
INF5180: Software Product- and
Process Improvement in Systems
Development
Part 06:

Measurement-based
Improvement

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no

Spring 2010

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 2

Part 06: Measurement-based Improvement

Why Do Measurement?
• "In physical science the first essential step in the direction of

learning any subject is to find principles of numerical reckoning
and practicable methods for measuring some quality connected
with it.” [Popular Lectures and Addresses, vol. 1, "Electrical Units of Measurement",
1883-05-03]

• “I often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the state of Science,
whatever the matter may be." [Popular Lectures and Addresses, vol. 1,
"Electrical Units of Measurement", 1883-05-03]

• "If you can not measure it, you can not improve it."
• "To measure is to know."

Lord Kelvin
(1824-1907)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 3

Part 06: Measurement-based Improvement

Software Measurement:

Why is it essential for SPI?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 4

Part 06: Measurement-based Improvement

Systems Model of Project Management and SPI
• SPI = Software

Process
Improvement

G = Goal
P = Plan
S = State
C = Customer
M = Manager
Bus = Business
Proj = Project
Prod = Product
Proc = Process

BusG ProjG

ProdG

ProcG ProjP
Planning

2

1

2

3

4

4

ExperienceContext

Unexpected EventsPlanning Errors
14 13

1211

Project

16

ProdS

ProcS

ProjS

Development

6

7

7

ProdC
15

5

5

9

ProjM10

8 8

16

[BiP02]

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 5

Part 06: Measurement-based Improvement

Systems Model of Project Management and SPI
• SPI = Software

Process
Improvement

G = Goal
P = Plan
S = State
C = Customer
M = Manager
Bus = Business
Proj = Project
Prod = Product
Proc = Process

BusG ProjG

ProdG

ProcG ProjP
Planning

2

1

2

3

4

4

ExperienceContext

Unexpected EventsPlanning Errors
14 13

1211

Project

16

ProdS

ProcS

ProjS

Development

6

7

7

ProdC
15

5

5

9

ProjM10

8 8

16

[BiP02]

Question 1: Where does the sprint backlog in agile projects fit into this picture?
Question 2: In an agile project, what could be interpreted as a process goal?

Question 3: Where does the burndown chart of agile projects fit into this picture (system model)?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 6

Part 06: Measurement-based Improvement

Why Measure in SPI?
• To generate objective information that results in objective knowledge

• From: “I think that the number of defects in our software has decreased in recent years”
• To: “The number of defects per 1000 lines of code found in acceptance test have been

reduced from 3 to 1”

• To be able to identify causal relationships and learn from experience
• Experiments can, e.g., show that new practices (e.g., pair programming) have a positive effect

on quality and make quality more predictable

• To be able to validate that goals have been achieved (targets met)
• Measurability of quality related requirements forces customer to give the requirements as

precisely as possible. Requirements that are not “falsifiable” are often ambiguous/unclear.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 7

Part 06: Measurement-based Improvement

Software Measurement: Why is it difficult?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 8

Part 06: Measurement-based Improvement

Measurement: Characterization
• Relevant objects (entities) may be described,

identified, categorized, ordered, and compared in
terms of their key properties (attributes)

• Measurement is a means of assessing these
properties:

– with known reliability
– with known systematic bias, if any
– efficiently
– in a manner that is useful for decision making

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 9

Part 06: Measurement-based Improvement

Software Measurement Challenges
• Measuring physical properties:

entity attribute unit scale value
Human Height cm ratio 178

• Measuring non-physical properties:
entity attribute unit scale value
Human Intelligence/IQ index ordinal 135
Program Modifiability ? ? ?

• Software properties are non-physical
– size, complexity, functionality, reliability, maturity,

portability, flexibility, maintainability, correctness,
testability, coupling, coherence, interoperability, …

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 10

Part 06: Measurement-based Improvement

Software Measurement: How do it?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 11

Part 06: Measurement-based Improvement

SW Measurement: A Bigger Picture (Example)

Goal:
Minimize risk of
penalty due to
low quality of

delivered code!

How to
reduce

defects?

Measurement
goal:

Identify (predict)
defect-prone

methods

Hypothesis:
Complex
methods
are more

defect-prone

Measure:
- Complexity

- Defects

Measurements:
4, 7, 9, 4, …
1, 4, 4, 0, …

Measurement

Empirical validation
and modeling

(regression, classification)Measurement
result:

Cplx < 7 is ok

Result 1:
Introduce and

enforce rule that
method Cplx
must be <7

Actions?
Data interpretation: methods with either
0 or 1 defects are ok for testing / thus:
Cplx threshold of <7 should work

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 12

Part 06: Measurement-based Improvement

SW Measurement: A Bigger Picture (Example)

Goal:
Minimize risk of
penalty due to
low quality of

delivered code!

How to
reduce

defects?

Measurement
goals:

Validate policy
(model)

Control whether
policy is followed

Hypothesis:
Policy works

and is followed

Measure:
-Complexity

- Defects

Measurements:
4, 7, 8, 3, …
1, 5, 4, 0, …

Measurement

Measurement
result:

Cplx < 7 is ok

Result 2:
Continue using
policy that cplx

must be <7
Find out why it
is not followed

Actions?
Data interpretation:
- policy (model) seems to be ok
- but: policy is not followed

What if (6,2) or (8,1) ?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 13

Part 06: Measurement-based Improvement

SW Measurement: How to plan and run it?
• These steps are required to implement a measurement program:

– Identify the business goals
– Derive the measurement goals
– Document the software development process(es)
– Define measures (metrics) required to reach goals
– Define data collection procedures
– Assemble a measurement tool(set)
– Create a measurement database
– Collect data
– Define feedback mechanism
– Package measurement results
– Continuously control/improve the measurement program

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 14

Part 06: Measurement-based Improvement

Software Measurement: Who benefits?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 15

Part 06: Measurement-based Improvement

SW Measurement: Who benefits?
• Managers

– What does each process cost?
– How productive is development?
– How good is the product (code, design)?
– Will the user be satisfied with the product?
– How can we improve?

