itself be taken as a
novel internal implication B → A for Boolean logic. The difference between this simpler
notion of implication and A B in the case of cancelling event structures must be kept in
mind when A contains any conflict ×, since then not every event of A can happen and
so in this simplified B → A , B never gets to start (every satisfying assignment assigns
0 to all of B not in A) yet does get to start in A B provided A has at least one final
state. This simpler notion also gives a direction to start out from in the above exercise
for associativity of sequence.

Choice. In the dyadic case (K = {0, 1}) we had defined A + B as

A ∪B = 0 ∨ (A 6= 0 ∧ B−A = 0) ∨ (B 6= 0 ∧ A−B = 0).

The significance of B−A = 0 in dyadic choice is that when A is chosen over B, those
events of B not participating in A can never pass to 1 (or even to when we reintroduce
it). The difficulty here is that one cannot deduce this “never” from inspection of individual
states: one must consider the whole process.

The × value lets us express the “never” part of this explicitly in a single state: a
cancelled event is one that can never move towards 1. Thus when the process enters a
state in which A is chosen, the events of B not shared with A are all explicitly cancelled
in that state instead of merely being left unstarted, and vice versa when B is chosen.
Once cancelled an event stays cancelled because there is no transition from × to any
other value of K in the primitive event automata of Figures 1(c) and 1(d).

We therefore substitute B−A =× for B−A = 0 and A 6≤ × for A 6= 0 (to ensure that
some event of A starts as soon as the choice is made) in the dyadic definition of choice
to yield the definition

A ∪B = 0 ∨ (A 6≤ × ∧ B−A =×) ∨ (B 6≤ × ∧ A−B =×).

(However naturally this definition may appear to have flowed from the dyadic defini-
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tion, it was suggested to us by P S Thiagarajan as an alternative to the definition we had
previously derived in exactly the same way from an equivalent definition of dyadic choice
as A ∪B = 0 ∨ (A ∧ B−A = 0) ∨ (B ∧ A−B = 0). When B−A =× is substituted
here for B−A = 0 we obtain a notion of choice in which the cancellations are performed
before starting the selected process. Unfortunately our definition fails associativity, wit-
nessed by the state×00 which is present in a+ (b + c) but absent from (a+ b) + c. In the
Thiagarajan definition the chosen process starts up simultaneously with the cancellation
of all rejected events, including those cancelled in the selected process at its outset. Hence
when c is chosen in a+(b+c), a and b are cancelled simultaneously, precluding state×00.
Viewed more abstractly, the disjuncts in our definition of dyadic choice were not disjoint;
substituting B−A = × for B−A = 0 preserves associativity provided the disjuncts are
disjoint.)

Other notions of choice. An alternative definition of A + B allows the chosen process
to start without waiting for the unchosen events to be cancelled. They would eventually
be cancelled due to the termination requirement that every event either terminate or be
cancelled. This however furnishes ab + ac with a state 100, giving it the possibility of
deferring the choice of b or c to the same time a(b + c) chooses. The two processes are
nevertheless distinguished by the possibility in ab+ac of cancelling an event before a has
happened. With this definition we have A (B + C ) ` A B + A C .

However A B+A C ` A (B+C ) makes more intuitive sense, meaning that A B+A C

is more constrained (has fewer options) than A (B + C ). This is achievable as follows.
Whenever a run of A + B (as defined by Thiagarajan) passes through x and then y,
such that a is 0 in x and× in y, we adjoin to the states of A + B the additional state x′

derived from x by changing b from 0 to×. This definition satisfies A B+A C ` A (B+C )
while retaining the crucial distinction that a(b + c) contains 100 and so may perform a

before cancelling either b or c, unlike ab + ac.
All definitions of choice proposed above, buggy or not, are easily seen to be consistent

with dyadic choice in the sense that they reduce to it under the identification×= 0.
The Thiagarajan definition of choice being expressible in closed form, unlike the two

alternatives proposed above making A B + A C and A (B + C ) comparable (at least as
we have expressed them), we take it as the meaning of choice in what follows.

The atomic process a by convention happens, i.e. may not be cancelled when standing
alone, and therefore by default is permitted only the states 0 and 1. Thus the logical
form of a is no longer true but instead ¬6a, equivalent to a ∨ a. This also implies that
even though XA now allows × in final states, Xa still means a = 1.

