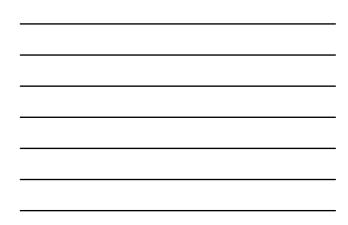
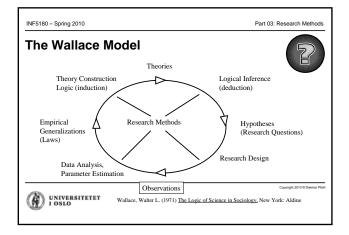
INF5180: Software Product- and Process Improvement in Systems Development

Part 03:


Research Methods



Spring 2010

Dr. Dietmar Pfahl email: dietmarp@ifi.uio.no

INF5180 – Spring 2010	Part 03: Research Methods
Research Question – Exa	amples
 How many defects are 	detected in the field?
 How effective is testing 	?
 What skills do our arch 	itects need?
 What agile practices do 	o our software engineers apply?
 What types of defects of typically make? (and w 	do our newly hired programmers hy?)
 What requirements ana (and why?) 	alysis method works best for us?
Pag	e 4 Copyright 2010 © Dietmar Plahi

UNIVERSITETET

INF5180 – Spring 2010 Part 03: Research	Methods
Exercise	
 Hanna is a young researcher in an industrial research lab. She wou to understand how developers in the business units of her company (or not) UML diagrams during software development. This is becau a student, her professors recommended UML diagrams be used du software design, but her recent exposure to industrial practices use the developers in the company to which her lab belongs indicates to UML is rarely used. Her goal is to explore how widely UML diagran used within her company (and in industry in general), and more specifically how these diagrams are used as collaborative shared a during software development. 	y use ise, as uring ed by that ns are
 What could be Hanna's research question? 	
Page 5 Cooyder 201	10 © Dietmar Pfahl

INF5180 – Spring 2010

Part 03: Research Methods

Exercise (cont'd)

Possible Research Question:

• How widely are UML diagrams used as collaborative shared artifacts during software development?

This question pre-supposes:

- We know what a "shared collaborative artifact" is
- We can reliably identify "shared collaborative artifacts"

Page 6

- We can reliably say what "UML diagrams" are
- It is clear what we mean by "software development"

UNIVERSITETET

INF5180 – Spring 2010		Part 03: Research Methods
Exploratory Rese	arch Question	IS
 Existence questions → – Example: Do collabora 		ually exist?
properties? / How can it be	categorized? / How can	What is X like? / What are its we measure it? / What is its components relate to each
 Example: What are all 	the types of shared colla	aborative artifacts?
Descriptive comparativ	e questions \rightarrow How d	loes X differ from Y?
 Example: How do UML design representations 		her representations of, say,
UNIVERSITETET	Page 7	Copyright 2010 © Distimar Plah

INF5180 – Spring 2010	Part 03: Research Methods
Other Types of Research Qu	estions
 Knowledge Questions: focusi Questions about the norm phenomenon (<u>Base-rate (</u> Questions about relations phenomena (<u>Relationship</u>) Questions about causality (<u>Causality Questions</u>) 	al pattern of occurance of a <u>Questions</u>) hips between two different Questions)
Design Questions: concerned	d with how to do things better
Page 8	Copyright 2010 © Dietmar Pfahl

INF5180 – Spring 2010

Part 03: Research Methods

Copyright 2010 © Dietmar Pfahl

Knowledge Questions

• Base-rate:

- Frequency and Distribution Questions → How often does X occur? / What is an average amount of X?
- Example: How many distinct UML diagrams are created in software development projects in large software companies?
- Descriptive-Process Questions
 → How does X normally work? / What is the process by which X happens? / In what sequence do the events of X occur?

Page 9

Example: How do software developers use UML diagrams?