• Engineers
– Are the requirements testable?
– Have we found all (severe) defects?
– Have we met our product or process goals?
– What can we predict about our software

product in the future?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 16

Part 06: Measurement-based Improvement

SW Measurement: What does it (not)?
• SW Measurement is supposed to help us understand the

technical process that is used to develop software
– The process is measured to control/improve its

capability/performance
– The product is measured to control/improve its quality

But …
• SW Measurement does not (yet?) provide a commonly

agreed set of appropriate metrics for all kinds of software
projects/products/processes

• SW Measurement should be used very carefully when it
comes to evaluate/compare people!

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 17

Part 06: Measurement-based Improvement

Measurement and Measure
Measurement:

• Measurement is the process through which values are assigned to
attributes of entities of the real world.

Measure:

• A measure is the result of the measurement process, so it is the
assignment of a value to an entity with the goal of characterizing a
specified attribute.

Source: Sandro Morasca, “Software Measurement”, in “Handbook of Software Engineering and
Knowledge Engineering - Volume 1: Fundamentals” (refereed book), pp. 239 - 276, Knowledge
Systems Institute, Skokie, IL, USA, 2001, ISBN: 981-02- 4973-X.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 18

Part 06: Measurement-based Improvement

Measure (Metric)
• Measure:

– Let A be a set of empirical (physical) objects
– Let B be a set of formal objects, such as

numbers (or symbols)
– A measure m is defined to be a mapping from

A to B, i.e., m: A B

Note: this is neither (exactly) the definition of the
mathematical measure (μ: σ(A) [0, ∞), with σ(A) is the σ-
algebra of A) nor of the mathematical metric (d: X × X → R
with d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, d(x, y) = d(y,
x), and d(x, z) ≤ d(x, y) + d(y, z)).

4 e *
3 d *
2 c *
1 b *
0 a *

A B

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 19

Part 06: Measurement-based Improvement

What to Measure?

(Process)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 20

Part 06: Measurement-based Improvement

Entity
• An entity in software measurement

can represent any of the following:
– Processes/Activities: any activity related to

software development and/or maintenance (e.g.,
requirements analysis, design, testing) – these
can be at different levels of granularity

– Products: any artifact produced or changed
during software development and/or maintenance
(e.g., source code, software design documents)

– Resources: people, hardware or software needed
to perform the processes

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 21

Part 06: Measurement-based Improvement

Attribute
• An attribute in software measurement

could be …

(Process)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 22

Part 06: Measurement-based Improvement

Attribute (cont’d)
• An attribute is a feature or property of an entity

– e.g., blood pressure of a person, cost of a journey, duration of the software
specification process

• There are two general types of attributes:
– Internal attributes can be measured based on the entity itself

(static)
• e.g., entity: code, internal attribute: size, modularity, coupling

– External attributes can be measured only with respect to how
the entity relates to its environment (behavior, usage
dynamic)

• e.g., entity: code, external attribute: reliability, maintainability

Code

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 23

Part 06: Measurement-based Improvement

Example Software Process Attributes
• Process Efficiency:

– How fast, how much effort, how much quantity/quality per time or effort unit?

• Process Effectiveness:
– Do we get the quantity/quality we want?

• Process Maturity:
– CMMI level (cf. Part 09)

• People/Organisation-related:
– Skills, knowledge, learning, motivation

• Method/Technique/Tool-related:
– Effectiveness, Efficiency, Learnability, Cost

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 24

Part 06: Measurement-based Improvement

Cost (Effort) Measurement
• Effort consumption in the project

– Includes overtime, excludes line activities like department meetings etc
– How to distinguish productive time from unproductive time?
– How to distinguish defect correction, change management and “pure

development"?
– Allocation of effort over phases / increments?

• Necessary training costs
– Close competence gap to be able to do the project

• Tool costs
– Pure purchase and possible license costs
– (Tool) Training costs
– Learning curve costs?

• NB: To be able to investigate cost improvement, cost/effort data must be
related to amount of produced output/value (productivity)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 25

Part 06: Measurement-based Improvement

Time Measurement
• Time-to-market is often considered as very

important
– How do you define "time-to-market"?
– How do you monitor this parameter?

• Time must be precisely defined!
– Number of work hours or days, number of calendar days,

weeks, months … ???
– Requires that the projects/increments have clearly defined

start and end times

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 26

Part 06: Measurement-based Improvement

Example Software Product Attributes
• Size

– Length, Complexity, Functionality

• Modularity

• Cohesion

• Coupling

• Quality

• Cost

• Quality (ISO 9126)
– Functionality
– Reliability
– Usability
– Efficiency
– Maintainability
– Portability

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 27

Part 06: Measurement-based Improvement

Definition: Software Quality Characteristic

ISO 9126:
“A set of attributes of a software
product by which its quality is
described and evaluated. A software
quality characteristic may be refined
into multiple levels of sub-
characteristics.”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 28

Part 06: Measurement-based Improvement

ISO 9126 – Quality Model (Parts 1-3)
• Software Quality can be

measured by evaluating the
following characteristics:

– Functionality
– Reliability
– Usability
– Efficiency
– Maintainability
– Portability

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 29

Part 06: Measurement-based Improvement

ISO 9126 – Software Quality Characteristics /1
Functionality
• A set of attributes that bear on the existence of a set of

functions and their specified properties. The functions are
those that satisfy stated or implied needs.

