

Project Report
Process and Product improvement plan for CSoft
Software Product and Process Improvement Course - INF5180

 N.N.

 2

Table of Contents

1. Introduction ..3

1.1. Intended readers..3
2. Context and problem statement ...4

2.1. Organization ..4
2.2. Product properties ...4
2.3. Development process..4
2.4. Identified problems ..5
2.5. Desired changes in the development process ...6
2.6. Short and mid-term allocation of resources in CSoft................................6
2.7. Focus of the improvement plan..7
2.8. Scope for future improvement plans..7

3. Software Process Improvement Plan ...8
3.1. Model chosen for the process improvement ..8
3.2. Technical and knowledge support for the improvement...........................9
3.3. Overview of the plan and roadmap..11
3.4. Steps and activities..11

4. Rationale behind improvement plan...16
5. Appendix ..19
6. References...20

 3

1. Introduction
This document consists of a process and product improvement plan to be performed at
the company CSoft. The process improvement will consist of incorporating periodical
software maintainability assessment and refactoring to the development flow. The
product and process improvement will have as goal to increase the maintainability of the
code base as new functionality is incorporated to the releases. We suggest incorporating
an additional iteration ad the end of each release in order to incorporate code inspection
and refactoring activities. We suggest using semi-automated code inspection to support
maintainability assessment and refactoring decision. The scope of the semiautomatic
code inspection is limited to refactoring decision-making (where and when to refactor?).
This implies that the actual refactoring process (how to refactor?) as well as the
redesigning of the code structure will not be addressed in this document. The rest of the
document is organized as follows: Sect. 2 describes the context of the improvement plan
required in order to understand the problem being addressed by the improvement plan.
Sect. 3 presents the improvement plan and the expected outcomes from each of the
activities encompassed in the plan. Sect. 4 describes the rationale behind the selected
approaches in the improvement plan.

1.1. Intended readers
This document is addressed to the software architects of CSoft, as well as researchers
interested in software process improvement cases. Also it could be addressed to
external software managers and software architects interested on examples of software
process/product improvement plans for a given type of context and product. This
document assumes that the reader understands basic concepts from software
engineering and software development processes, and they should have good
command of general terms related to agile development methodologies.

 4

2. Context and problem statement
This section presents the context for the intended process improvement, by
characterizing the organization, the software product and the current
problems/challenges faced by CSoft. Our intention is to provide enough background
information, which will enable to build the rationale for the strategy and the activities
suggested in the improvement plan.

2.1. Organization
CSoft (an anonymized name) is a medium-sized Norwegian software company that
develops, maintains and markets a product that is used for creating and running
surveys. CSoft is a product in the high-end segment of the market and has a wide
customer base that includes some of the world’s largest market research agencies. The
company was established in 1996 and has since grown steadily and has today about
260 employees including 60+ developers. The main office is located in Norway with
offices also in UK, USA and Russia. There has been a gradual shift from building
custom-made applications for the customers to a packaged software product.

2.2. Product properties
CSoft product can be defined as a single product, but there are many ways to use it,

as it is highly modular. It has five main modules (with numerous sub-modules) e.g. to
plan and design surveys, setting up panels, a central survey engine that executes the
actual surveys, reporting, and data transfer to feed the database for analysis. The use of
these modules varies according to the customer case. Some modules are central and
are used in any configuration, while the use of the others depends on the situation.
CSoft operates with a set of predefined configurations for the most common usage
scenarios, but there is also built-in support for detailed customization to support more
variants. From the start of the company, fourteen years ago, the development process
matured from a more or less ad-hoc type of process (creative chaos) to a well-defined
waterfall-inspired process (plan-based and non-iterative).

The total solution is best described as a traditional three-tier system; MS SQL Server
in the data layer, a business layer and a presentation layer based on a dozen ASP.Net
applications. The system is based on several technologies that have emerged over the
years, such as older ASP solutions, COM+ components, VB6 code and other old
technologies. Most of the new code is being developed in C# which by now is spread
across approximately 160 .Net assemblies. The separation between the presentation-
and the business layer is clear.

2.3. Development process
About five years ago the development process had become too slow and inefficient.

Out of necessity CSoft changed to a radically different process – Evo [1] under the
guidance of Tom Gilb, which originally defined the process [2]. Evo is an agile method
comparable to the better-known Scrum-method [3], although the terminology differs. At
CSoft, work is done in two-week iterations (equivalent to sprints in Scrum), working
software is deployed on test servers by the end of every iteration and invited customers
evaluate the latest results and give corrective feedback to the development teams [4, 5].
Looking at the Agile Manifesto1, Evo – as it is adopted at CSoft – conforms to the four
basic values; interaction is highly valued, they have a strong emphasis on delivering
working software after every iteration, invited lead users participate in development and
finally, development is open to change in requirements and design.

CSoft have tried TDD (Test Driven Development) but it failed according to the

1 www.agilemanifesto.org

 5

Architects team due to the high-pace of the development and the complexity of the code,
which didn’t allow the desirable delivery pace along with the generation of test cases.
CSoft manages at some extent a set of unit tests (reaching 60% of code coverage), but
relies on integration and system level testing for identifying defects. The system and
integration testing is done before a major build and/or before the end of an iteration.