UNIVERSITETET

INF5180 – Spring 2010	Part 03: Research Methods
Knowledge Questions	(cont'd)
	stions \rightarrow Are X and Y related? / Do correlate with occurrences of Y?
, ,	ect managers' claims about how use UML correlate with the actual
UNIVERSITETET	Page 10 Copyright 2018 & Deamer Plant

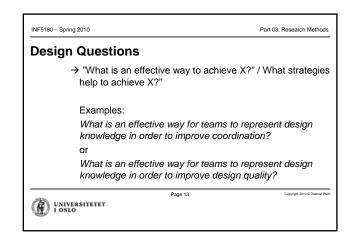
INF5180 – Spring 2010		Part 03: Research Methods
Knowledge Ques	tions (cont'd)	
 Causality: 		
What caus	Questions → Does X cause Y? / D es Y? / What are all the factors that X have on Y?	
Example: I the design	Does the use of UML diagrams im _l	prove the quality of
	Comparative Questions \rightarrow Does X s X better at preventing Y than Z?	
	Does the use of UML diagrams im more than other graphical design	
 Causality-0 	Comparative Interaction Questions	6
UNIVERSITETET	Page 11	Copyright 2010 © Distmar Plahl

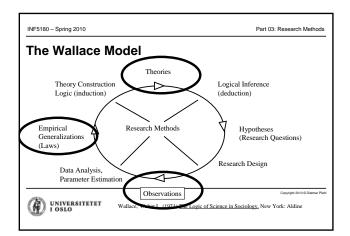
INF5180 - Spring 2010

Part 03: Research Methods

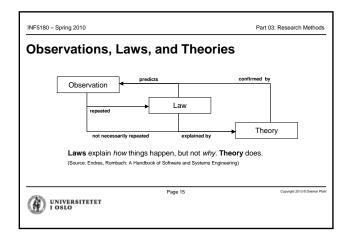
Copyright 2010 © Dietmar Pfahl

Knowledge Questions (cont'd)

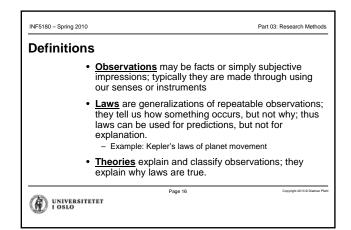

• Causality:

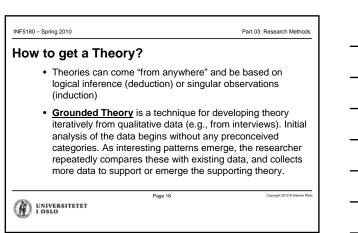

– Causality-Comparative Interaction Questions \rightarrow Does X or Z cause more Y under one condition but not others?

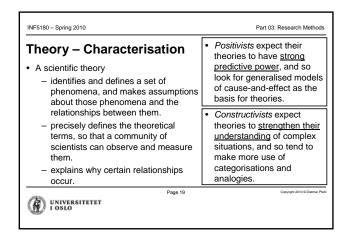
Example: Does the use of UML diagrams improve the quality of the design more than other graphical design notations in large projects, but not otherwise?

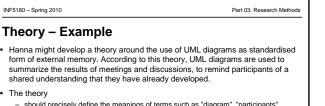

UNIVERSITETET

Page 12

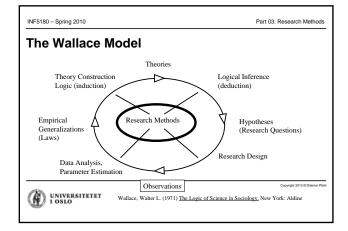




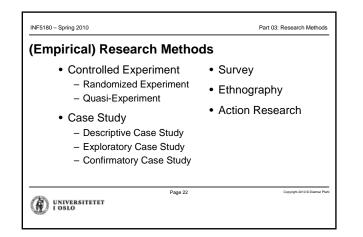


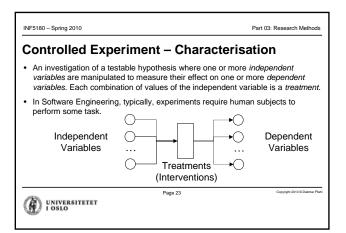


The Central Ro	le of Observation	
	 <u>Theories</u> can come "fi be based on logical ini or <u>singular observati</u> 	ference (deduction)
	 A <u>law</u> is based on <u>rep</u> under similar condition 	
	 In order to <u>test (refute</u> <u>observations</u> must be designed <u>empirical st</u> 	e made in well-
UNIVERSITETET	Page 17	Copyright 2010 © Dietmar Plat

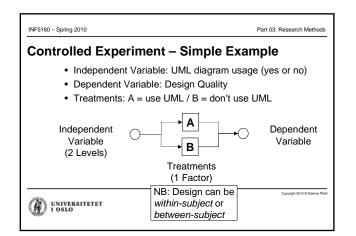

should precisely define the meanings of terms such as "diagram", "participants", "discussions", in order to identify them in any studies performed.