Substituting A = a and B = b in the preferred definition of choice, a + b translates
into logic as

(a ∧ b) ∨ (a 6≤ 0 ∧ 6b) ∨ (b 6≤ 0 ∧ 6a).

This asserts that a + b has a zero state and that when it is not in that state one of a

or b is cancelled and the other has started (which in the absence of means it is done).
That is, a + b = a 01×

b 0×1
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Event a can be turned into a cancellable event, by adding the empty process 0§ having
no events and one state, yielding the process a+0 having one event and all three possible
states. For a+0 to take the 0 branch means that a is cancelled and nothing else happens.
Hence the equation A +A = A +0 holding for dyadic event structures fails for the triadic
case because with A + A the two branches have the same set of events and hence no
events need cancel (unless they already did so in A ). We do however have idempotence
A + A = A when A has the all-zero state.

So states 0 and × participate in the definitions of both sequence and choice while
1 enters only in sequence. Concurrence and orthocurrence remain independent of any
particular elements of K.

With the new atomic state × our examples change as per Table 3 below.

a a 01 ba + ca
a 00101
b 011××
c 0××11

a||b a 0101
b 0011 a(b + c) a 0111

b 001×
c 00×1

ab a 011
b 001 ab + ac

a 01111
b 001××
c 0××01

a + b a 01×
b 0×1 ab + ba a 0101

b 0011

a||(b + c) a 010101
b 0011××
c 00××11

ab⊗ cd
ac 011111
ad 000111
bc 001011
bd 000001

(b + c)a a 00101
b 011××
c 0××11

(a + b)⊗ (c + d)
ac 01×
ad 0×1
bc 0×1
bd 01×

Table 3. 3-valued semantics of branching time

The process a + b starts out in the 00 start, then one of a or b is cancelled and the
other proceeds. An alternative semantics would be to omit the initial 00 state and make
the choice of a or b at the outset by starting out in one of two initial states, either 0× or
×0. The role of the common initial 00 state is to allow a+ b to defer the choice as long as
there is other work to be done beforehand, as in c(a + b). It also helps ensure that every
process built with these connectives from atoms has a unique initial state.

In a(b + c) we see the significance of the 00 state for b + c, which permits a to finish
before choosing one of b or c. In ab + ac by contrast, a cannot proceed until the choice
of b or c has been made, and in that respect differs from a(b + c).

In the absence of , ab + ba remains equal to a||b. Choice cannot distinguish them
because even though ab+ ba must make a choice no event is thereby cancelled. It follows
that × can only distinguish early from late choice when that choice affects which events
get done. More subtle influences, e.g. on order of events, cannot be distinguished by ×.
In particular a(bc + cb) and abc + acb remain the same, namely a 01111

b 00101
c 00011

.

The× state does not enter with any of concurrence, sequence, or orthocurrence, which
give the same results as with Table 1.

(a + b) ⊗ (c + d) is now described in more detail than in the previous two tables.

§ 0 denotes the zeroary Boolean operation (constant) tt, having no events and one state; the Boolean
constant ff is the logical form of the process • with no events and no states.
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In particular we can see that when (a, c) is cancelled, so is (b, d): no pigeon may start
to enter its hole until it has been determined which pigeon-hole pairs have been ruled
out. But the Thiagarajan definition of choice calls for the pigeons to enter the holes
simultaneously with the cancellations.

The following observation concerning XA , describing A at its termination (i.e. the
deletion from A of all states in which any event is still 0 without however changing the
event set A), allows for a tidier account of pigeons if not trains. This theorem depends on
the first-order definition of XA made possible by ×; we have previously seen pigeonhole
counterexamples (a||b vs. 0 + a + b + a||b) to this theorem with our K = {0, 1} definition
of XA .

Theorem 12. X(A ⊗B) = XA ⊗XB.

Proof. X(A ⊗B) ` XA ⊗XB because every state of X(A ⊗B) is free of zeroes and
hence can be built solely from zero-free states of A and B, i.e. from states of XA and
XB. Conversely XA ⊗XB ` X(A ⊗B) because XA ⊗XB ` A ⊗B and no state of
A ⊗B with a 0 can be produced using only states of XA and XB.

