

INF5180 – Spring 2010		Pa	rt 06: Measureme	ent-based Improvement
Software Measure	ment Cha	lleng	es	
Measuring	g physical pr	operti	es:	
<u>entity</u> Human	<u>attribute</u> Height	<u>unit</u> cm	<u>scale</u> ratio	<u>value</u> 178
Measuring	g non-physic	al pro	perties:	
<u>entity</u> Human Program	<u>attribute</u> Intelligence/IQ Modifiability	<u>unit</u> index ?	<u>scale</u> ordinal ?	<u>value</u> 135 ?
Software	properties ar	e non-	physical	
– size, co portabil testabil	mplexity, funct lity, flexibility, n ity, coupling, co	ionality, naintain oherenc	reliability, ability, cor e, interope	maturity, rectness, rability, …
UNIVERSITETET I OSLO	Page 9			Copyright 2010 © Dietmar Pfah

INF5180 – Spring 2010

Part 06: Measurement-based Improvement

SW Measurement: How to plan and run it?

• These steps are required to implement a measurement program:

- Identify the business goals
- Derive the measurement goals
- Document the software development process(es)
- Define measures (metrics) required to reach goals
- Define data collection procedures
- Assemble a measurement tool(set)
- Create a measurement database
- Collect data
- Define feedback mechanism
- Package measurement results
- Continuously control/improve the measurement program

Page 13

Copyright 2010 © Dietmar Pfahl

<section-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

INF5180 – Spring 2010

Part 06: Measurement-based Improvement

Example Software Process Attributes

- Process Efficiency:
 - How fast, how much effort, how much quantity/quality per time or effort unit?
- Process Effectiveness:
 - Do we get the quantity/quality we want?
- Process Maturity:
 - CMMI level (cf. Part 09)
- · People/Organisation-related:
 - Skills, knowledge, learning, motivation
- Method/Technique/Tool-related:
 - Effectiveness, Efficiency, Learnability, Cost

Page 23

Copyright 2010 © Dietmar Pfahl

INF5180 - Spring 2010 Part 06: Measurement-based Improvement **Cost (Effort) Measurement** Effort consumption in the project Includes overtime, excludes line activities like department meetings etc - How to distinguish productive time from unproductive time? _ How to distinguish defect correction, change management and "pure development"? Allocation of effort over phases / increments? Necessary training costs - Close competence gap to be able to do the project Tool costs - Pure purchase and possible license costs - (Tool) Training costs - Learning curve costs? NB: To be able to investigate cost improvement, cost/effort data must be related to amount of produced output/value (\rightarrow productivity) Copyright 2010 © Dietmar Pfahl Page 24 UNIVERSITETET I OSLO

	Fait 00. Measurement-based improvement
Example Software Product A	ttributes
 Size Length, Complexity, Functionality Modularity Cohesion Coupling Quality Cost 	 Quality (→ ISO 9126) – Functionality – Reliability – Usability – Efficiency – Maintainability – Portability
Page 26	Copyright 2010 © Dietmar Pfa

<section-header><page-header><page-header><section-header><page-header><section-header><section-header><text><text><text>

INF5180 – Spring 2010

Part 06: Measurement-based Improvement

Quality Model: ISO 9126

	Characteristics	Attributes		
	Functionality	Suitability	Interoperability	Accuracy
1 · n relation		Security	Compliance	
between	Reliability	Maturity	Recoverability	Fault Tolerance
Characteristics		Compliance		
and	Usability	Understandability	Learnability	Operability
Attributes (Sub-		Attractiveness	Compliance	
Characteristics)	Efficiency	Time Behaviour	Resource Behaviour	Compliance
	Maintainability	Analyzability	Stability	Changeability
		Testability	Compliance	
	Portability	Adaptability	Installability	Co-existence
		Replaceability	Compliance	
		Page 31		Copyright 2010 © Dietmar Pfahl
UNIVERSITETE I OSLO	Т			

SO 912	26 – Futu	re Developments	
Table 2 WG6 recommen Quality Group Name Internal Quality Measures	nded set of Quality Measures Quality Measure Name Functional Adequacy Precision Researchality	 A new series of standard under development. 	s is currently
External Quality Measures Quality in Use Measures	Computational Accessibility Computational Accessibility Access Controllability Operational Consistency Installation Flexibility Task Completion Productive Proportion Discretionary Usage	 Name: Software Product Requirements and Evaluation ISO 25000). 	Quality ation (SQuaRE -
Software Product Quality Quality Characteristics	Quality Measures	 This series of standards current ISO 9126 (and IS standards. 	will replace the O 14598) series o
Quality Sub-characteristics	Function Measurement Primitives	 Note: the new standard w "metric" by "measure" 	ill replace the word
		Page 32	Copyright 2010 © Dietmar P