2.4. Identified problems
CSoft is currently suffering a very common phenomenon, which is called by several

names such as: software entropy, code decay, software rot, or software erosion. This
phenomenon consists of an imminent increase of code size and complexity, which
results in a decrease of the productivity of the development team, as well as the product
quality. The most obvious example of this problem is what the architects refer to as the
Blob. This is a very large assembly (named Core) consisting of approximately 150 K
lines of code in 144 namespaces. Through a series of interviews with the ‘Architect
Team’, a team composed by 4 members all with good knowledge of the system, the
domain and programming expertise, we have identified a series of problem areas: a)
analyzability and learnability, b) changeability and deployability, c) testability and stability
and d) organization and process.

Analyzability and learnability: Due to the high complexity of the system, and especially
the central core component, it is extremely hard for developers to get an overview of the
code and the structure. First of all, the core component is extremely large with a lot of
references, making it hard to understand how it really works. New developers joining
R&D have a steep learning curve and requires close follow-up over a long period of time
by more experienced developers. There exists no documentation or models that explain
the structure of the system even though this clearly would be highly useful both to
existing and new developers. Having problems understanding how the code is structured
leads to a “fear of changing the code”, both for adding new features and for improving
existing code. Developers as a result generate duplicate code - instead of changing
existing, working code, the developers rather separately develop a new piece of code,
which he or she then has full control over.

Changeability and deployability: According to the architects, a result of this code
duplication is the shotgun surgery code smell, which manifests when developers are
performing small changes, e.g. a single line of code, and they are forced to identify and
alter code in several other places. Due to these problems, development takes more time
compared to an “easy-to-follow” structure. Besides development and maintenance,
deployment of the product also suffers from the excessive complexity. The core
component contains features and functionality that is necessary to all configurations of
the product and has to be released as a whole even though only a fraction of the
functionality is actually needed.

Testability and stability: Due to the size of the code and the many references, there
are extremely many paths through the code to test them all systematically. The test
coverage according to their coverage criteria is insufficient and existing tests have
shown to be unstable and inconsistent. For example, similar tests run on similar systems
may produce initially unexplainable different results. Also, a lot of the existing tests are
extremely large, meaning that they are hard to maintain. When tests fail, it often takes a
lot of time to fix the identified problem. In sum, the safety net which such tests are
supposed to be, is in practice conceived to be non-trustable which leads to a fear or at
least reluctance to change existing code – since effects of change are hard to foresee
and consequences of errors potentially bad.

Organization and process: As both the business domain and the system are highly
complex, each of the 11 development teams (consisting of 4-6 developers) has an
expert, which is referred to as the guru. This is a person with high technical skills and

 6

extensive experience with the code. He or she is vital for the team to solve its tasks.
Consequently, this represents a great vulnerability. Loosing just a few of these gurus
would have devastating effects on the performance in development. The development
process is based on two weeks iterations where the teams are extremely focused on
delivering working software by the end of each iteration. However, as the focus is so
strong on constantly delivering working software it often happens that the quality of the
software suffers, which causes extra work close to the release when the system is
thoroughly tested as a whole. In the iterations there is a review at the end, but the high
velocity of the process does not give enough time to catch all issues. The development
teams are set up to have separate areas of concern where each team is responsible of a
part of the total product, for example the reporting solution or the data storage. The idea
is to build competence around a well-defined part but the structure of the system does
not reflect this as functionality in practice is spread throughout the code. This forces the
teams to move outside their area of concern. In sum, these problems have shown to
negatively affect the development teams’ ability to produce enough new and improved
features of the product in their releases. The total request for improvements from the
market is constantly higher than what actually is delivered, thus indicating a need for
improved efficiency.

2.5. Desired changes in the development process
As part of the discussions with the CSoft architects, we also collected several of their

ideas to further improve the product and development process:

(a) Process automation. Currently too much testing is done manually and more
automation is desired. In addition, to establish an efficient and trustworthy safety net for
the developers, tests need to become more stable. With this in place, the architects can
introduce what they call “pain-driven development”, that is, when a developer introduces
or changes code that breaks the tests, he or she will get notified immediately to correct
it.

(b) Restructuring and refactoring goals. The architects feel that components of the
software need to be de-coupled from the core and the overlapping and duplicated code
has to be removed. They also agreed that the system should have a clearer separation
of concerns were vertical modularization should reflect business segments. At the
horizontal architecture point of view, the system should better separate business and
platform related code, eliminating dependency cycles and inverted dependencies.

(c) Continuous monitoring of quality. The architects proposed a principle that they refer
to as “quality-from-now”, meaning that any change to the code should be analyzed at
development time, to check that it does not conflict with defined rules of good design.
This can, for example, be achieved using a tool like NDepend[6], by defining CQL[7]
rules to detect design flaws and monitor potential problems. The architects believe that
this approach would considerably reduce the fear of changing the code.

2.6. Short and mid-term allocation of resources in CSoft
Through 2008, a series of meetings and a case study was conducted in order to

understand the context of the company and the challenges they were facing with respect
to the maintainability of the product (the results from this case study are reported in
sections 2.1 to 2.4). By 2009, the architect team convinced the management to devote
40% of the effort (from the architect team) to improve the maintainability of the systems.
Currently, CSoft is planning a preliminary release (called “rehearsal period”) by August
2009, focusing their resource allocation on improving the maintainability of the system
and freezing the development. This means that no significant new functionality will be
added to the product and the effort will be put on solving defects, attending special
requests from customers who have already acquired the system and improving the
maintainability to the product. An official release is planed for January 2010.