In particular X(a+ b)⊗X(c+ d) more efficiently describes the two ways of putting two
pigeons in two holes. The case of three pigeons and two holes, with up to two pigeons
per hole, has six solutions, which we might expect to be described by X((a||b) + (b||c) +
(c||a))⊗X(c + d). The relevant calculations for these two examples are as follows.

a×1
b 1×⊗ c×1

d 1× =
ac 1×
ad×1
bc×1
bd 1×

a×11
b 1×1
c 11×

⊗ d×1
e 1× =

ad
ae
bd
be
cd
ce

While X(a + b) ⊗X(c + d) is as expected, X((a||b) + (b||c) + (c||a)) ⊗X(c + d) has no
states! The problem is that the new definition of final state means that ((a||b) + (b||c) +
(c||a))⊗ (c + d) has no final states. This comes about because in the hole with only one
pigeon, we always have a second pigeon in state 0 when finality demands it be in state
×. We have been sloppy in writing (a||b) + (b||c) + (c||a) when what we really meant was
a+ b+ c+(a||b)+ (b||c)+ (c||a), the choice of one pigeon or two. Back when we were not
distinguishing 0 from× there was no difference. Now that we are making the distinction
we have to count pigeons more accurately. Adding in the a + b + c possibility gives the
expected six solutions, as follows.

a 1×××11
b×1×1×1
c××111×

⊗ d×1
e 1× =

ad 1××1×1
ae×11×1×
bd×11××1
be 1××11×
cd×1×11×
ce 1×1××1

A similar calculation shows that the example (a||b) ⊗ (c + d) of up to two pigeons in
each of two holes must be changed to (0+ a+ b+ a||b)⊗ (c+ d) where 0 is the consistent
(one-state) zero-event process.

This points up yet another problem with the intensional (pre-cancellation) definition
of final state, one that admittedly only arises via orthocurrence with the four-operator
process algebra presented here but that could easily arise when the enthusiastic pro-
cess algebraist replaces orthocurrence by some other operator more to their liking. The
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problem is that a state that should not be final (e.g. because some programmer pact has
decreed states of its ilk to be temporarily inconsistent system states) might under the old
definition of finality be unjustly promoted to the rank of final state by the disappearance
of certain crucial later states that the pact does recognize as consistent. This might fool
the process whose turn is next into forging ahead when it is dangerous to do so. The
second-order definition of finality can be trickier to administer than the first-order one
made possible by explicit cancellation.

On the face of it, we appear to have used the same 3-2 logic for branching time as
for concurrency. However there is a crucial difference in how the third value enters.
For concurrency we identified a neglected intermediate state through which each event
passes on its way from before to after. This additional state makes the natural relationship
between 2 and 3 one of inclusion: 2 is a subset of 3. This is reflected in the passage back
to 2-valued semantics of concurrency, namely by deleting those states containing any
occurrence of , the process by which we recover Table 1 from Table 2 (and Table 3 from
Table 4, yet to come).

For branching time however we refined the before state according to whether it was
willing to pass to the after state. This relationship between 2 and 3 thus makes 2 a
quotient of 3 resulting from the identification×= 0. Performing this quotient by replacing
× by 0 turns Table 3 into Table 1 (and Table 4 into Table 2) not by deleting states but
by identifying those states that previously differed only by having × in place of 0. One
side effect of this quotient is to identify a(b + c) and ab + ac, which the × state nicely
distinguishes without however disturbing the generally accepted equality between (b+c)a
and ba + ca, in both of which the choice is made at the beginning.

Despite this basic difference between these two uses of 3-2 logic, we adopt the same
logic for both. The only difference is in how we think of the third literal, whether as
transition or cancellation.

3.4. Infinite Processes

In the case of an infinite process, one with infinitely many events, it is reasonable to
suppose at least for an effective process that each of its final states have only finitely
many events in the 1 state. For example the sequential process a∗ which performs finitely
many instances of action a and then halts is described as the process on the infinite set
A = {a0, a1, a2, . . .} that changes each of a0, a1, . . . in turn from 0 to 1, and then at some
finite stage changes the remaining events to×. The allowed nonfinal states are therefore
all sequences of the form 1∗0ω, while the allowed final states are all sequences of the form
1∗×ω, nonfinal and final being the only two possibilities. Going by our definition of step,
any nonfinal state has a step to a final state which changes a finite initial segment of the
trailing 0ω to 1’s (the stragglers) and the rest to×. We revisit this example after bringing
in to join×, whose principle benefit is a more rational notion of step.