Portability
• A set of attributes that bear on the ability of software to be

transferred from one environment to another.

Reliability
• A set of attributes that bear on the capability of software to

maintain its level of performance under stated conditions for a
stated period of time.

Kapitel 3.1.1

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 30

Part 06: Measurement-based Improvement

ISO 9126 – Software Quality Characteristics /2
Usability
• A set of attributes that bear on the effort needed for use, and

on the individual assessment of such use, by a stated or
implied set of users.

Efficiency
• A set of attributes that bear on the relationship between the

level of performance of the software and the amount of
resources used.

Maintainability
• A set of attributes that bear on the effort needed to make

specified modifications.

Kapitel 3.1.1

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 31

Part 06: Measurement-based Improvement

Quality Model: ISO 9126
Characteristics Attributes
Functionality Suitability Interoperability Accuracy

Security Compliance

Reliability Maturity Recoverability Fault Tolerance

Compliance

Usability Understandability Learnability Operability

Attractiveness Compliance

Efficiency Time Behaviour Resource Behaviour Compliance

Maintainability Analyzability Stability Changeability

Testability Compliance

Portability Adaptability Installability Co-existence

Replaceability Compliance

1 : n relation
between
Characteristics
and
Attributes (Sub-
Characteristics)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 32

Part 06: Measurement-based Improvement

ISO 9126 – Future Developments
• A new series of standards is currently

under development.

• Name: Software Product Quality
Requirements and Evaluation (SQuaRE -
ISO 25000).

• This series of standards will replace the
current ISO 9126 (and ISO 14598) series of
standards.

– Note: the new standard will replace the word
”metric” by “measure”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 33

Part 06: Measurement-based Improvement

Alternative Quality Model:
Performance Measures
by Tom Gilb*

*see www.gilb.com
Taken from “A Handbook
for Systems Engineering,
Requirements Engineering
and Software Engineering
Using Planguage”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 34

Part 06: Measurement-based Improvement

Crosby’s Cost of Quality
• Crosby defines quality as "conformance to requirements"

• Quality costs have 3 components:
– (Internal & External) Failure cost: what it costs to find and correct

a failure plus what it costs to be operational again.
– Appraisal (or Inspection) cost: what it costs to evaluate the

product in order to determine its quality.
– Prevention cost: what it costs to identify the causes of failure (e.g.,

through root-cause analysis) and to prevent similar failure to
happen in the future.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 35

Part 06: Measurement-based Improvement

The Crosby Model
at Raytheon

Project cost

Cost of Conformance

Cost of performanceCost of Quality

Cost of Non-conformance

Appraisal cost Prevention cost

Reviews, inspections
Testing (first time)
Audits

Training
Methodologies
Tools
Policy and procedures
Planning
Quality Improvement
Data gathering and
analysis
Fault analysis
Quality reporting

Re-reviews
Re-tests
Fixing defects
Rework documents
Change control

Generation of plans,
Documents
Development of
- requirements,
- design,
- code
- integration

NB: SEI Technical report
CMU/SEI-95-TR-017
is provided with Part 05

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 36

Part 06: Measurement-based Improvement

"Conformance"-Evolution over 6 Years

CONC =
Cost of Non-
Conformance

COC =
Cost of
Conformance

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 37

Part 06: Measurement-based Improvement

Increase in Productivity over 6 Years

Productivity index =
100 x
(productivity –
base_productivity) /
base_productivity

NB: productivity of each
point is the weigthed
average of all staff
members per project

CAC =
(actual) cost at
completion

BUD =
budgeted cost
(planned, predicted)

Productivity = equivalent delivered source instructions (EDSI) /
person-month of development effort

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 38

Part 06: Measurement-based Improvement

Prediction Accuracy in Projects (7 Years)

CAC =
(actual) cost at
completion

BUD =
budgeted cost
(planned,
predicted)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 39

Part 06: Measurement-based Improvement

Defect Density (over 7 Years)
DSI = Delivered Source Instructions

(new and modified source code)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 40

Part 06: Measurement-based Improvement

Exercise
Situation/Problem:
• The system development organization ”Your IT-partner Inc.” has until now

described all system development processes in a paper-based handbook.
• Recently, the handbook has been transformed into a web-based version

providing “links” between related documents. In other words, while the paper-
handbook was sequential the web-version has a network structure .

• The IT-manager was very satisfied with the paper-based handbooks and
requests that an empirical comparison be done before they are actually replaced
by the web-based version.

Task:
Sketch a plan for a measurement program in the organization.
The measurement program will have as objective to decide which of the two
versions is most effective for the organization.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 41

Part 06: Measurement-based Improvement

Software Measurement Details

<cf. papers by Sandro Morasca and Lionel Briand in the reading materials>

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 42

Part 06: Measurement-based Improvement

Measure m, Scale: Definition
• A measure m is a mapping m: σ(A) → B which yields for every

empirical object a ∈A a formal object (measurement value) m(a)
∈ B. This mapping must not be arbitrary, hence leading to the
following definition of a scale.

• Let A = (A,R1, …, Rn, o1,…, om) be an empirical relational
system and B = (B, S1,…, Sn , •1,…, •m) a formal relational
system and m a measure.

The Triple (A, B, m) is a scale if and only if for all i, j and for all a,
b, a1, …, ak ∈ A the following holds:

Ri (a1, …, ak) ⇔ Si (m(a1), …, m(ak))

and m(a oj b) = m(a) •j m(b)

• Example: If B is the set of real numbers, the triple (A, B, m) is a
ratio scale.