 7

2.7. Focus of the improvement plan
The product and process improvement will have as a focus to increase the

maintainability of the code throughout the evolution of the product. The main focus we
will try to have is to spread the knowledge of the “gurus” among the teams, reduce the
“fear to change code” and gradually reduce changeability and deployability issues. This
means that we are supposed to perceive a gradual increase on the maintainability of the
code as new functionality is added and new releases are created. We suggest for
reaching these goals to integrate periodic maintainability assessment and code
refactoring into the development flow. These two activities can be supported by an
approach we call semi-automated code inspection, which consists of a combination of
tool aided static analysis and subjective evaluation. We suggest using NDepend to
support this approach, since it has already been used by the architect team for detecting
circular dependencies and other anomalies in the design of the code. The improvement
plan will consist of putting in place these two activities in the development flow involving
three different levels in the organization: the architect’s team, the development team and
individual developers.

2.8. Scope for future improvement plans
We are aware that these two activities could support different kinds of decisions, and this
highly depends of the organizational level where the decisions are taken. Some
examples are: architectural improvement, redesign decision, choice of implementation of
new functionalities for a given release, and refactoring of test sets. The process and
information demanded for this type of decisions goes beyond the scope of this plan, and
they can be viewed as potential areas for future improvement plans. Some other uses of
semi-automated code inspection could be for educational purposes (show the junior
programmers examples of code “offending” design principles and have given problems
in the past), or for cost-benefit analysis of refactorings through what-if scenarios in order
to perform refactoring decision-making.

 8

3. Software Process Improvement Plan
This section presents an overview of the improvement plan and the intended activities

or stages in order to conduct it. First, we explain the general model of the process
modification suggested in the development flow. Secondly, we provide a description of
the technical/knowledge framework required for implementing this change. We present a
roadmap of the entire process improvement plan. Consequently, we present the required
steps to enable the implementation, evaluation and calibration of the process
improvement. For each of these steps, we describe the different activities encompassed,
the timeframe, participants and responsible for carrying out the activities.

3.1. Model chosen for the process improvement
Since the way CSoft implemented Evo in practice resembles more to the Scrum

methodology, we will use the terminology from Scrum for defining the changes into the
development process. As we mentioned in the previous section, we suggest
incorporating: (1) periodical maintainability assessments and (2) periodical refactorings
in the development flow.

Maintainability assessments. We suggest having slightly longer retrospectives in
order to incorporate maintainability assessments. Normally, retrospectives are meetings
held by a project team at the end of an iteration to discuss what was successful about
the time period covered by that retrospective, what could be improved, and how to
incorporate the successes and improvements in future iterations or projects. Some
organizations have retrospectives that take 2-3 hours, and some have shorter
retrospectives (e.g., 30-60 min) and this varies depending of the length of the iterations
or the organization itself. In CSoft’s case the retrospectives are relatively short (1 to 2
hours), which allows additional space for this activity.

During the maintainability assessment, the teams and the architect(s) will identify the
difficulties faced during the iteration as well as the problematic modules, and analyze
possible reasons for these difficulties. Data drawn from code analysis done with
NDepend can provide input for the discussion (information on how to use NDepend will
be provided in section 3.2). This assessment should produce a maintenance backlog,
which will have the function to depict general goals for restructuring and improving the
maintainability of the system. The main requirement is that maintenance backlogs need
to be enough specific in order to be brake-down into sprint backlogs. A maintenance
backlog should resemble a product backlog2 but focusing on maintainability
improvements instead of new functionalities in the product.

Periodical refactoring. In order to incorporate periodical refactoring and constant
improvement of design, we suggest an additional iteration at the end of the iterations
(which will be called mini-iteration), where the maintenance backlog should be used as
input for planning and executing the restructuring/refactoring tasks. Currently, the
iterations are two weeks long, so we suggest a mini-iteration of one week. Each of the
rules used in normal iterations will apply (e.g., deciding upon the backlog items, planning
poker and distribution of tasks amongst the team members). Unit testing, integration
testing and system testing should be planned as integral part of the mini-iteration as in a
normal iteration.

2 According to Paetsh et al. (2003), a product backlog can be compared with an incomplete and changing requirement
document containing enough information to enable the development during the iteration.

 9

Figure 1: General model for integrating the restructuring mini-iteration in the development flow

3.2. Technical and knowledge support for the improvement
In this section, we present the required framework to guide the maintainability

evaluations and the restructuring/refactoring during the mini-iterations. The process will
basically rely on two aspects: (1) Tool support given by NDepend and (2) Refactoring
knowledge base.

Tool support. As we mentioned in section 2.7, we suggest using semi-automated
code inspection. According to [8], code inspection consists of a peer review of any
software product by individuals who look for defects using a defined process. In our
case, the inspection will try to identify maintainability issues instead of defects, and we
will use a set of software design attributes in order to guide the code inspection.

We define software design attributes as quantitative descriptors of potential design
issues or flaws in the software. Design flaws are commonly associated with
maintainability issues as well as other software qualities, such as correctness, reliability
or efficiency. In our case, we define software design attributes as a set of code
measures, code smells and design principle violations. Examples of code measures are
lines of code (LOC) or Cyclomatic complexity (CC). These measures apply to any
programming language, as opposed to Object Oriented (OO) code measures, which are
specific to OO paradigm (e.g., Tight Class Cohesion or TCC). Further details on OO
code measures can be found in the work of Chidamber and Kemerer [9]. A code smell is
a surface indicator (also known as structural symptom by Marinescu [10]) that usually
corresponds to a deeper problem in the system. Code smells could be used as guidance
for recognizing situations where refactoring is needed. A comprehensive catalogue of
code smells and their corresponding refactoring can be found in [11]. Conversely, design
principle violations are somewhat similar to design anti-patterns (see [12] for further
reference) and are also associated to the usage of a certain design pattern.