The process (ab)∗ is treated as for a∗ with two differences. First, we replace the set of
final states with sequences of the form (11)∗×ω, i.e. only an even number of 1s is allowed
in final states. Second, we now need a labeling function, but this is a triviality: just label
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all the events alternately a and b. From this point of view labeling is always a triviality,
all the interesting structure resides in the unlabeled part of the theory.

The process (a + b)∗ has an event set better described as A = {a0, a1, . . .} × {a, b} =
{(a0, a), (a0, b), (a1, a), (a1, b), . . .}. Every state has an initial segment of length k ≥ 0 in
which every pair of events (ai, a), (ai, b) for i < k are either 1× or×1 according to whether
a or b respectively was chosen at the i-th stage. Immediately after this segment there is
an optional (ak, a), (ak, b) pair which is either 0× or×0, indicating that one of a or b has
been chosen but has not yet happened. Past that point there are two possibilities: either
every pair is 00; or, provided every chosen event has happened (no 0× or×0 pair), every
pair is ××, the latter constituting the final states. These are all the states of (a + b)∗.
The operational interpretation should be clear, with the same caveat as before that any
state has a single step to a final state, dealt with as before by . A variant of this process
would allow the tail to be all×× even in the presence of one 0× or×0 pair, corresponding
to the process deciding it is time to halt without thereby entering a final state (the last
chosen event still needs to be done, though without the concluding step would have
the opportunity to cancel the chosen event instead of performing it).

3.5. Combining Branching Time and Concurrency

We now have two applications of 3-2 logic, one to concurrency and one to branching
time. However their third value has a different meaning in each, so we cannot use them
together. Instead we combine them by passing to 4-2 logic, in which before and after are
common to all fragments but during and instead-of are distinguished as separate states
originating in respectively the concurrency and branching time worlds. The result is the
primitive event automaton of Figure 1(d).

The transitions of our four-state automaton (assumed to be oriented upwards, making
0 the start state) induce transitions between states of a multi-event process coordinate-
wise: one state vector can pass to another just when the passage is permitted in each
coordinate. Thus there is a transition from 00 to 0×, and one from 00 to × expressing
the simultaneous stepping of two events one of which is cancelled, but no transition from
0× to 0 because an event may not start once it is cancelled.

It is tempting to allow a transition from to×as well, but the semantics of cancellation
should forbid starting in order to avoid unwanted side effects. The passage from to an
alternative to 1 should instead be to a state called abort, a fifth state with the implication
that the aborted event may have had some effect before its untimely end. Adding this
state to the above setup should require no modification other than to include the abort
state among the final states of an event. An alternative here would be to treat it instead
as an error state, in which case a state vector would be an error state when at least one
event had aborted. We leave this to future treatments.

Theorem 10 ensures that 4-2 logic has a complete basis just as for 3-2 logic, namely the
infinitary monotone connectives

∧
and

∨
(and any other Boolean operations that might

be convenient to include, which may be viewed as either expansions to the signature or
abbreviations) together with the four literals ā, â, a, and 6a constituting the language
L ×.
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In this combined semantics, the definitions of the process algebra connectives given for
branching time require no change. The only other change needed is that the atomic event
a is defined as a 0 1 as for the 3-2 logic of concurrency. (Thus a process with an event in
state that is not permitted to pass to state 1 cannot terminate; that event is deemed to
be in a blocked state. One might suppose it to be instead in a divergent state, but on the
reasonable and popular assumption that any atomic event may on closer inspection turn
out to be compound (refinement), blocking and divergence must be indistinguishable, to
which anyone who has patiently awaited a web page can attest.)

The same behaviors we considered before expand as per Table 4 below.

a a 0 1 ba + ca
a 000 100 1
b 0 111××××
c 0×××× 111

a||b a 0 10 10 1
b 000 111 a(b + c) a 0 11111

b 000 1××
c 000×× 1

ab a 0 111
b 000 1 ab + ac

a 0 111 111
b 000 1××××
c 0××××00 1

a + b a 0 1××
b 0×× 1 ab + ba a 0 1010 1

b 000 111

a||(b + c) a 0 10 10 10 10 1
b 000 111××××××
c 000×××××× 111

ab⊗ cd
ac 0 11111111111
ad 00000 11111
bc 000 10 10 111
bd 00000000000 1

(b + c)a a 000 100 1
b 0 111××××
c 0×××× 111

(a + b)⊗ (c + d)
ac 0 11××××
ad 0×××× 11
bc 0×××× 1 1
bd 0 1 1××××

Table 4. 4-valued process algebra

Note that ab + ba coincided with a||b in the case of branching time semantics but not
when concurrency semantics was added. We still have (b + c)a = ba + ca as expected,
but not a(b + c) = ab + ac.