Alternativ	e Quality Mod	lel:		
Performar	ice measures	Performance	Effect of Change in Performance	Scale of Measure
by Tom G	ilb*	Customer Satisfaction	Fewer letters of complaint	Number of letters complaining about a defined [Product] received within a defined [Time Pariod]
		Customer Satisfaction	Fewer returned goods	Percentage of defined [Product] returned within defined [Time Period after Purchase] with defined [Customer Issue]
		Environmentally Friendly	Improved rating as measured on international standard	Number of defined [Product Type] failing defined [Test] within a defined [Time Period]
		User-friendly	Fewer errors made	Percentage of defined [Transaction Type] with defined [Error] input by defined [User Type]
	*see www.gilb.com	User-friendly	Faster time for completion of transactions	Time in minutes for a defined [Transaction] to be carried out to <satisfactory> completion</satisfactory>
	Taken from "A Handbook for Systems Engineering	Restful Ambience	Calming, relaxing effect	Percentage of users of defined [User Type] agreeing that defined [Room Space] was <restful></restful>
	Requirements Engineering	Reliability Staff Satisfaction	Fewer breakdowns Lower rate of staff turnover	Mean Time Between Repair (MTBR) Number of staff of defined [Job Description Response]
	Using Planguage"	Predictability	Less variance in time to initial response	Percentage of service calls of defined [Service Type] exceeding <initial response> within defined [Time Period]</initial
	I	Page 33		Copyright 2010 © Dietmar Pfa

INF5180 - Spring 2010 Example: Nomi	Part 06: Mea	asurement-based Improvement
Entity Attr	 Classification of objects colour, id, type, … 	s based on their
Defect Type D-T1 1 Assignment D-T2 2 Algorithm D-T3 3 Interface Sr D-T4 4 Interface Us D-T5 5 Documenta Measure(Defect Type) \in {"1", "2",} {Assignm., Algorithm	 Classification of defects Wrong/Missing Value Assig Wrong/Missing Algorithm Wrong/Missing Interface Space Wrong/Missing Interface Us Wrong/Missing Documenta One-to-one mapping be 	s in a software: gnment pec se ation, etween M and M'
UNIVERSITETET I OSLO	Page 47	Copyright 2010 © Dietmar Pfah

Entity Attr Car Design	 Ordinal Scales The ordinal scale augme by ordering the classes Properties: 	nts the nominal scale or categories.
C-D1 + 1 very ugly C-D2 2 ugly C-D4 3 average C-D5 4 interesting C-D6 5 attractive 	 The system of empirical classes that are ordere attribute. Any mapping that pres any monotonic function The numbers represensubtraction, and other no meaning. 	al relations consists of d with respect to the erves the <u>ordering</u> (that is, n) is acceptable. t ranking only, so addition, <u>arithmetic operations have</u>
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ł	

I

INF5180 - Spring 2010

Part 06: Measurement-based Improvement

Measurement Scale Types [Mor01]/1

Scale Type	Characterization	Example (generic)	Example (SE)
Nominal	Divides the set of objects into categories, with no particular ordering among them	Labeling, classification	Name of programming language, name of defect type
Ordinal	Divides the set of entities into categories that are ordered	Preference, ranking, difficulty	Ranking of failures (as measure of failure severity)
Interval	Comparing the differences between values is meaningful	Calendar time, temperature (Fahrenheit, Reaumur, Celsius)	Beginning and end date of activities (as measures of time distance)
Ratio	There is a meaningful "zero" value, and ratios between values are meaningful	Length, weight, time intervals, absolute temperature (Kelvin)	Lines of code (as measure of attribute "Program length/size")
Absolute	There are no meaningful transformations of values other than identity	Object count	Count (as measure of attribute "Number of lines of code")
		Page 57	Copyright 2010 © Dietmar P

UNIVERSITETET I OSLO

INF5180 – Spring 2010		Pai	rt 06: Measurement-based Improvement
Meas	urement Scale	Types [Mor01] /2	2
Scale Type	Admissible Transformation	Indicators of Central Tendency	The classification of scales has an important impact on their practical use, in particular on the
Nominal	Bijection (one-to-one mapping)	Mode	statistical techniques and indices that can be used.
Ordinal	Monotonically increasing transformation	Mode + Median	Example: Indicator of central tendency of a distribution of values ("Location").
Interval	Positive linear transformation M'= a M + b (a>0)	Mode + Median + Arithmetic Mean	Mode = most frequent value of distribution Median = the value such that not more
Ratio	Proportionality M'= a M (a>0)	Mode + Median + Arithmetic Mean + Geometric Mean	than 50% of the values of the distribution are less than the median and not
Absolute	ldentity M' ≡ M	Mode + Median + Arithmetic Mean + Geometric Mean	more than 50% of the values of the distribution are greater than the median
		Page 58	Copyright 2010 © Dietmar Pfał