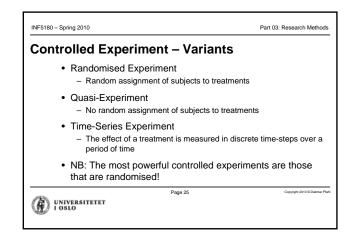
Page 20

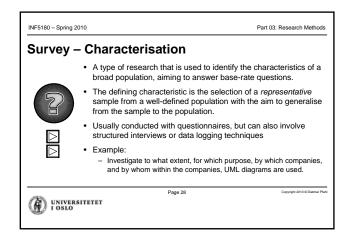

should explain why developers chose to use UML diagrams in some circumstances but not in others, and why they include certain things in their diagrams and exclude others. - should be able to predict qualities of the diagrams that a team produce based on certain factors, and/or predict the quality of the software produced based on the use of UML diagrams.

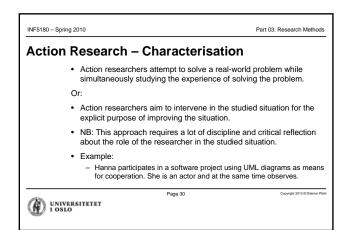

(A) UNIVERSITETET

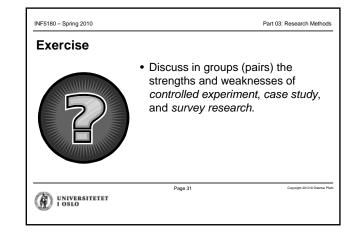
The theory










Case Study – Char	acterisation	
	n its real-life context, on phenomenon and c	
design in many diff	erent ways (and othe	nmunicate about software r than, say, conducts a case study in a
	case selection / clearl	y stated research question ng the observations
<i>m</i>	Page 26	Copyright 2010 © Dietmar Pf

INF5180 - Spring 2010	F	Part 03: Research Methods
Case Study	– Variants	
	Descriptive Case Study – Purely observational / Focus on "What	at happens?"
	 Explorative Case Study Initial investigation of some phenome hypotheses and build theories / Focu Why?" 	
	Confirmatory Case Study	
	 Start out with a given theory and try t with a series of case studies covering 	
UNIVERSITETET	Page 27	Copyright 2010 @ Distmar Pla

INF5180 - Spring 2010

Part 03: Research Methods

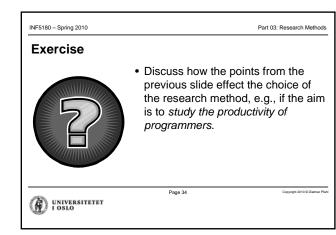
Experiment or Case Study or Survey?

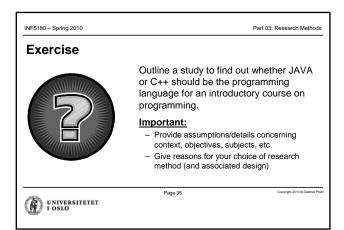
- Experiments give the researchers freedom to isolate a defined effect and to hold other things constant. (→ research in-depth)
 - Often difficult to avoid that people respond differently than they would have done in a natural environment. Also, you might have a too restricted setting and omit important influencing factors that play a role in a natural environment
- · Case-studies have the advantage that you observe people doing what they are
- actually doing in their natural environment. (→ research in-the-typical) It is limited what you can control without interfering with natural activity.
- Surveys provide researchers with information about what many people (think they) are doing. (\rightarrow research in-breadth) - No control whatsoever (issues include data validity and representativeness)

