
INF5180: Software Product- and
Process Improvement in Systems
Development
Part 04:

Problem Solving and
Improvement – Individually

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no

Spring 2010

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 2

Part 04: Problem Solving and Improvement – Individually

Software Engineering is Problem Solving

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 3

Part 04: Problem Solving and Improvement – Individually

”Can you please solve this problem for me?”
• ”OK, I’ve solved similar problems

before. Can you describe a bit
closer what you wish to get?”

.....

• ”I’ve now started to solve the
problem. Do you want <A> or
?”

.....

• ”Look, here is the solution! Isn’t it
nice? Does it satisfy your need?”

A general process for solving problems:

1. Understand the problem

2. Design and realize a solution

3. Verify & validate the solution

SE T G
O

A
L S

PLAN

A
N

A
LY

S
E

CHARACTERISE
PACKAGE

EXECUTE

Pr
od

uc
t -Process-Dependency

PPD

PRODUCT

O
rg

an
isa

t ional and Project Processes

PROCESS

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 4

Part 04: Problem Solving and Improvement – Individually

Problem Solving Strategy – Divide and Conquer
• A problem can always be

split into sub-problems
which can further be split
etc...

• Splitting-up increases the
level of detail which, in turn,
– increases accuracy
– slows down progress

• Process for “divide & conquer”:
1. Define the problem
2. Split-up the problem into sub-

problems which can be solved,
and
repeat this until all sub-problems
can be solved

3. Integrate sub-solutions so that it
solves the original problem

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 5

Part 04: Problem Solving and Improvement – Individually

Universal Procedure for Problem Solving [Hohmann – Ch. 1.1.]

Verify (and validate) the SolutionDesign (and realize)
a Solution

Understand the
Problem

Problem Solving Process

Elicit
Requirements

(Needs)

Explore
the

Domain

Identify
Sub-

Problems

Select
Plans

Create
and Modify

Plans

Determine
Interactions

(Dependencies)

Implement
the

Design

Evaluate
React to

Evaluation

Review
(Inspect)

the Solution

Execute
the

Solution

Change/Modify
Plans and their

Interactions

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 6

Part 04: Problem Solving and Improvement – Individually

Problem Solving – Methods
• Method = “a disciplined process for generating a set of models that

describe various aspects of a software system under development,
using some well-defined notation.” (Booch)

• Notes:
– It is nonsense to say that one method is (always) better than another

• NB: The appropriateness of a method is problem, situation, and person
dependent.

– Within a project (or organization) only one (most appropriate)
method should be chosen.

• This is sometimes not easy to achieve.
• The worst thing is to let choose everybody their own method.

(Question: Why?)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 7

Part 04: Problem Solving and Improvement – Individually

Problem Solving – Methods
• Describe systematic procedures to make better systems by providing

structures that:
– “automate” parts of the problem solving process

• e.g. standardized refinement into sub-problems via “architectural styles” and
design patterns

– facilitate collaboration during the problem solving
• e.g., by dividing the development into phases, and by using interface

descriptions and coding standards
– counteract typical “weaknesses” in humans

• e.g., it is tempting to directly jump to the problem solution (the code) before
the problem is understood (the analysis)

– simplify reuse of experience
• e.g., through that everyone uses the same development models and coding

standards, and perhaps pair-programming and formal inspections

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 8

Part 04: Problem Solving and Improvement – Individually

Problem Solving – Mental Models (Plans)
• What Hohmann calls Plan is a stereotype solution to a problem. It is also a

private solution that only exists in the head of a person who has solved
similar problems before (i.e., it is a Mental Model).

• A pattern is an externalized and generalized plan (conceptual model)
– Design Patterns are just this: experts used time and effort to describe solutions

to design problems that you repeatedly come across in software design. For a
pattern to be applicable to many (similar) problems, it must be generic.

• Problem solving can be regarded as searching, selecting, modifying, using
and reusing of (mental) models for different purposes.

– Experience and the ability to solve problems is largely determined by the amount
(and quality) of such (mental) models.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 9

Part 04: Problem Solving and Improvement – Individually

Software Engineering Process Models

Sequential

Incremental

Iterative
These are typical building blocks of process
models. Existing process models are
combinations of these.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 10

Part 04: Problem Solving and Improvement – Individually

Software Engineering (Process) Models
How well do (process) models support our problem solving approach?
• Sequence: some (sub-)processes need outcomes from other (sub-)processes as inputs
• Increment: some (sub)-processes can be conducted in parallel; similarly, outcomes

(products) might be decomposed and processed independently from each other
• Iteration: sometimes (sub-)processes need to be repeated (e.g., in order to correct/adjust

outcomes)
• Combinations: usually, different situations (task size and complexity, available

resources, etc.) require varying degrees of combinations:
• Is it always possible to capture all requirements of a product in the very beginning?
• Is it not wiser (for large systems) to start working on the high-priority requirements and then

learn during the development process and iteratively feed in additional requirements?
• Can (throw-away) prototypes be useful for eliciting requirements (and for exploring new

designs or technologies)?
• …

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 11

Part 04: Problem Solving and Improvement – Individually

Other Software Engineering Models
• Architectural Styles

• Design Patterns

• Frameworks

• UML Models (Use case, Statechart,
Sequence diagram, Class diagram, etc.)