The principle example in this paper of an infinite process, a∗ in Section 3.4, had the
property with × but without that every nonfinal state had a step to a final state in
which finitely many stragglers finished and the rest are cancelled. This situation, which
clearly does not capture the essence of a∗, would not have arisen in any reasonable
sequential model. It arose in our -less concurrent model for lack of any reasonable way
to acknowledge the performance contribution of intermediate degrees of independence.

We capitalize on by adding to the states of a∗ a third class of states, those of the
form 1∗ 0ω in which one event is in progress. With the more reasonable step semantics
we use with it is still possible for any stragglers to make the jump to the 1 state as
part of the step from a penultimate to a final state, but every 0 in a penultimate state
must change to × in the final step because the semantics of a step no longer allows a
direct leap from 0 to 1. Hence stragglers must have already started by the time of the
final jump, but now there is only room for at most one such straggler. Whether there is
a straggler depends on whether the nonfinal state from which that last step is taken has
zero or one ’s, i.e. is of dimension zero or one.
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3.6. HDAX Geometry

Although the geometric view of an acyclic HDA (A,X) with X ⊆ 3A understood as a
sculpted cube is clear enough, how should a subset of 4A, or HDAX¶ as we shall call it,
be understood geometrically?

Given an HDAX state x which is× at a subset B ⊆ A (i.e. all events of B are cancelled
in x), we propose to view x as a cancellation-free state of 3A−B . An event that is cancelled
in the course of a run thus drops out of sight altogether, projecting the computation as
a whole onto a lower-dimensional space by projecting out the axis of the cancelled event.
This projection does not change the state of the run at the time of projection but merely
removes some of the possible future directions.

Consider for example (a||b) + a, which is a 0 10 10 1 1
b 000 111××. In the beginning its geometric

meaning is indistinguishable from that of a||b, namely a square. Taking the second option
of the choice by stepping from state 00 to state ×however projects the square onto the a

axis, thereby removing b’s opportunity to start. (It is always the future that is projected
onto the present, never the past onto the present because one can only cancel an event
that has not yet started.) Note that a run of this process can take the step ( 0, ×),
i.e. the existence of state 0× does not preclude the possibility that this state could be
bypassed, allowing the collapse to happen while a is in progress, or even, via the step
(10, 1×), after it terminates. Contrast this with ab + ac, in which no run can initiate a

without first choosing between b and c. The reason (a||b)+a need not commit to a branch
before starting a is that the right-hand alternative a contains no cancellable states!

A run that terminates does so at the final (all-ones) corner of a cube of dimension the
number of events that happened in the course of the computation. Normally this number
will be finite, even if the computation began with infinitely many dimensions. Structure
in the final cube, in the form of omitted cells, constitutes the obstacles the run had to
negotiate; with the full cube present the run could have been as short as two steps, but
the more typical case will omit many cells and the computation will accordingly have
been obliged to take much longer.

This dynamic picture of HDAX behavior could certainly be made static, but we do
not see any way of doing this that is sufficiently geometrically intuitive as to recommend
it over the dynamic picture.

As for other structures modeled as Chu spaces, HDAX morphisms are obtained simply
as the morphisms of Chu4, the category of Chu spaces over a 4-letter alphabet. A Chu
morphism can be understood as a continuous function, in that the inverse image of every
state of its target is required to be a state of its source, where the inverse image of
y : B → K under f : A → B is defined as as the composite y ◦ f : A → K. The category
of biextensional Chu spaces, extensional Chu spaces that are also separable (every pair of
distinct events is distinguished by some state), over any given K is ∗-autonomous in the
sense of Barr (Bar79), i.e. a self-dual symmetric monoidal closed category and as such a
model of linear logic (Gir87).