INF5180 – Spring 2010	Spring 2010 Part 06: Measurement-based Improvement		
Measurement Scale	– Summary		
 There are 5 diffe 	erent types of me	asurement scales	
 The type of the indicators of the indicators of types of states of types and pretc.) 	 The type of the measurement scale determines how measurement data can be treated statistically indicators of central tendency types of statistical distributions types and power of statistical analyses (test, correlation, etc.) 		
– whether stat are meaning	ements involving ful	j measurement data	
UNIVERSITETET I OSLO	Page 59	Copyright 2010 © Dietmar Pfahl	

re the	following	statements mean	ingful?
Scale?	Meaningful?	Statement:	
1. ratio	yes	1. "Peter is twice as tall as H	ermann"
2. interval*	no*	2. "Peter's temperature is 10	% higher than Hermann's
3. ordinal	yes	3. "Defect X is more severe	than defect Y"
4. ordinal	no	4. "Defect X is twice as seve	re as defect Y"
5. ratio	yes	 "The cost for correcting de the cost for correcting def 	efect X is twice as high as ect Y"
6. interval	no	The average temperature high as the average temp	of city A (30 °C) is twice a erature of city B (15 °C)
7. interval	no	 "Project Milestone 3 (end longer than Project Milestone 	of coding) took ten times one 0 (project start)"
8. interval	yes	8. "Coding took as long as re	equirements analysis"
		Page 61	Copyright 2010 © Dietmar F

INF5180 – Spring 2010		Part 06: Measurement-based Improvement
Meaningfulness	– Example 1	
	 Is statement (1) on the right meaningful, if X is measured on a ratio scale? 	(1) $\frac{x_1 + x_2}{2} = m$
	 Apply any admissible transformation M'=aM (a>0) for ratio scales: 	(2) $\frac{a \cdot x_1 + a \cdot x_2}{2} = a \cdot m$
Ratio Scale	 By arithmetic manipulation, (2) can always be made equivalent to (1). Therefore, the first statement is meaningfu for a ratio scale. 	1
UNIVERSITETET I OSLO	Page 63	Copyright 2010 © Dietmar Pfahl

INF5180 – Spring 2010	Pa	art 06: Measurement-based Improvement
Meaningfulness	– Example 2	
	 Is statement (1) on the right meaningful, if X is measured on an interval scale? 	(1) $\frac{x_1 + x_2}{2} = m$
	 Apply any admissible transformation M'=aM+b (a>0) for interval scales: 	(2) $\frac{a \cdot x_1 + b + a \cdot x_2 + b}{2} = a \cdot m + b$
Interval Scale	• By arithmetic manipulation, (2) can always be made equivalent to (1). Therefore, the first statement is meaningful for an interval scale.	
UNIVERSITETET I OSLO	Page 64	Copyright 2010 © Dietmar Pfal

Meaningfulnes	ss – Geometric Mean
Scale Type ?	 The geometric mean of a data set [a₁, a₂,, aₙ] is given by $\left(\prod_{i=1}^n a_i\right)^{1/n} = \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}$ On which scale type is the geometric mean meaningful?
UNIVERSITETET I OSLO	Page 66 Copyright 2010 © Dietmar Pt

Objective vs. Subje	ective Measu	rement (cont'd)
Examples:		
 Subjective Classific Function Software 	Measurement ation of defects into Points (when count Process Assessme	severity classes ed manually) nts
 Objective M Lines of C Cyclomati Memory S Test Cove 	Measurement Code tic Complexity Size verage	To which category belong … - Effort ? - Time ? - Defect Count ?