• Communication Protocols

• PPD-Model (PROFES method)

• …

Product
Models

&
Structures

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 12

Part 04: Problem Solving and Improvement – Individually

Product-Process-Dependency Model
• PPD Example taken from: D. Hamann, D. Pfahl, J. Järvinen, R. van Solingen (1999) “The Role of

GQM in the PROFES Improvement Methodology”, in: Proceedings of 3rd Conference on Quality
Engineering in Software Technology (CONQUEST 1999), pp. 64-79.

PPD Model 1.3.1
Technology Application Goal

Technology Software Inspections
Product Quality Reliability
Process ENG.3 Software Requirements Analysis

Technology Application Context
CF.1 Experience of inspection team low average high
CF.2 Management commitment low high
CF.3 Overall time pressure low average high
CF.4 Module affected by new hardware old_hw new_hw
CF.5 Module developed externally internally externally

CF = Context Factor

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 13

Part 04: Problem Solving and Improvement – Individually

Problem Solving – Mental Models (Plans)
• What Hohmann calls Plan is a stereotype solution to a problem. It is also a

private solution that only exists in the head of a person who has solved
similar problems before.

• A pattern is an externalized and generalized plan (conceptual model)
– Design Patterns are just this: experts used time and effort to describe solutions

to design problems that you repeatedly come across in software design. For a
pattern to be applicable to many (similar) problems, it must be generic.

• Problem solving can be regarded as searching, selecting, modifying, using
and reusing of (mental) models for different purposes.

– Experience and the ability to solve problems is largely determined by the amount
(and quality) of such mental models.

What is an Expert?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 14

Part 04: Problem Solving and Improvement – Individually

What is an Expert?
• Experts have domain knowledge and experience (payroll systems, transportation

systems, medical devices, communication systems, web-design, e-commerce
etc..)

• Experts have method knowledge that is relevant

• Experts have technology knowledge and experience (Java, Unix, Web-services
etc...)

• Experts have bigger arsenal of mental models (“cognitive library of plans”) related
to domains and technologies.

• Experts are better in “chunking” (handling complex information in bigger entities).
– They can, in other words, work on higher abstraction level.
– Sub-problems become details with implicitly assumed solutions.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 15

Part 04: Problem Solving and Improvement – Individually

Structure – What is it?

• Structure defines the form
and content of outcomes

and

supports the processes we
use to create them

Process

Outcome

Structure

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 16

Part 04: Problem Solving and Improvement – Individually

Feedback

Process

Outcome

Structure

Processes adapt
to (previously
produced) Outcomes
- partly due to
convenience, partly
to optimize

As (planned) Processes are carried
out, one might notice that
adjustments have to
be made

As (planned)
Outcomes are
Implemented, one
might notice that adjustments
have to be made

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 17

Part 04: Problem Solving and Improvement – Individually

Structure – How much and what?
• How much and what structure is needed to achieve optimal

problem solving (i.e., system/software development)?

• Issues:
– Depends on problem and person(s):

• Bigger and more complex problems typically need more
structure

• Experienced people need other types of structure than
inexperienced

– The more structure, the more standardization standardization
facilitates reuse of experience. (“design pattern”).

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 18

Part 04: Problem Solving and Improvement – Individually

A typical
situation? Come, I will show you

something interesting ...
I don’t have time,
I have to work!

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 19

Part 04: Problem Solving and Improvement – Individually

Structure – How is it introduced?
• Direct supervision and monitoring (by one who knows the processes

and products)

• Using prescriptive standards of the processes (process handbooks)

• Using prescriptive standards of the product (product specifications)

• Standardizing skills (training)

• Mutual adoption, e.g.
– Structures that facilitate collaboration are introduced and agreed upon ad-

hoc
– Continuing interchange with the customer defines the product structure

• …

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 20

Part 04: Problem Solving and Improvement – Individually

Expanding the SPO-Framework
• Since the key element in software/systems

development are people, the SPO-framework
must be expanded to include several ”softer”
factors that govern human behavior:
– Values
– Personality
– Goals

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 21

Part 04: Problem Solving and Improvement – Individually

Values – What are they?
• In the SPO-context values are:

– Concepts or principles that are
• deemed worthy or important for concrete choices (e.g., of methods)
• not supported by (rational) arguments or perhaps not even articulated

– What takes over when rational decisions cannot be made (e.g., two
methods seem to be equally good)

• None of the descriptions above are precise or especially
complete. It should still not be difficult to agree that values
(with an intuitive understanding) are important for process
improvement

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 22

Part 04: Problem Solving and Improvement – Individually

Values – Examples
• If managers and developers in an organization have a

consensus-culture (the “no one should be forced but
convinced through argumentation”-value Japan) it
affects the decision processes.

– Sometimes this culture will make a good improvement proposal fail
because it wasn’t possible to get everyone to agree.