Currently, is possible to calculate several software design attributes by using
NDepend. NDepend allows defining rules for searching instances of a given design
attribute through a language called CQL or Code Query Language (see [7] for further
details). This tool also provides visualization of different characteristics of the design of
the code such as: Tree-map of diverse code measures, abstractness vs. instability
diagrams, dependencies matrix and dependencies graph. The visualization functionality
of NDepend can help detecting circular dependencies and other anomalies in the design
of the code. Modules containing high values of code measures that are known to have a
negative impact on maintainability; and modules presenting high number of instances of
code smells and design violations can be prioritized for code inspection in order to
determine how they affected the maintainability during the iteration.

 10

Refactoring knowledge base. The result of the analysis described previously,
together with what we call refactoring knowledge base should be used as input for
producing the maintenance backlog. We suggest creating a knowledge base containing
a list of the code smells and design principle violations (and their respective CQL
searching rules, so they can be detected in the source code), which are considered
relevant to CSoft’s context.

The knowledge base should contain also the corresponding refactoring and
restructuring strategies for each of the code smells and design violations (See Figure 2).
Each of the code smells or design violations should be assigned a level of Criticality
(high or low) depending of the potential negative consequences these may have in the
system (as deemed by the architects or developers). Each of the refactoring strategies
should be labelled according to their Cost (manual refactoring or automated refactoring)
and Risk (high, medium or low risk). Table 1 presents an example of one design attribute
(shotgun surgery) and its properties. It is deemed that this information could be useful for
deciding which refactorings to do in case modules with this attribute are identified.

This knowledge base will be stored in a common repository which all the members
from the teams and the architects will have access. A simple format like a Wiki could
suffice for this purpose, and it is recommended to pursuit simplicity in order to make the
information more accessible to the members with different levels of experience in the
team. This knowledge base is meant to support the planning of refactoring strategies.
For instance, the prioritization of refactoring tasks could be done according to the
potential negative effects of a given code smell or it can be used also for deciding which
refactorings to perform. Some refactorings have lower cost (they can be solved
automatically by using a tool) compared to others, which demand manual refactoring, so
that kind of information should be contained in the knowledge base in order to provide
practical information for refactoring decision making.

The process for assigning the values to the properties of the code smells and
refactorings; as well the process for updating the knowledge base will be explained in
section 3.3.

Figure 2: Class diagram to represent the connection between a design attribute and its

corresponding refactoring strategy

Design attribute Criticality Possible refactoring strategies Cost Risk

Move method Automated Medium
Move field Automated Low

Shotgun surgery

High

Inline class Manual High

Table 1: Theoretical example of an item in the refactoring knowledge base with some of the
properties of the design attributes and their corresponding refactoring

 11

3.3. Overview of the plan and roadmap
The overall plan is to incorporate the suggested activities in a “small scale” within the

“rehearsal period” (see section 2.6) in an incremental style. Afterwards, we intend to
evaluate the results from the small-scale version, and iterate with an adjusted “big-scale”
improvement process according to the results from the evaluation. “Small-scale” implies
that we will only involve a limited number of teams to adopt the changes in the
development process. We expect that this will enable a more concise process to be put
in place by the official release period in January 2010. The specific goals with the stages
are orthogonal to the steps specified in the PROFES manual [13].

Time scope Step Specific goals
Understanding of the problems Jan 2008 - April 2009 Step 1: Understand

Formulation and agreement of overall improvement
strategy

Definition of goals and process for measuring the goals May - June 2009

Step 2: Propose the plan

Step 3: Prepare plan Planning activities for implementing the process
change

Implementation of the improvement plan July - August 2009 Step 4: Implement plan

Step 5: Evaluate and adjust Evaluation of the improvement plan and adjustment of
the activities

Implementation of the adjusted improvement plan September-December
2009

Step 4: Implement adjusted
plan

Step 5: Evaluate and adjust
Evaluation of the improvement plan and adjustment of
the activities

January 2010 Step 6: Evaluate the overall
change and extend the scope
of the improvement plan

Evaluation of overall improvement plan and its impact
in the process and product

Table 2: Roadmap of the process improvement plan, steps and expected main outcome from
each of the steps in the process improvement plan

3.4. Steps and activities
This section presents a detailed description of the proposed steps (and corresponding

activities, their outcome, responsible and participants) for implementing, evaluating and
adjusting the process. The researcher in this case would be the process/product
improvement facilitator or initiator. The activities in each of the steps are assumed to be
sequential. The order of the steps might be cyclical, but this will be depicted clearly in
the overall roadmap in section 3.3.

Step 1: Understand the context. In order to understand the context and define a
realistic focus for the improvement plan, we suggest performing the following activities:
an explorative interview, identification of problem areas and literature review, and
motivational screening meeting.

Activity 1 – Interviews with software architects
Description Responsible Participants
In-depth interview with the architects from the four-person
architecture team. The main outcome from this activity will be the
interview transcripts.