Representation
Condition

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 43

Part 06: Measurement-based Improvement

Representational Measurement Theory: Idea

• Empirical relation preserved under measurement M as
numerical relation

Program
P1

Program
P2

100 cm
(300 LOC)

190 cm
(580 LOC)

M(P1)
M(P2)

P1 shorter than P2 M(P1) < M(P2)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 44

Part 06: Measurement-based Improvement

Empirical vs. Formal Relational System
• Definition ERS:

A = (A, R1, …, Rn, o1, …, om)

A is a non-empty set of empirical objects that
are to be measured

• Example entity: program attribute to be
measured: length

Ri are ki-ary empirical relations on A with i =
1, …, n.

• Example: empirical relations “equally long“,
“longer”, “shorter”, etc.

oj are binary operations on the empirical
objects in A with j=1,…,m.

• Example: concatenation of programs

• Definition FRS:
B = (B, S1, …, Sn, *1, …, *m)

B is a non-empty set of formal objects
• Examples: symbols, numbers or vectors

Si are ki-ary relations on B with i = 1, …, n
• Examples: the relations “greater than” or "equal

to or greater than"

*j are binary operations on the formal objects
in B with j=1,…,m

• Examples: addition or multiplication

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 45

Part 06: Measurement-based Improvement

Measurement Unit
• A Unit of Measurement is a standardised

quantity of a physical (or non-physical)
property

• Questions:
– What other units of program length can you

think of?
– What is the unit of temperature (or a project

milestone)?
– What is the unit of problem (or program)

complexity, or of experience, intelligence?
– What is the unit of color (or defect type)?
– What is the unit of a count?

4 - 400
3 - 300
2 - 200
1 - 100
0 - 0

A B (m - cm)

00110110
00111011
01110001

…
01101100
01101011
00101011

Entity: Program
Attribute: Length

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 46

Part 06: Measurement-based Improvement

Scale Types: Nominal Scale
Nominal Scales:
• Define classes or categories, and then place each entity in a

particular class or category, based on the value of the
attribute.

• Properties:
– The system of empirical relations consists only of

different classes
– There is no notion of ordering among the classes.
– Any distinct numbering or symbolic representation of

the classes is an acceptable measure, but there is no
notion of magnitude associated with the numbers or
symbols.

• NB: Nominal-scale measurement places elements in a
classification scheme. The classes are not ordered; even if
the classes are numbered from 1 to n for identification, there
is no implied ordering of the classes.

Entity Attr

Car Colour

C-C1 1 White
C-C2 2 Yellow
C-C3 3 Red
C-C4 4 Blue
C-C5 5 Green
C-C6 6 other

Measure (Car Colour) ∈ {“1”, “2”, “3”, “4”, “5”, “6”}
{White, …, other}

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 47

Part 06: Measurement-based Improvement

Example: Nominal Scale
• Classification of objects based on their

colour, id, type, …

• Classification of defects in a software:
– Wrong/Missing Value Assignment
– Wrong/Missing Algorithm
– Wrong/Missing Interface Spec
– Wrong/Missing Interface Use
– Wrong/Missing Documentation, …

• One-to-one mapping between M and M’

Entity Attr

Defect Type

D-T1 1 Assignment
D-T2 2 Algorithm
D-T3 3 Interface Spec
D-T4 4 Interface Use
D-T5 5 Documentation
… … …

Measure(Defect Type) ∈ {“1”, “2”, …}
{Assignm., Algor., …}

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 48

Part 06: Measurement-based Improvement

Scale Types: Ordinal Scale
Ordinal Scales
• The ordinal scale augments the nominal scale

by ordering the classes or categories.
• Properties:

– The system of empirical relations consists of
classes that are ordered with respect to the
attribute.

– Any mapping that preserves the ordering (that is,
any monotonic function) is acceptable.

– The numbers represent ranking only, so addition,
subtraction, and other arithmetic operations have
no meaning.

Entity Attr

Car Design

C-D1 1 very ugly
C-D2 2 ugly
C-D4 3 average
C-D5 4 interesting
C-D6 5 attractive
… … …

Measure (Car Design) ∈ {1, 2, …}
{very ugly, ugly, …}

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 49

Part 06: Measurement-based Improvement

Example: Ordinal Scale
• Classification of defects according to

severity (effects / correction effort):
– Wrong/Missing documentation
– Minor (incorrect program behaviour; one module

affected; easy to correct)
– Major (incorrect program behaviour; several

modules affected)
– Critical (uncontrolled program behaviour;

program execution interrupted)

• If M(x) > M(y) then M’(x) > M’(y)

Entity Attr

Defect Severity

D-S1 1 S1 Documentation
D-S2 2 S2 Minor
D-S3 3 S3 Major
D-S4 4 S4 Critical

Measure (Defect Severity) ∈ {S1, …, S4}
{1, …, 4}

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 50

Part 06: Measurement-based Improvement

Scale Types: Interval Scale
Interval Scales
• Interval scale carries more information than ordinal

and nominal scale. It captures information about the
size of the intervals that separate the classes, so that
we can in some sense understand the magnitude of
the distance from one class to another.

• Properties:
– An interval scale preserves order, as with an ordinal

scale.
– An interval scale preserves differences but not ratios.

• That is, we know the difference between any two of the
ordered classes in the range of the mapping, but
computing the ratio of two classes in the range does not
make sense.

– Addition and subtraction are acceptable on the interval
scale, but not multiplication and division.