INF5180 - Spring 2010

Part 06: Measurement-based Improvement

Basic Concepts in Subjective Measurement

INF5180 - Spring 2010

Part 06: Measurement-based Improvement

Procedures for Subjective Measurement

Semantic Dif	terential Sc	ale				
	 Items whi 	ch include seman	itic opposite	S		
	 Example. Processystem which chang system 	 Example. Processing of requests for changes to existing systems: the manner, method, and required time wi which the MIS staff responds to user requests for changes in existing computer-based information systems or services. 				
	Slov	V DDDDDD	Fast			
	Tim	ely ananana	Untimely			
		70		Conversion 2010 @ Distance Bfol		

Ass • Lił	signing Numb <pre>kert-Type Scales:</pre>	ers to S	• Ser	Resp nantic	onses Differential S	cale:
	 Strongly Agree Agree Disagree Strongly Disagree 	$ \begin{array}{c} \rightarrow 1 \\ \rightarrow 2 \\ \rightarrow 3 \\ \rightarrow 4 \end{array} $		Slow	1234567	Fast
Ord But res (co trea	dinal Scale t: Often the distances bety ponse categories are app nceptually) equidistant ar ated like approximate inte	ween the four roximately Id thus are rval scales.	• Ordi trea	nal scal ted as ir	e, but again, oft nterval scales	en
	UNIVERSITETET I OSLO	Pag	je 77		Соругіс	ght 2010 © Dietma

eoretical validation	
Problem 1:	Problem 2:
 How do we know whether a proposed measure adequately reflects my intuition / understanding about the attribute 	 Do we all have the same intuition / understanding about the characteristics / properties of an attribute?
it purports to measure?	Answers:
Answer:	 If we all make our assumptions explicit, we can check
 We have to make our intuition / understanding about the characteristics (properties) of the measured attribute explicit – then we can check whether the measure 	 If we encounter differences, we can try to identify a set of necessary "core characteristics / properties" of the attribut under consideration.
"reproduces" our assumptions	→ "Measurement Concept

neoretical validation	
Problem 1:	Problem 2:
 How do we know whether a proposed measure adequately reflects my intuition / understanding beaut the attribute 	Do we all have the same intuition / understanding about the characteristics properties of an attribute?
it purports to measure?	Answers:
Answer:	If we all make our assumptions explicit, can check
 We have to make our intuition / understanding about the characteristics (properties) of the measured attribute explicit – then we can check whether the measure 	 If we encounter differences, we can try to identify a set of necessary "core characteristics / properties" of the attribunder consideration.
"reproduces" our assumptions	→ "Measurement Conce

INF5180 – Spring 2010	Part 06: Measurement-based Improvement
Example: System Com	plexity
Properties:	
 Non-Negativity The complexity of a system \$\$ 	S is non-negative: Complexity(S) ≥ 0
 2. Null Value The complexity of a System elements of the system: R = 	S is null if there are no relationships between the = $\emptyset \Rightarrow Complexity(S) = 0$.
3. Module Monotonicity – The complexity of a system S two of its modules with no re $(m_1 = < E_{m1}, R_{m1} > and m_2 = < E_{m1}$ \Rightarrow Complexity(S) \ge Complex	S is not smaller than the sum of the complexities of an elationships in common: E_{m_2} , R_{m_2} > and $m_1 \cup m_2 \subseteq S$ and $R_{m_1} \cap R_{m_2} = \emptyset$) xity(m_1) + Complexity(m_2)
UNIVERSITETET I OSLO	Page 90 Copyright 2010 © Dietmar

Validity of a M	easure – 2 Issues			
Issue 1 Theoretical Validity	 When I apply a proposed m measurement results represent intuition/understanding of w / "cohesion" / "coupling" me 	easure, do the sent my/others hat "modularity" an?		
Issue 2 Empirical Validity	 Is the measure practical, i.e to predict values of other int attributes (e.g., maintainabi explain other interesting pho be collected automatically, i 	Is the measure practical, i.e., can it be used to predict values of other interesting attributes (e.g., maintainability), does it help explain other interesting phenomena, can it be collected automatically, is it "cheap", etc.		
UNIVERSITETET I OSLO	Page 97	Copyright 2010 © Dietmar Pfah		

INF5180 – Spring 2010	Part 06: Mea	asurement-based Improvement
Reliability of N	leasures – Definition	
• De	finition:	
_	The extent to which a measurement p exactly the same value if applied repe object	process will yield eatedly to the same
۰Re	mark:	
-	In software measurement, reliability is related to <i>Subjective Measures</i>	s mainly an issue
UNIVERSITETET I OSLO	Page 98	Copyright 2010 © Dietmar Pfal

I

Reliability Estim	ation Tech	niq	ues – Cla	sses	
 Number of administrations is the number of times that the same object is measured (per observer) Number of instruments is the number of different but equivalent instruments 			Number of Ins	Number of Instruments	
			One	Тwo	
	Number of Administrations	One	Inter-Rater Internal	Parallel Forms (immediate)	
	Rater)	Two	Test-Retest	Parallel Forms (delayed)	
that would need to be administered	http://www.socia	Iresea	rchmethods.ne	t/kb/reltypes.ph	