Counterintuitively Chu4 is defined independently of any structure on K = 4, which

¶ Alternative reading: Hitherto, During, After,×.
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is taken to be just a set, and yet the Chu morphisms respect the structure on pro-
cesses implied by the above transitions on {0, , 1,×}. The key lies in the seemingly
clairvoyant ability of ChuK ’s morphisms to respect structure imposed a posteriori on
K, a phenomenon we have explained elsewhere (Pra99). The secret is that every possible
structure on K lifts in a uniform and natural way to structure on objects of ChuK in
a way that ensures that the (preordained) morphisms respect precisely that structure,
no more and no less. An early example of the phenomenon is Lafont and Streicher’s
observation (LS91) that the Chu morphisms between vector spaces represented as Chu
spaces (which they call games) over the set (not field) of complex numbers are exactly
the linear functions between those vector spaces, despite the lack of any reference to
complex arithmetic in the definition of that category of Chu spaces. Slightly less magical
(since the Chu morphisms are defined as continuous functions), they also observe that
the Chu morphisms between Chu spaces over {0, 1} representing topological spaces are
exactly the continuous functions between those spaces.

3.7. Comparison with Rodriguez-Anger Branching Time

All four structures of Figure 1, along with two others called partially ordered time and
relativistic time, have their counterparts in Rodriguez and Anger’s branching time variant
(RA01) of Allen interval algebras (All84). The elements of an interval algebra are the
possible relationships between the two intervals as they slide past each other on parallel
tracks. The relationships, of which there are 13, are traditionally derived from the three
binary relations <, =, and > between two endpoints one from each interval. To analyze
the case where the tracks diverge at some point, Rodriguez and Anger apply a fourth
(symmetric) binary relation || of incomparability, holding just when the comparison is
between points on distinct arms of the diverged tracks, and combine it with the other
three relations to obtain the 19 interval relationships possible with diverging tracks.

This variant of interval algebra continues an ongoing study by Rodriguez and Anger
of such variants based on the introduction of additional binary relations such as ||. Re-
ferring to the original interval algebra as characterizing linear time, they treat partially
ordered time and relativistic time using respectively 4 and 6 binary relations, obtaining
respectively 29 and 82 interval relationships (AR91; RA93b; RA93a). Partially ordered
time corresponds to tracks that diverge only temporarily, with the same notion || of in-
comparability as above, while relativistic time is the same with two additional relations
describing one endpoint at the point of divergence or convergence with the other on the
diverged section, corresponding to the boundary of the relativistic light cone.

Elsewhere (Pra00) we recast the relations <, =, and > between pairs a, b as atomic
states 0, , and ‖ of such pairs construed as events to allow the relation algebra techniques
typically used to study interval algebras to be replaced by direct application of the
orthocurrence operator, thereby correlating the Allen configurations to the 13 states
of the orthocurrence ab ⊗ cd as in Table 2 above. We then interpreted the additional

‖ Our earlier HDA papers coded these three values as 0,1,2.
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relationships as additional event states and represented the two intervals as processes in
such a way that their orthocurrence had respectively the above 29 and 82 states.

In (RA01) Rodriguez and Anger point out that time is symmetric for all three of linear
time, partially ordered time, and relativistic time, and argue that this symmetry masks a
need to reverse one of the arguments to orthocurrence when applied to interval algebras.
To demonstrate this they break the symmetry of partially ordered time by replacing
temporary divergence of tracks by permanent divergence (no rejoining), naming the re-
sulting notion of time branching time. Orthocurrence applied as in the other examples
now gives the wrong answer, but time-reversing one of the intervals (by exchanging their
endpoints and also exchanging < and > in the matrix) does give the correct answer.

While these names for various kinds of time are appropriate within the setting of
interval algebras, the question naturally arises as to whether they have the same mean-
ing as used elsewhere. In particular can this interval-algebra notion of branching time
distinguish a(b + c) from ab + ac?

The role of the interval in the interval algebra analysis of time is to represent sequenc-
ing, as evident in the successful use of ab⊗ cd in modelling interval algebra for the three
previous notions of time. Now when an interval slides off on a different track from the
other interval, the permanent incomparability of its leading endpoint eventually results
in permanent incomparability of its trailing endpoint. It follows that if || is used to dis-
tinguish a(b + c) from ab + ac by treating it as the state of the unchosen event of b + c in
the manner of cancellation, any event following the unchosen one must itself enter state
||. But this would mean that d in a(b+c)d could not happen. More generally, any process
containing a choice would block the first time it made any choice.

This establishes that || cannot be used like× if it is to pass the litmus test for branching
time of distinguishing a(b + c) from ab + ac. This does not rule out the possibility of
drawing this distinction using || in some other role, e.g. one that views the one instance
of a in a(b + c) as being comparable with itself while the two copies of a in ab + ac are
incomparable (by virtue of having decided differently between b and c). Such a role would
then fully justify the name “branching time” for this variant of interval algebra. We do
not see however how to do this in the unlabeled event structure framework as used in
the present paper.