Researcher(s) Architects

 12

Activity 2 – Identification of problem areas and potential solutions
Description Responsible Participants
Identification of main problem areas by doing text analysis on the
interview transcripts. This analysis should be complemented by a
literature review on the current technologies and empirical
knowledge on refactoring and code smells detection. The
outcome from this activity should be the identification of the
maintenance problems and the notion of an overall strategy,
which could address these problems (or a subset of the
problems).

Researcher(s) Researcher(s)

Activity 3 – Screening of engagement and plan feasibility
Description Responsible Participants
Motivational presentation and in-depth contextual inquiry (in the
form of open discussion) should be carried out in order to assess
the interest and engagement of the relevant constituency groups
(such as architects and managers). The presentation should: (a)
provide the evidence for the emergence of maintainability
requirements in the code base by describing the identified
problems, (b) propose the overall strategy for the improvement
plan and (c) conduct a brainstorming session in order to get more
specific improvement goals. The outcome from this activity will be
an assessment for a “green light” for the improvement plan and the
focus/scope for the improvement.

Researcher(s) Architects

Step 2: Developing the improvement plan. In order to draw a concrete improvement
plan with specific goals and enable its implementation, we suggest first presenting an
outline of the plan, its focus and scope. Secondly we suggest deriving the specific goals
for the process improvement, and finally deciding upon how to evaluate the results of the
improvement.

Activity 4 – Definition, presentation and negotiation of improvement plan
Description Responsible Participants
After the focus of the process improvement is clear, the
researcher should draw a more concrete proposal for the
improvement plan and present it to the architects. A discussion
should be held in order to “negotiate” or calibrate the plan
according to the architects’ notion of available resources, time
scope, priorities and costs. The result will be an improvement
plan comprising a description of steps, activities and time scope
of the whole improvement plan.

Researcher(s) Architects

Activity 5 – Concept mapping session for identifying the improvement goals
Description Responsible Participants
The researcher should plan and carry out a concept mapping
session in order to identify the goals of the improvement (based on
the identified problems in section 2.4) and define measures that
could operationalize the goals. The concept mapping session will
result in a list goals for the improvement and a list of measures or
“health indicators” to determine if the improvement in the process
is effective. Some examples of measures or health indicators that
might be useful for evaluating the effectiveness of the improvement
plan are suggested in Section 5, Appendix A.

Researcher(s) Architects,
Team lead,
and some
team
members

 13

Activity 6 –Plan for measuring the improvement goals (measurement plan)
Description Responsible Participants
A separate meeting should be planned and carried out by the
architecture team, in order to enable a process for collecting the
measurements needed for evaluating the improvement in the
process and the product. For each of the measures, the
participants should discuss and make sure that: the methods for
performing the measurement are practical, the required technical
infrastructure is available and it is possible to summarize the
measures into higher-level indicators that can be shown to
management in the final stages of the improvement process.

Architects Team leads,
Drift

Step 3: Preparing the implementation of the improvement plan. Once the goals of
the improvement are set and the means for measuring and evaluating the improvement
are defined, it is required to set the technical and knowledge framework we mentioned in
section 3.2, and prepare the different participants for the actual implementation of the
process/product improvement.

Activity 7 – Setting up the refactoring knowledge base
Description Responsible Participants
The researchers and the architects should build together the
“refactoring knowledge base”. Researchers initially suggest a list of
design attributes and a discussion should be held with all the
participants about the importance of those and the risks associated
to them in the context of CSoft.

Active discussion and results from the literature review from activity
2 should be used in order to define the properties of the design
attributes (code smells and design violations) as described in
section 3.2.

It should be decided upon the technical infrastructure for hosting
the knowledge base, and a process for updating the knowledge
base (e.g., access levels upon architects, researchers, team leads
and team members).

An example of defining the risk property of a refactoring strategy
could be: “Some recent literature in empirical software engineering
has determined that for a code smell M, there are two types of
possible refactorings (Y and X), where Y is more prone to change
the dependency structure in the code, therefore more risky than X.

Researcher(s)
Architects

Architects,
Drift

Activity 8 –Introduction of improvement plan to team members
Description Responsible Participants
The researcher(s) and the architects will describe the improvement
plan, responsibilities and changes that will become effective in the
development process (including the process measurement
activities) will be informed to everyone who is involved in the
process.

Researcher(s)
Architects

Architects,
Drift,
Team leads,
and team
members

Activity 9 – Setting up the NDepend tool and provide mentoring to the team members
Description Responsible Participants
The architects should plan and implement informative and training
sessions for the team leaders so they can learn how to use the
NDepend tool.

Architects

Team leads

Activity 10 – Setting up the NDepend tool and provide mentoring to the team members
Description Responsible Participants
The architects should plan and implement informative and training
sessions for team leaders and developers to use/update the
refactoring knowledge base in their every day work.

Architects

Team lead,
and
developers

 14

Step 4: Implementation of the plan. The suggested changes in the development
process are implemented in this step. The specific activities in this step are:
implementation of measurement plan, preparation for retrospective, maintainability
assessment during the retrospective, planning meeting for the mini-iteration,
implementation of maintenance tasks during the mini-iteration, retrospective of mini-
iteration, updating of maintenance backlog and refactoring knowledge base.