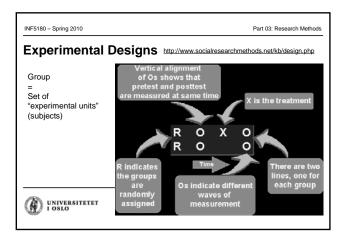
Page 32

INF5180 - Spring 2010

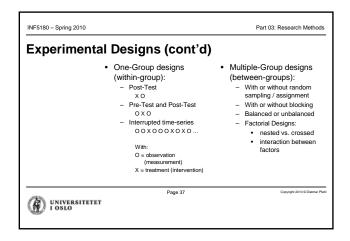
(A) UNIVERSITETET

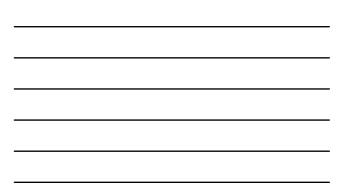

(A) UNIVERSITETET

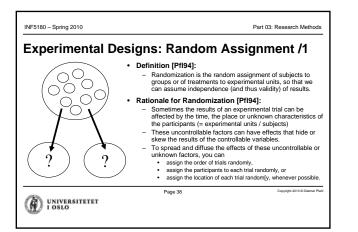

Part 03: Research Methods

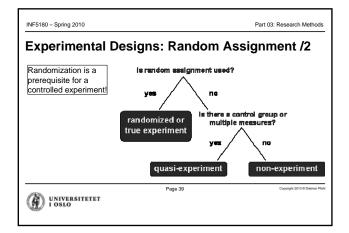

Selecting the Research Method

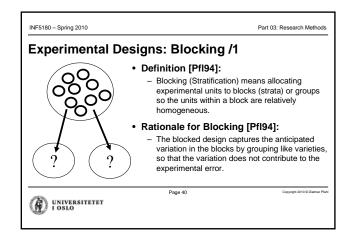
- The choice of method depends among other things on:
 - Suitable study subject (e.g., do participants have enough experience?) - Possibility to control the environment
 - The size/scale/cost of the study
 - The need for generality in the results
 - Availability of information/data and other resources

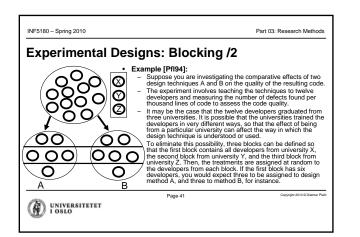

 - What is the purpose of the study? (exploration, prediction, understanding of cause-effect relations, applicability of results in industry,)
- Difficult to provide general recommendation with respect to choice of method Page 33