Entity Attr

Engine Temp
… … …
E-T1 -20 -4
E-T2 -10 14
E-T3 0 32
E-T4 10 50
E-T5 20 68
… … …

Measure (Engine Temperature) ∈ [min, max]

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 51

Part 06: Measurement-based Improvement

Example: Interval Scale
• Temperature in Celsius and Fahrenheit

• Project deadlines
– Project 1: Jan 15, 2008
– Project 2: Jan 18, 2008
– Project 3: Jan 21, 2008
– Project 4: Jan 24, 2008
– Project 5: Jan 30, 2008
Which project finished last?
Which project took the longest (time)?

• M’ = aM + b, a > 0 (e.g., M’ = 9/5M + 32)

Entity Attr

Project Deadline

… …
P1-D 15-01-2008
P2-D 18-01-2008
P3-D 21-01-2008
P4-D 24-01-2008
P5-D 30-01-2008
… …

Measure (Project Deadline) ∈ “Calendar”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 52

Part 06: Measurement-based Improvement

Scale Types: Ratio Scale
Ratio Scales
• Sometimes we would like to be able to say that one liquid is

twice as hot as another, or that one project took twice as
long as another. This needs the ratio scale, which is the
most useful scale of measurement, and quite common in the
physical sciences.

• Properties:
– It is a measurement mapping that preserves ordering, the size

of intervals between entities, and ratios between entities.
– There is a zero element, representing total lack of the attribute.

[“natural zero”]
– The measurement mapping must start at zero and increase (or

decrease) at equal intervals, known as units.
– All arithmetic operations can be meaningfully applied to the

classes in the range of the mapping.

Entity Attr

Car Speed
C-S1 0 0
C-S2 20 32
C-S3 40 64
C-S4 60 96
C-S5 80 128
C-S6 100 160
… … …

Measure (Car Speed) ∈ [0, 1000]

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 53

Part 06: Measurement-based Improvement

Example: Ratio Scale
• Measuring execution time of a software

program:
– Seconds
– Minutes
– Hours
– …

• M’ = aM, a > 0

Entity Attr

Progr. Ex. Time

P-E1 0 0
P-E2 0.001 1
P-E3 0.002 2
P-E4 0.003 3
P-E5 0.004 4
P-E6 0.005 5
… …

Measure (Progr. Exec. Time) ∈ [0, ∞)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 54

Part 06: Measurement-based Improvement

Scale Types: Absolute Scale
Absolute Scales
• The absolute scale is the most restrictive of all. For

any two measures, M and M', there is only one
admissible transformation: the identity
transformation.

• Properties:
– The measurement for an absolute scale is made simply by

counting the number of elements in the entity set.
– The attribute always takes the form “number of occurrences of

x in the entity set.”
– There is only one possible measurement mapping.
– All arithmetic manipulation of the resulting count is meaningful.

Entity Attr

Car Count
C-C1 0
C-C2 1
C-C3 2
C-C4 3
C-C5 4
C-C6 5
... …

Measure (Car Count) ∈ IN0

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 55

Part 06: Measurement-based Improvement

Example: Absolute Scale
• The count of defects detected in a

module is absolute (but quality in terms
of number of defects is not).

• The count of people working on a
project is absolute (but staffing in terms
of number of people is not).

• M’ ≡ M = {0, 1, 2, …}

Entity Attr

Module #Defects

M-D1 0
M-D2 1
M-D3 2
M-D4 3
M-D5 4
M-D6 5
… …

Measure (Module Defect Count) ∈ IN0

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 56

Part 06: Measurement-based Improvement

Measurement Scale Types (Summary)
• Nominal scale: classification of objects, where the fact

that objects are different is preserved

• Ordinal scale: objects are ranked/ordered according to
some criteria, but no information about the distance
between the values is given

• Interval scale: differences between values are meaningful

• Ratio scale: there is a meaningful “zero” value, and ratios
between values are meaningful

• Absolute scale: no transformation (other than identity) is
meaningful (no unit needed)

NB: Scale types can be defined in terms of admissible
transformations

Entity Attr

Measure (Attribute) is well-defined,
if scale and unit are clearly specified;
specification of the unit makes the
measure unambiguous!

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 57

Part 06: Measurement-based Improvement

Measurement Scale Types [Mor01] /1
Scale Type Characterization Example (generic) Example (SE)

Nominal Divides the set of objects into categories,
with no particular ordering among them

Labeling, classification Name of programming language,
name of defect type

Ordinal Divides the set of entities into categories
that are ordered

Preference, ranking, difficulty Ranking of failures (as measure of
failure severity)

Interval Comparing the differences between
values is meaningful

Calendar time, temperature
(Fahrenheit, Reaumur, Celsius)

Beginning and end date of activities
(as measures of time distance)

Ratio There is a meaningful “zero” value, and
ratios between values are meaningful

Length, weight, time intervals,
absolute temperature (Kelvin)

Lines of code (as measure of
attribute “Program length/size”)

Absolute There are no meaningful transformations
of values other than identity

Object count Count (as measure of attribute
“Number of lines of code”)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 58

Part 06: Measurement-based Improvement

Measurement Scale Types [Mor01] /2
Scale
Type

Admissible
Transformation

Indicators of Central
Tendency

Nominal Bijection (one-to-one mapping) Mode

Ordinal Monotonically increasing
transformation

Mode + Median

Interval Positive linear transformation

M’= a M + b (a>0)

Mode + Median + Arithmetic
Mean

Ratio Proportionality

M’= a M (a>0)

Mode + Median + Arithmetic
Mean + Geometric Mean

Absolute Identity

M’ ≡ M

Mode + Median + Arithmetic
Mean + Geometric Mean

The classification of scales has
an important impact on their
practical use, in particular on the
statistical techniques and indices
that can be used.

Example: Indicator of central
tendency of a distribution of
values (“Location”).