This difference between || and× emphasizes the versatility of orthocurrence, a neutral
operator that respects the different meanings of these states to give correct results for
processes using either one (when applied correctly of course).

It is worth pointing out an alternative analysis of branching-time interval algebra in
which orthocurrence need not reverse one of its arguments, consistent with not doing
so for any other application of orthocurrence. The need for reversal arises when the
processes ab and cd in ab ⊗ cd are treated as having the same orientation, following
nearly two decades of interval algebra tradition. However inspection of the trains-and-
stations scenario reveals that if ab is an eastbound system of trains, placing train a to
the east of train b, then stations must be encountered in the order west to east, placing
station c west of station d in cd.

To capture divergence we can replace the stationary stations c, d by a westbound pair
of trains c, d moving along a second parallel track, with train c ahead of and hence west
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of train d. Assuming the tracks diverge when traveling east, the westbound trains reverse
the order in which || is encountered: instead of blocking they unblock. The proper analysis
of orthocurrence A ⊗B in this case is then seen to be that B is simply a different system
of trains from A , experiencing scenery isomorphic to A ’s but in the reverse order. In
this analysis the need to reverse one argument to orthocurrence becomes a property not
of orthocurrence but of its constituent processes, much as the abstract group theoretic
analysis of the integers views subtraction i − j as merely a convenient shorthand for
i + (−j). Both notations are legitimate and interchangeable.

4. Concluding Reflections

Our earlier aspersions on homogeneity in type notwithstanding, there may possibly be
some merit in the homogeneous formulation of 3-valued logic, i.e. the type 3A → 3, for
either concurrency or branching time alone, or conceivably even the homogeneous for-
mulation 4A → 4 of 4-valued logic when concurrency and branching time are combined
(but this starts to look unwieldy). There might for example be some justification for
expanding the number of information distinctions to match that of the number of tem-
poral distinctions. Scott domains or information systems leap immediately to mind here,
specifically Bool consisting of the two truth values tt and ff together with ⊥ satisfying
⊥ v tt and ⊥ v ff. Standardly interpreted, information systems live on the automa-
ton side of the schedule-automaton or time-information duality, in that their elements
are conventionally understood as states ordered by information content via v, with the
bottom element ⊥ constituting the state of utter ignorance.

A domain-oriented model would allow three states of knowledge about HDA cells:
present, absent, and undecided, corresponding to the values tt, ff, and ⊥ of the 3-element
CPO Bool. Such a model would lend itself to the treatment of discovery of HDAs, that
is, the automatic production of concurrent automata via a suitable recursive procedure.
The bottom state is total ignorance about all cells. The maximal states are the HDAs
towards which such a procedure would progress starting from ignorance.

Is the homogeneity of the resulting 3A → 3 type structural or merely superficial? In
particular does 3 have a natural structure here counterpart to the rich Boolean structure
of 2? And can the three temporal values before, during, and after be linked in some way
to the three information values tt, ff, and undecided, e.g. in terms of triadic Chu spaces?

Elsewhere (CCMP91) we pointed out that there are just two commutative idempotent
3-element quantales, each corresponding to a natural use for 3-valued time, with the
one that is a Heyting algebra, which we called 3, being the appropriate one for causal-
accidental time and the other, 3′, the one for strict-nonstrict or before-during-after time.
Is 3′ the appropriate quantale for the 3-valued CPO for the type Bool? The only
connection we see is that the so-called face “lattice” of 3′ as a 1-cell (made an actual
lattice by adjoining a bottom element of dimension -1) is the order dual of the CPO Bool.
However we do not see any good structural connection between face lattice structure and
quantale structure, suggesting that cardinality may be the only connection between the
two threes in this approach to making sense of 3A → 3. We leave this homogeneity
question as an open problem possibly bearing further investigation.
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A far more important problem is the comprehensive treatment of fixed points, solutions
of A = τA (as well as prefixed points τA ` A and postfixed points A ` τA ), whether
least, greatest, optimal, etc. Here the natural choice of language to start out with for
τ is (in our biased view of course) the four basic process algebra operations defined in
this paper. But process algebra operations are limited only by the imagination of process
algebraists and the tolerance of users for languages allowed to grow like Topsy, leaving
the subject of fixpoints for HDAXs dauntingly wide open.
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