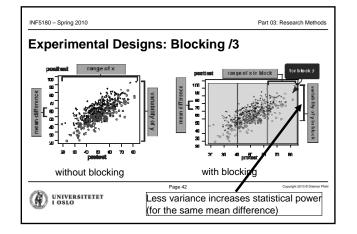


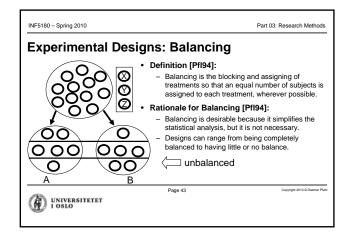


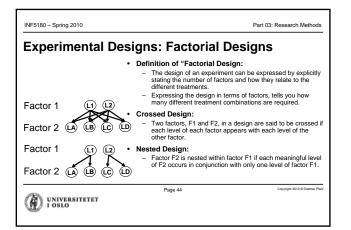


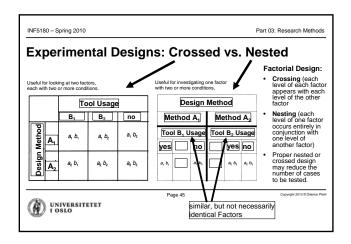


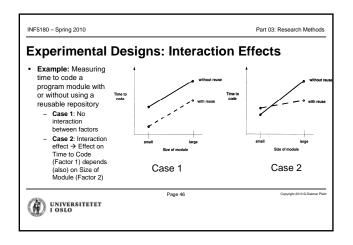


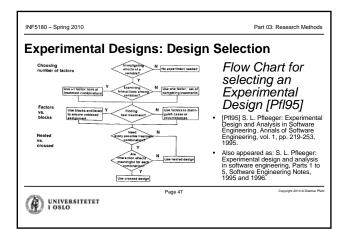


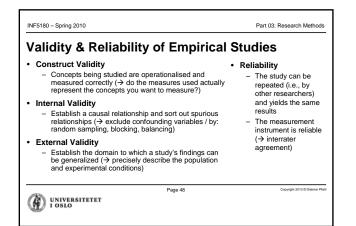


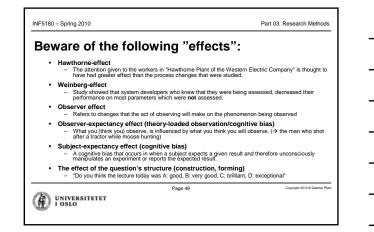


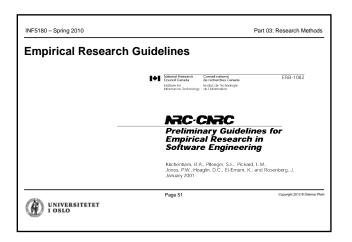


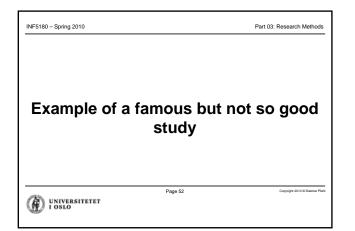






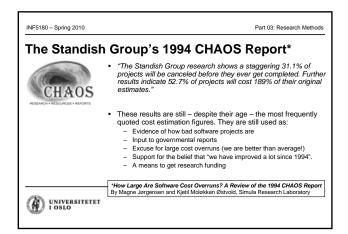


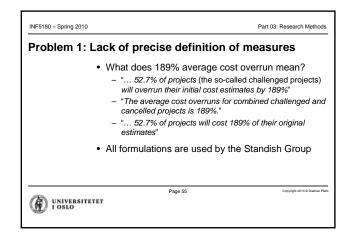

INF5180 – Spring 2010	
Literature	

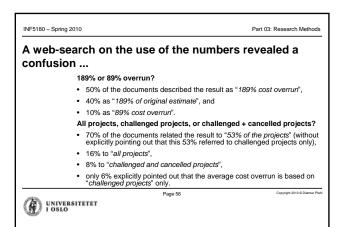

 T. Dybå, B. A. Kitchenham, M. Jørgensen (2004) "Evidence-based Software Engineering for Practitioners", *IEEE Software*

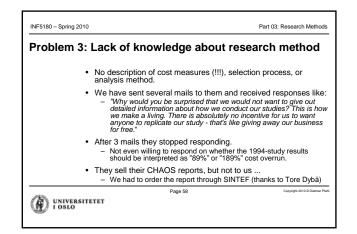
Part 03: Research Methods

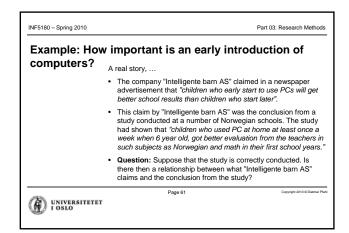
- Easterbrook et al. (2008) "Selecting Empirical Methods for Software Engineering Research", in F. Shull, J. Singer and D. I. K. Sjøberg: Advanced Topics in Empirical Software Engineering, Chapter 11, pp. 285-311, Springer London (ISBN: 13:978-1-84800-043-8)
- A. Endres and D. Rombach (2003) A Handbook of Software and Systems Engineering Empirical Observations, Laws and Theories, Addison-Wesley
- S. L. Pfleeger (1995-96) "Experimental design and analysis in software engineering", Parts 1 to 5, Software Engineering Notes
- H. Robinson, J. Segal, H. Sharp (2007) "Ethnographically-informed empirical studies of software practice", in *Information and Software Technology*, 49(6), pp. 540-551
- W. L. Wallace (1971) The Logic of Science in Sociology, New York: Aldine
 R. K. Yin (2002) Case Study Research: Design and Methods, Sage, Thousand Oaks
 - Page 50 Copyright 2010 DD


UNIVERSITETET



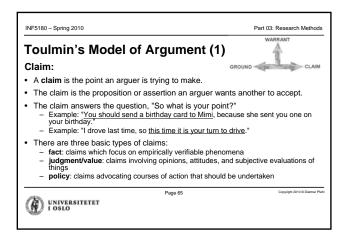

haos Repor	t" by The S	Standish	Group (1	994):
	Cost (\$)	Succeeded	Challenged	Failed
	< 750K	55%	31%	14%
50	750K-1.5M	33%	45%	22%
	1.5M-3M	25%	47%	28%
	3M - 6M	15%	52%	33%
	6M-10M	8%	51%	41%
	> 10M	0%	51%	49%
UNIVERSITETET	Pag	e 53	c	opyright 2010 © Dietr