Mode = most frequent value of
distribution

Median = the value such that not more
than 50% of the values of
the distribution are less
than the median and not
more than 50% of the
values of the distribution
are greater than the
median

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 59

Part 06: Measurement-based Improvement

Measurement Scale – Summary
• There are 5 different types of measurement scales

• The type of the measurement scale determines
– how measurement data can be treated statistically

• indicators of central tendency
• types of statistical distributions
• types and power of statistical analyses (test, correlation,

etc.)
– whether statements involving measurement data

are meaningful

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 60

Part 06: Measurement-based Improvement

Meaningfulness of Measurement-Based Statements

Definition:

A statement involving
measurements is meaningful, if
its truth value remains
unchanged under any
admissible transformation

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 61

Part 06: Measurement-based Improvement

Are the following statements meaningful?
Statement:
1. “Peter is twice as tall as Hermann”
2. “Peter’s temperature is 10% higher than Hermann’s“
3. “Defect X is more severe than defect Y”
4. “Defect X is twice as severe as defect Y”
5. “The cost for correcting defect X is twice as high as

the cost for correcting defect Y”
6. The average temperature of city A (30 ºC) is twice as

high as the average temperature of city B (15 ºC)
7. “Project Milestone 3 (end of coding) took ten times

longer than Project Milestone 0 (project start)”
8. “Coding took as long as requirements analysis”

Scale? Meaningful?
1. ratio yes
2. interval* no*
3. ordinal yes
4. ordinal no
5. ratio yes

6. interval no

7. interval no

8. interval yes

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 62

Part 06: Measurement-based Improvement

Meaningfulness of Measurement-Based Statements

Procedure to check for meaningfulness:

1. Apply the admissible transformation to measures in
a statement S and obtain a transformed statement
S’.

2. If S’ can be shown to be equivalent to S, then the
statement S is meaningful for the scale associated
with the admissible transformation.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 63

Part 06: Measurement-based Improvement

Meaningfulness – Example 1
• Is statement (1) on the

right meaningful, if X is
measured on a ratio
scale?

• Apply any admissible
transformation M’=aM
(a>0) for ratio scales:

• By arithmetic
manipulation, (2) can
always be made
equivalent to (1).
Therefore, the first
statement is meaningful
for a ratio scale.

(1)

(2)

mxx
=

+
2

21

Ratio Scale

maxaxa
⋅=

⋅+⋅
2

21

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 64

Part 06: Measurement-based Improvement

Meaningfulness – Example 2
• Is statement (1) on the

right meaningful, if X is
measured on an interval
scale?

• Apply any admissible
transformation M’=aM+b
(a>0) for interval scales:

• By arithmetic
manipulation, (2) can
always be made
equivalent to (1).
Therefore, the first
statement is meaningful
for an interval scale.

(1)

(2)

mxx
=

+
2

21

Interval Scale

bmabxabxa
+⋅=

+⋅++⋅
2

21

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 65

Part 06: Measurement-based Improvement

Meaningfulness – Example 3
• Is statement (1) on the

right meaningful, if X is
measured on an ordinal
scale?

• Apply an admissible
transformation for ordinal
scales, e.g., x’=x3:

• For any pair of
measurements x1 and x2,
there exists always one
admissible transformation
such that statement (2) is
false when (1) is true.
Therefore, statement (1) is
not meaningful for an
ordinal scale.

(1)

(2)

mxx
=

+
2

21

Ordinal Scale

3
213

3
2

3
1

22
⎟
⎠
⎞

⎜
⎝
⎛ +

==
+ xxmxx

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 66

Part 06: Measurement-based Improvement

Meaningfulness – Geometric Mean
• The geometric mean of a data set [a1,

a2, ..., an] is given by

• On which scale type is the geometric
mean meaningful?

Scale Type ?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 67

Part 06: Measurement-based Improvement

Objective vs. Subjective Measurement
• Objective Measurement

– Usually the measurement
process can be
automated

– (Almost) no random
measurement error, i.e.,
the process is perfectly
reliable

• Subjective Measurement
– Human involvement in the

measurement process
– If we repeat the measurement

of the same object(s) several
times, we might not get
exactly the same measured
value every time, i.e., the
measurement process is not
perfectly reliable

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 68

Part 06: Measurement-based Improvement

Objective vs. Subjective Measurement (cont’d)
Examples:
• Subjective Measurement

– Classification of defects into severity classes
– Function Points (when counted manually)
– Software Process Assessments

• Objective Measurement
– Lines of Code
– Cyclomatic Complexity
– Memory Size
– Test Coverage

To which category
belong …
- Effort ?
- Time ?
- Defect Count ?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 69

Part 06: Measurement-based Improvement

Why Use Subjective Measures?

• It is not always possible to
develop objective measures

– e.g., when trying to measure abstract
concepts like “skill”, “competence”,
“functionality”, “process capability”, or
“organizational maturity”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 70

Part 06: Measurement-based Improvement

Remarks on Subjective Measures
• Well developed subjective measures have proven to be

useful
– e.g., to select suppliers, to identify skill gaps, to assign priorities (e.g.,

for requirements)

• It is possible to have objective and subjective measures
for the same attribute

– e.g., measures of code size: LOC and Function Points

• Rule of Thumb:
– If an objective measure is available, then it is preferable

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 71

Part 06: Measurement-based Improvement

Basic Concepts in Subjective Measurement
• Construct: A conceptual object that cannot be directly

observed and therefore cannot be directly measured
(i.e., we estimate the quantity we are interested in
rather than directly measure it); for example:

– User Satisfaction
– Competence of a Software Engineer
– Efficiency of a Process
– Maturity of an Organization

• Item: A subjective measurement scale that is used to
measure a construct

– A question on a questionnaire is an item

Construct

Item1

Itemn

.