Activity 11 –Implementation of measurement plan during normal iterations
Description Responsible Participants
During the normal development iteration, the architects, team leads
and team members will keep track of the “health indicators” agreed
upon from the activity 5 and 6. Architects and team leads are mainly
responsible of making sure that the activities arranged for the
process measurement are followed.

Architects,
Team leads

Architects,
Team leads,
Team
members

Activity 12 –Preparation for extended retrospective
Description Responsible Participants
The architects will collect and summarize all the “health indicators”,
the design attributes from the code as well as the diagrams
generated by NDepend so they can be used in the retrospective

Architects
Team leads

Architects
Team leads

Activity 13 –Extended retrospective/maintainability assessment
Description Responsible Participants
The architects will present the data and diagrams generated by
NDepend and packages or classes with high values will be
identified.
The team leads and the architects will present the “health
indicators” collected during the iteration (e.g., burn-down charts,
defect report summary).
Team members will report on the main problems and difficulties
faced during the iteration.
The discussion process will consist of relating the identified
packages, classes or methods to practical issues (e.g. if the
package has a high bug rate, if the class is well known for its
“unpredictable behaviour”, etc). This will enable to relate the design
attributes to different types of issues and could help to categorize
the design attributes according to the “severity” of their practical
consequences3.
Based on the discussion, cross cutting concerns are identified and
high-level preventive maintenance goals are formulated. The
outcome from this retrospective will be the Maintenance backlog.

Architects,
Team leads,
Team
members

Architects,
Team leads,
Team
members

Activity 14 –Iteration planning meeting for mini-iteration
Description Responsible Participants
Teams plan for their mini-iteration, by using the maintenance
backlog.
The architect will participate in the prioritization of the maintenance
backlog items.
Once the backlog items are prioritized for the current mini-iteration,
the team will use the refactoring knowledge base and active
discussion to breakdown the backlog into a series of atomic
refactorings. The choice of refactorings as well as the strategies for
high level restructuring will be decided based on discussion and the
refactoring knowledge base. Planning poker can be used for
estimating time for refactorings.

Team
members

Architects,
Team leads,
Team
members

3 For the next retrospective the ”health indicators” from the past iteration will be compared to the
latest iteration to observe any meaningful differences.

 15

Activity 15 –Implementation of measurement plan during mini-iteration
Description Responsible Participants
Normal rules for development iteration apply.
The architect is involved (during initial stage as fostering agents)
with the team lead and team members.
Team members should keep track of the refactoring effort as well
as other “health indicators”.

Team
members

Architects,
Team leads,
Team
members

Activity 16 –Retrospective of mini-iteration
Description Responsible Participants
Retrospective of mini-iteration is performed to assess the effort and
risks involved in different refactorings applied during the iteration.
Based on the results from the retrospective, the refactoring
knowledge base and the maintenance backlog are updated, Also
discussion should be held on lessons learned, good practices, bad
practices for adjusting the mini-iteration practices.

Team
members

Team leads,
Team
members

Step 5: Evaluating and adjusting the improvement plan.

Activity 17 –Evaluating the implementation of improvement plan
Description Responsible Participants
Before starting on the new iteration, a discussion should be help
on lessons learned from the normal iteration, the extended
retrospective, successful changes, unsuccessful changes,
difficulties, perceived benefits, and based on that provide
recommendation on continuing the process or adjusting the
activities proposed in the improvement plan, in a very similar style
to post-mortem analysis. Once the adjustments are decided, the
architects and team leads should make them effective by informing
the team members of the changes.

Architects,
Researcher(s)

Architects,
Team leads

Activity 18 –Implementing the adjustments in the improvement process
Description Responsible Participants
A new iteration with the changes in the improvement plan is held.
In the same way as in activity 11, the architects, team leads and
team members will keep track of the “health indicators” agreed
upon from the activity 5 and 6. Architects and team leads are
mainly responsible of making sure that the team members follow
the activities arranged for the process measurement.

Architects,
Team leads

Architects,
Team leads,
Team
members

Step 6: Extend the scope for the improvement plan.

Activity 19 –Evaluating the improvement plan – Mini-Retrospective (2nd stage)
Description Responsible Participants
At the end of the second mini-retrospective, there should be a
meeting where the architects will present lessons learned from the
whole process, the successful practices, the unsuccessful
practices, results on improvements on “health indicators”,
recommendation on continuing the process which should be based
on evidence (anecdotic and empirical). Based on this information, a
discussion will be held in order to decide on extending the scope of
the improvement plan, keeping the improvement plan as it is,
modifying it or cancelling it.

Architects

Managers,
Architects

 16

4. Rationale behind improvement plan
The current section provides the reasoning behind the main strategy, which is the usage
of semi-automated code inspection and the integration of maintenance evaluations in the
retrospectives, as well as the introduction of mini-iterations for restructuring purposes.
The rationale is linked back to the problems identified in section 2 and sources found in
the available literature related to software process improvement, agile methods and
software design. Additionally to the rationale on the main strategies, we will also
describe the reasoning behind the choice of NDepend and the usage of the refactoring
knowledge base. The rationale for some other decisions in the plan is explained as well.

Why maintenance evaluations? A structured and repeatable assessment of the
attributes of the code and their effects in the development process and product quality
could drive the efforts for restructuring and enhancing the design of the code. It also will
enable the observation of the effects of the changes in the code from the identified
problems (see section 2.4) point of view.