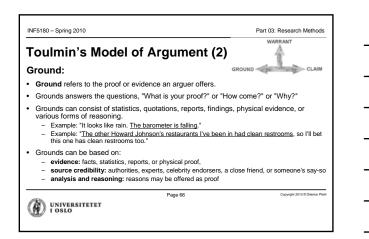


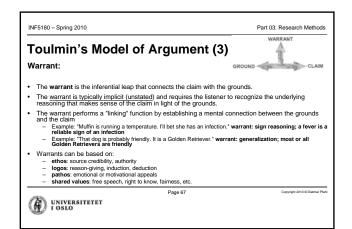

roblem 2: La	ck of corresp	ondence wit	h other surve
Study	Jenkins [9]	Phan [10]	Bergeron [11]
Year	1984	1988	1992
	23 software	191 software	89 software
Respondents	organizations	projects	projects
Country of			
Respondents	USA	USA	Canada
Average Cost			
Overrun	34%	33%	33%
	Pa	ae 57	Copyright 2010 @ Di

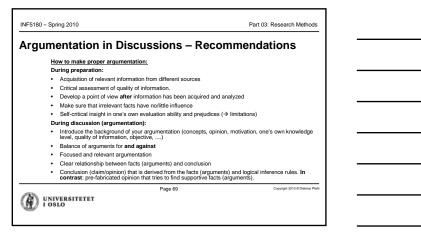

Potential reasor	s for high cost ov	erruns
- Seems i.e., 89	nterpretation of own results. a that initial results were interpreted % cost overrun. Later, however, th bed as 189% cost overrun.	
– Under	ry for cost underrun in data col runs described as 0% overrun? t challenged on time or functionalit	
randoi storie	en called and mailed a number of n sample of top IT executives, ask s [!!!]. During September and Octo nority of the 365 surveys we need	king them to share failure ober of that year, we collected
	Page 59	Copyright 2010 © Dietmar Pfahl

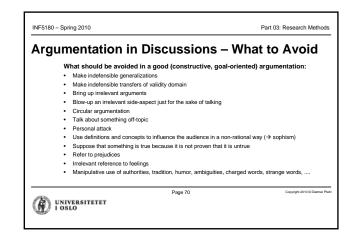
INF5180 - Spring 2010	Part 03: Research Methods
How to use study results	properly?
Page 60	Copyright 2010 © Diezmar Pfahl




Part 03: Research Methods
 Argumentation versus Persuasion
 [cf. "Advocacy and opposition" by Rybacki & Rybacki]
 "Argumentation is a form of instrumental communication relying on reasoning and proof to influence belief or behavior through the use of spoken or written messages."
 "Persuasion is an attempt to move an audience to accept or identify with a particular point of view"
 Question 1: What is the difference between argumentation and persuasion?
 Question 2: What is the relationship between empirical study methods and argumentation?


What is an A	raumont?
What is all A	i guinent i
	Toulmin's Model of Argument
	 Stephen Toulmin, originally a British logician, is now a professor at USC. He became frustrated with the inability of formal logic to explain everyday arguments, which prompted him to develop his own model of practical reasoning.
	[Source: http://commfaculty.fullerton.edu/rgass/toulmin2.htm]
480.	Page 63 Copyright 2010 D Distmar Plahl





INF5180 - Spring 2010	Part 03: Research Methods		
Toulmin's Model of Argument (4)			
•	The second triad of Toulmin's model involves three additional elements:		
•	Backing provides additional justification for the warrant. - Backing usually consists of evidence to support the type of reasoning employed by the warrant.		
•	The qualifier states the degree of force or probability to be attached to the claim. - The qualifier states how sure the arguer is about his/her claim		
•	The rebuttal acknowledges exceptions or limitations to the argument. - The rebuttal admits to those circumstances or situations where the argument would not hold.		
UNIVERSITETE	Page 68 Copyript 2010 Diamar Plat		

INF5180 – Spring 2010		Part 03: Research Methods
Argumentation –	Ethics	
– Kno – Goo – Rati – "Arg	I standards for argun wledge. Preferably from d intensions. Especially, onality. umentation freedom". Re we other argumentation.	different viewpoints. no "hidden agendas". espects other's right
UNIVERSITETET	Page 71	Copyright 2010 to Diesmar Plaht