.

.

Measurement
Instrument

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 72

Part 06: Measurement-based Improvement

The Dimensionality of Constructs
• Constructs can be one-dimensional or multi-

dimensional

• If a construct is multidimensional, then each
dimension covers a different and distinct aspect of
the construct

– e.g., the different dimensions of customer satisfaction

Construct

Item1

Itemn

.

.

.

One-Dimensional

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 73

Part 06: Measurement-based Improvement

Procedures for Subjective Measurement
• Subjective Measures usually entail a well-defined

Measurement Procedure that precisely describes:
– How to collect the data (usually via questionnaires on paper

or online)
– How to conduct interviews
– How to review documents (software artifacts)
– In which order to assess the dimensions/items of the

instrument, etc.

• Examples: ISO9000 Audit, CMM/CMMI
Assessment, Function Points

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 74

Part 06: Measurement-based Improvement

Commonly Used Subjective Measurement
Scales

• Likert-Type Scale
– Evaluation-Type
– Frequency-Type
– Agreement-Type

• Semantic Differential Scale

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 75

Part 06: Measurement-based Improvement

Likert Type Scales
• Evaluation-type

Example:
– Familiarity with and

comprehension of the
software development
environment:

Little
Unsatisfactory
Satisfactory
Excellent

• Frequency-type
Example:

– Customers provided
information to the
project team about the
requirements:

Never
Rarely
Occasionally
Most of the time

• Agreement-type
Example:

– The tasks supported by
the software at the
customer site were
changing frequently:

Strongly Agree
Agree
Disagree
Strongly Disagree

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 76

Part 06: Measurement-based Improvement

Semantic Differential Scale
• Items which include semantic opposites

• Example:
– Processing of requests for changes to existing

systems: the manner, method, and required time with
which the MIS staff responds to user requests for
changes in existing computer-based information
systems or services.

Slow □ □ □ □ □ □ □ Fast

Timely □ □ □ □ □ □ □ Untimely

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 77

Part 06: Measurement-based Improvement

Assigning Numbers to Scale Responses
• Likert-Type Scales:

Strongly Agree 1
Agree 2
Disagree 3
Strongly Disagree 4

• Ordinal Scale

• But: Often the distances between the four
response categories are approximately
(conceptually) equidistant and thus are
treated like approximate interval scales.

• Semantic Differential Scale:

Slow □ □ □ □ □ □ □ Fast
1 2 3 4 5 6 7

• Ordinal scale, but again, often
treated as interval scales

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 78

Part 06: Measurement-based Improvement

Software Measures: Validity & Reliability

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 79

Part 06: Measurement-based Improvement

Why is Validity an Issue?
How to measure

• “modularity”?

• “cohesion”?

• “coupling”?

Many suggestions have been made by many
people!

Do these suggestions work?

Many

Important

Questions

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 80

Part 06: Measurement-based Improvement

Theoretical Validation
Problem 1:
• How do we know whether a

proposed measure adequately
reflects my intuition /
understanding about the attribute
it purports to measure?

Answer:
• We have to make our intuition /

understanding about the
characteristics (properties) of the
measured attribute explicit – then
we can check whether the measure
“reproduces” our assumptions

Problem 2:
• Do we all have the same intuition /

understanding about the characteristics /
properties of an attribute?

Answers:
• If we all make our assumptions explicit, we

can check
• If we encounter differences, we can try to

identify a set of necessary “core
characteristics / properties” of the attribute
under consideration.

“Measurement Concepts”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 81

Part 06: Measurement-based Improvement

Theoretical Validation: Method
• Define an Empirical Relational System (ERS) with

– A : set of objects to be measured
– Ri : empirical relations between elements of A
– oj : binary operations on the empirical objects in A

• Define a Formal Relational System (FRS) with
– B : set of formal objects
– Si : formal relations between the elements of B
– *j : binary operations on the formal objects in B

• Define measure(s) that map empirical objects (from A)
into formal objects (in B)

• Show that the measure(s) preserve the Representation
Condition

1

2

3

4

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 82

Part 06: Measurement-based Improvement

Empirical Relational System: Example

• A = { Lion, Bear, Horse, ... }

• R1:= “HIGHER THAN”

R1(Entity1, Entity2) = Entity1 IS HIGHER THAN Entity2

• o1:= “STANDING ON THE BACK OF” = ∇

R1(Entity1 ∇ Entity2, Entity3)

• Suppose we want to study
the “height” (attribute) of
“animals” (entities).

• The height of animals
gives rise to empirical
relations like “high”,
“higher than”, “much
higher than”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 83

Part 06: Measurement-based Improvement

Empirical Relational System: Example

• The Horse IS HIGHER THAN the Bear

• The Bear IS HIGHER THAN the Lion

• The Horse IS HIGHER THAN the Lion (R1 is transitive)

• Lion ∇ Bear IS HIGHER THAN the Horse

NB:

No numbers are
involved An
Empirical Relation
System embodies
our understanding
of the attribute.

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 84

Part 06: Measurement-based Improvement

Example: ERS, FRS, Measure (with Scale)
• m: ({Bear, Lion, Horse}, “Is Higher Than”, ∇)

→ ({1, 2, 2.5} ,>, +)

• Each entity of A is mapped into a number of B:

m(Lion) = 1, m(Bear) = 2, m(Horse) = 2.5

• Each relation Ri is mapped into a relation Si:

“Is Higher Than” : >

• Each operation oi is mapped into a numerical
operation •i:

∇ : +

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 85

Part 06: Measurement-based Improvement

Measure m, Scale: Definition
• A measure m is a mapping m: σ(A) → B which yields for every

empirical object a ∈A a formal object (measurement value) m(a)
∈ B. This mapping must not be arbitrary, hence leading to the
following definition of a scale.