Why semi-automated code inspection? As described in 2.5, the architects have found
that automation for improving the quality is necessary in their development flow.
Nevertheless, technology for fully automated refactoring is not yet available due to the
complexity that is involved in this process. According to Anda [14], a combination of
static analysis and subjective judgment is likely to be a feasible option since they both
cover different aspects of maintainability and are therefore complementary (this is the
notion of “semi-automated”). Quantitative data (design attributes) such as measures of
code and code smells could guide the exploration of extensive code thus may facilitate
de identification of problematic areas/modules in a reasonable time frame.

Why integrate maintenance evaluation to retrospectives? Retrospectives are good
opportunities to evaluate the overall maintainability of the system, because results from
static analysis can be related to the experiences from the teams, team leads and the
architects during the iteration. Another good aspect of retrospectives is that they are
periodical, thus already integrated in the normal working flow. This considerably
facilitates the implementation of the maintenance evaluation and at the same time it
supports the aim of the architects in section 2.5 where it was stated the need of
continuous monitoring of quality.

Retrospectives also represent a common space where the different teams integrate after
iterations. This is a good opportunity to exchange knowledge on the issues faced by the
different teams, potentially leading to the identification of cross cutting concerns by
comparing the types of problems and domain objects which were displaying those
issues. This may be addressing one of the problems identified in section 2.4
“Organization and process”.

Why introduce mini-iterations? As mentioned in section 2.6, a major factor for this
choice is that the management has given a “period of grace” of six months where new
development is virtually “frozen” in order to focus on restructuring and refactoring tasks.
Although some development will still performed, there will be enough resources for a
dedicated time span for refactoring. There are mainly two options for allocating the time
span: one is to incorporate the refactoring activities to the normal workflow, by adding
refactoring tasks into the product backlog. This first option has a series of
disadvantages: one is that is hard to keep track of refactoring effort measurement, and
second is the potential reluctance of developers/team leads/managers to prioritize
refactoring activities over development or defect correction (which may have higher
priorities). Also, if the refactoring effort is not recorded, then it will be considerably
difficult to assess the cost-effectiveness of refactoring and restructuring strategies.

The second option is to have a dedicated mini-sprint for refactoring, with its own
maintenance backlog. This second option facilitates the monitoring of the refactoring

 17

process and the planning of the refactoring activities, as opposed to having these
activities mixed up with the normal development activities. Also in the initial stage when
the refactoring activities are introduced, this may lead to an increase of defects due to
the lack of knowledge on effects of different refactorings. A separate iteration will
allocate space for integration/regression testing, and this will ensure that defects are
identified and corrected after the refactoring changes, resulting in higher confidence of
the system quality. This also will provide data on how risky are certain refactorings by
comparing the type of refactorings performed versus reports of defects after the
refactorings have been implemented.

Having a separate iteration gives space for planning the refactoring. This will enable to
define levels of decision for refactoring (who is responsible for what and when?). This is
a process, which will be highly difficult to monitor and control without explicit planning.
An anecdotic case from CSoft is a developer who had the tendency to refactor “out of
control” holding the code for long periods of time, not letting anyone to modify his
module.

Having a separate maintenance backlog may avoid the “big bang” restructuring
tendency and will enable the refactoring changes to be atomic (through maintenance
backlog items), so tests could be run after each backlog item is finished. Nevertheless, is
important to notice that not all the refactorings can be atomic, so risk and effort need to
be estimated by the responsible of the task.

Nevertheless we do not imply that this model must be kept in the long run. Once
refactoring activities become more mature in the development teams and the effort/risk
of refactoring activities become more predictable, then it should be possible to have the
mini-iteration merged into the normal development iteration.

Why to have a “refactoring knowledge base”? We conjecture that a major reason of
the inherent complexity of refactoring tasks is because there is a lack of information
(from empirical viewpoint) about the costs and effects of refactorings in the system and
also there are not too many automated means for ensuring compliance with “good
design principles”. This difficults the process of making “smart” refactorings, meaning
choosing the refactorings that are less costly, will give the most benefits and will cause
no side effects. A starting point here is to use some of the scarce evidence in effects of
refactorings and their indicators (code smells and design principle violations) and start
building a knowledge base by observing the effects of the implementation of these
refactoring in the system. This will enable a learning process, which will support better
understanding of the system, more confidence in refactoring decisions and loose the
“fear to change” (see section 2.4). The usage of software measures allows the usage of
the knowledge derived from empirical studies on measures of software structural
attributes, and this we deem it useful for identifying problematic areas in the code.

Why use NDepend? The usage of NDepend is because is already used by the
architects and it enables the detection of code smells and design principle violations
besides the calculation of the code measures. Besides this functionality, the tool
provides different diagrammatic views, which could facilitate considerably the discussion
in the teams.

Why incremental approach and gradual improvement? As mentioned in section 3,
we suggest incremental adoption [15] of the activities by implementing the process
change by only involving some teams. Hodgetts [16] recommends incremental
integration of agile activities in the development flow, and deems this strategy as a key
factor for successful adoption of agile development practices in the industry.

In order to enable the team members to assimilate the process and learn about
refactoring by actually “implementing them” (-- the “learning and doing” approach by
Hodgetts) an incremental approach is the most recommended.