• Often “decision-happy” managers (the “leaders should
make quick decisions”-value) starts too many improvement
activities at once.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 23

Part 04: Problem Solving and Improvement – Individually

Personality
• “A personality is a complex set of

relatively stable behavioral and
emotional characteristics that can
be used to uniquely identify a
person.” (Hohmann)

• “Personality represents those
characteristics of the person that
account for consistent patterns of
behavior.” (Pervin, “Personality”).

Elements:

• Cognitive style

• Mental set

• Self-efficacy

• Assertive/Passive

• Tolerance of anxiety

• Tolerance for ambiguity

• etc…

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 24

Part 04: Problem Solving and Improvement – Individually

Goals
• Have long-term influence on our behaviour
• The goals of those involved in process improvement

activities are important for several reasons:
– Process changes should be streamlined to help people achieve

their goals (or at least not impede the achievement of their goals)
– An organization works best when there is “a match” between

personal objectives and organizational goals
• It is too narrow to look at salary as the only (and possibly not the most

important either) goal for a developer.
• Equally important: recognition, professional pride, team experience,

etc.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 25

Part 04: Problem Solving and Improvement – Individually

Framework Summary

Values

Personality

Process

Outcome

Structure

Goal
• Structure – Process – Outcome:

– Focus on control, support and
standardized problem solving methods
(sw/system development methods).

– It is these elements (often not clearly
separated from each other) that
system development methods focus
on.

• Values – Personality – Goals:
– Represent to the “human side” of

SPO.
– These elements are rarely (explicitly)

considered in sw/system development
methods and little research about their
effects on sw/system development has
been conducted.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 26

Part 04: Problem Solving and Improvement – Individually

Conclusions
People are not equally comfortable with certain degrees of structure.
• New and innovative organizations, attract a special type of people (creative innovators

who thrive in little structure). These people may have adaptation problems in a bigger
and older organization with greater need for structure.

– For example, a company founder is often not the best choice to lead the company after it
has grown big (often, however, the founder himself/herself has difficulties to realize this).

• Bigger, older IT-organizations (typically government administration, bank/insurance,
defense sector etc..) are often more plan-driven and documentation-heavy and want to
attract confidence-seeking persons who thrive best with predictability.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 27

Part 04: Problem Solving and Improvement – Individually

Conclusions (cont’d)
Not everybody is like you
• It is easy for us to assume that others like the same and react equally as we do. For

example, if a process improver prefers a high degree of structure he/she could easily
assume that others also do, and react irrationally (“they work against me”) if resistance
is big.

• We like those who are like us, and devalue those who are different. As a consequence,
we have a tendency to collaborate with those who have similar preferences regarding
structure than we have.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 28

Part 04: Problem Solving and Improvement – Individually

Conclusions (cont’d)
• Groups that work on process improvement should be composed of persons with different

personalities.

• It is not unreasonable to assume that a successful process improvement team or system
development team needs:

– Renewers/innovators (specially important in the start phase)
– Researchers/launchers (specially important in the start phase)
– Surveyors/developers (specially important in the start phase)
– Pursuers/organizer (specially important in introduction and the follow-up phase)
– Completers/producers (specially important in the introduction phase)
– Informers/advisers (specially important in the introduction phase and the follow-up phase)
– Supporter/maintainer (specially important in the introduction phase and the follow-up phase)
– Controller (specially important in the follow-up phase)

• The big problems arise if important roles are not covered. For example, if there are no
completers or controllers.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 29

Part 04: Problem Solving and Improvement – Individually

Conclusions (cont’d)
• Structuring of processes (process

improvement) should get a balance
between:

– supporting preferred working manners
– reducing the damaging effects of

preferred working manners

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 30

Part 04: Problem Solving and Improvement – Individually

Exercise
• Imagine an organization that implements web-solutions.
• The organization was started by two students at IfI and has in

three years grown from two to forty employees.
• The founders have (with little help) realized that others ought to

manage the organization and hire Petter who was a middle level
manager in the IT-department of a bigger Norwegian bank.

• Petter sees immediately the need to introduce more structures
and proposes introduction of routines which are the same as
those used in his last job.

• Analyze the situation and identify risks!

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 31

Part 04: Problem Solving and Improvement – Individually

A Remark on Tools
• Typical situation: The

software development is
unstructured and thus not
productive enough

• The (silver bullet) solution:
A “new tool”, e.g., a file
navigator with a novel
“fisheye-view”.

• NB: Every tool involves
structuring of product and
process. The question is
whether these are the right
structures for the problems
which must be solved and
for the persons who’ll use
them.

Example:
• In a study about CASE-tools, several tools were compared with

regard to software development productivity (function
points/person-hour). Two of the tools excelled with very high
productivity.

• The study also examined maintainability of the produced code. In
this part of the study it appeared that one of the tools stimulated
some developers to duplicate code (“cut and paste”) instead of
developing common (reusable) code (libraries). Consequently,
maintenance became more difficult. Thus, the tool that provided
structure stimulating the development of reusable code turned
out to be preferable in the long run.

NB: for the type of people that participated in the study / with
their experience and training / with their tasks at hand / etc.)