 18

Conversely, we don’t expect high-impact or immediate improvements in the results from
the changes implemented in the process. This means that we would expect a gradual
improvement in the understandability and performance of the teams with respect to the
code and maintenance tasks. Is not easy to determine time span for measuring the
impact of an improvement plan, an reason could be that some projects have a long life
cycle (e.g. Siemens) where they expect that the improvement will provide improved
performance in three-to-five years (see Paulish et al. [17]). We would expect that some
aspects might have immediate responses as some other may not, and this could be
observed during the retrospectives. Architects need to have “leadership” spirit in order to
convince the developers that the changes put in place in the process are the best things
to do although no clear/immediate results could be seen after the first iterations. The
important thing is to make people aware of the effort curve before any benefits can be
clearly perceived.

The initial evaluation of the process improvement can also help to determine the scope
in terms of the time span expected for perceived benefits (management of expectations)
and also the evaluation of the practices so far (calibration of activities and evaluation of
the strategy as a whole and the individual activities).

Why involving architects in most of the team activities? Architects already spend
some time with junior developers by doing refactoring together; this activity could be
incorporated as a form of refactoring by pair programming between team leads and team
members. The feedback process when planning and implementing refactorings could be
a good alternative for loosing the “fear of change” and spreading the knowledge of the
system across the members of the team. The fostering of developers by architects is
possible because of the current size of the development organization and because each
team has a “sponsor” architect.

 19

5. Appendix
Appendix A: Measurements for evaluating the maintainability and other product qualities
improvement

1. Perceived ease for implementing changes (measurement of “mood”)
2. Perceived ease for learning new modules (by the incoming developers)
3. Perceived level of interaction between the “areas of concern” per iteration
4. Test coverage (currently at 60%) per iteration
5. Number of issues reported from system and integration testing per build per iteration
6. Errors rate reported per build per iteration
7. Number of issues reported from customers per iteration
8. Effort for actual change implementation per iteration, per release
9. Effort for fixing reported bugs after release
10. Effort for conducting the refactoring/redesign
11. Total effort per iteration (including implementation, testing and issue solving)

Appendix B: Design attributes from [18] and [19] deemed useful by the architects in their project
1. Interface segregation principle or ISP (separation of concerns)
2. God class (related to ISP)
3. Shotgun surgery
4. Unused class/method/parameter/field
5. Misplaced class (Odd man out)
6. Feature envy (Anemic domain)
7. God Method
8. Single Responsibility Principle

 20

6. References
1. Gilb, T., Competitive Engineering: A handbook for systems engineering, requirements engineering,

and software engineering using Planguage. 2005: Elsevier Butterworth-Heinemann. 480 pages.
2. Fægri, T.E. and G.K. Hanssen, Collaboration and process fragility in evolutionarily product

development. IEEE Software, 2007. 24(3): p. 96-104.
3. Schwaber, K., Beedle, M., Agile Software Development with Scrum. 2001: Prentice Hall.
4. Hanssen, G.K. and T.E. Fægri. Agile Customer Engagement: a Longitudinal Qualitative Case

Study. in International Symposium on Empirical Software Engineering (ISESE). 2006. Rio de
Janeiro, Brazil.

5. Hanssen, G.K. and T.E. Fægri, Process Fusion - Agile Product Line Engineering: an Industrial
Case Study. Journal of Systems and Software, 2008. 81: p. 843-854.

6. Smaccia, P. Getting rid of spaghetti code in the real-world: a Case Study. 2008; Available from:
http://codebetter.com/blogs/patricksmacchia/archive/2008/09/23/getting-rid-of-spaghetti-code-in-
the-real-world.aspx.

7. Smaccia, P. Code Query Language. 2009; Available from:
http://www.ndepend.com/Features.aspx#CQL.

8. Fagan, M., Design and code inspections to reduce errors in program development, in Software
pioneers: contributions to software engineering. 2002, Springer-Verlag New York, Inc. p. 575-607.

9. Chidamber, S.R. and C.F. Kemerer, A metrics suite for object oriented design. Software
Engineering, IEEE Transactions on, 1994. 20(6): p. 476-493.

10. Marinescu, R., Measurement and quality in object-oriented design, in Intl Conf. on Softw.
Maintenance (ICSM). 2005, IEEE. p. 701-704.

11. Fowler, M., et al., Refactoring: Improving the Design of Existing Code. 2000: Addison-Wesley.
12. Gamma, E., et al., Design Patterns. Elements of Reusable Software, ed. A. Wesley. 1995.
13. Fraunhofer, PROFES User Manual. 2000, Stuttgart: Fraunhofer IRB Verlag.
14. Anda, B. Assessing Software System Maintainability using Structural Measures and Expert

Assessments. in Software Maintenance, 2007. ICSM 2007. IEEE International Conference on.
2007.

15. Orlikowski, W.J. and no, Radical and incremental innovations in systems development : an
empirical investigation of case tools. 2003, Massachusetts Institute of Technology (MIT), Sloan
School of Management.

16. Hodgetts, P. Refactoring the development process: experiences with the incremental adoption of
agile practices. in Agile Development Conference, 2004. 2004.

17. Paulish, D.J. and A.D. Carleton, Case studies of software-process-improvement measurement.
Computer, 1994. 27(9): p. 50-57.

18. Benestad, H., B. Anda, and E. Arisholm, Assessing Software Product Maintainability Based on
Class-Level Structural Measures, in Product-Focused Software Process Improvement. 2006. p. 94-
111.

19. Marinescu, R., Measurement and Quality in Object Oriented Design, in Department of Computer
Science. 2002, "Politehnica" University of Timisoara.