• Let A = (A,R1, …, Rn, o1,…, om) be an empirical relational
system and B = (B, S1,…, Sn , •1,…, •m) a formal relational
system and m a measure.

The Triple (A, B, m) is a scale if and only if for all i, j and for all a,
b, a1, …, ak ∈ A the following holds:

Ri (a1, …, ak) ⇔ Si (m(a1), …, m(ak))

and m(a oj b) = m(a) •j m(b)

• Example: If B is the set of real numbers, the triple (A, B, m) is a
ratio scale.

Representation
Condition

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 86

Part 06: Measurement-based Improvement

Representation Condition
• Definition: All empirical relations must be preserved in

the formal relational system.

• Examples:

Horse “IS HIGHER THAN” Bear ⇔ m(Horse) > m(Bear)

Bear “IS HIGHER THAN” Lion ⇔ m(Bear) > m(Lion)

Horse “IS HIGHER THAN” Lion ⇔ m(Horse) > m(Lion)

Lion ∇ Bear “IS HIGHER THAN” Horse

⇔ m(Lion ∇ Bear) > m(Horse)

⇔ m(Lion) + m(Bear) > m(Horse)

Recall:
Ri (a1, …, ak) ⇔ Si (m(a1), …, m(ak))
and
m(a oj b) = m(a) •j m(b)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 87

Part 06: Measurement-based Improvement

Theoretical Validation
Problem 1:
• How do we know whether a

proposed measure adequately
reflects my intuition /
understanding about the attribute
it purports to measure?

Answer:
• We have to make our intuition /

understanding about the
characteristics (properties) of the
measured attribute explicit – then
we can check whether the measure
“reproduces” our assumptions

Problem 2:
• Do we all have the same intuition /

understanding about the characteristics /
properties of an attribute?

Answers:
• If we all make our assumptions explicit, we

can check
• If we encounter differences, we can try to

identify a set of necessary “core
characteristics / properties” of the attribute
under consideration.

“Measurement Concepts”

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 88

Part 06: Measurement-based Improvement

Example: System Complexity [BMB96]

Example System S:
Element
of S
(node)

Relationship
between
Elements of S
(edge)

Module

[Mor01]

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 89

Part 06: Measurement-based Improvement

Example: System Complexity [BMB96]

Formal Characterization of Software System:
• A system S is represented as a pair <E, R>

• E represents the set of elements of S

• R is a binary relationship on E (R ⊆ E x E) representing
the set of relationships between elements of S

• A module m of S is defined as: m=<Em, Rm> iff:
– Em⊆ E
– Rm ⊆ Em x Em

– Rm ⊆ R

NB: System Complexity is not the same as Psychological or Cognitive Complexity

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 90

Part 06: Measurement-based Improvement

Example: System Complexity
Properties:
1. Non-Negativity

– The complexity of a system S is non-negative: Complexity(S) ≥ 0

2. Null Value
– The complexity of a System S is null if there are no relationships between the

elements of the system: R = Ø ⇒ Complexity(S) =0.

3. Module Monotonicity
– The complexity of a system S is not smaller than the sum of the complexities of any

two of its modules with no relationships in common:
(m1=<Em1, Rm1> and m2=<Em2, Rm2> and m1 ∪ m2 ⊆ S and Rm1 ∩ Rm2= Ø)
⇒ Complexity(S) ≥ Complexity(m1) + Complexity(m2)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 91

Part 06: Measurement-based Improvement

Example: System Complexity [BMB96]

Properties (cont’d):
4. Disjoint Module Additivity

– The complexity of a system S composed of two disjoint modules is
equal to the sum of the complexities of the two modules:
(S=m1∪ m2 and m1∩ m2 = Ø) ⇒ Complexity(S) = Complexity(m1) +
Complexity(m2)

5. Symmetry
– The complexity of a system does not depend on the convention chosen

to represent the relationships between its elements (e.g., direction of
arcs that represent edges):
(S-1=<E, R-1>) ⇒ Complexity(S) = Complexity(S-1)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 92

Part 06: Measurement-based Improvement

Example: System Complexity
Proposal of a System Complexity Measure:
• McCabe’s Structural Complexity Measure [McC76]:

– Def.: for a program with (control-)flow graph F, the
cyclomatic number is calculated as:

V(F) = e – n + 2p
where

e: #edges of F
n: #nodes of F
p: #programs (modules)

or, for p=1:
V(F) = d + 1, where d: #decision nodes of F

V(F) = 16 – 13 + 2 = 5

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 93

Part 06: Measurement-based Improvement

Example: System Complexity
Proposal of a System Complexity Measure:
• McCabe’s Structural Complexity Measure [McC76]:

– Def.: for a program with (control-)flow graph F, the
cyclomatic number is calculated as:

V(F) = e – n + 2p
where

e: #edges of F
n: #nodes of F
p: #programs (modules)

or, for p=1:
V(F) = d + 1, where d: #decision nodes of F

V(F1) = 1

V(F2) = 3

V(F3) = 1

V(F5) = 1

V(F) = 10 – 13 + 2 x 5 = 7 = 1 + 3 + 1 + 1 + 1

with F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ⊆ F

V(F4) = 1

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 94

Part 06: Measurement-based Improvement

Example: System Complexity
Proposal of a System Complexity Measure:
• McCabe’s Structural Complexity Measure [McC76]:

– Def.: for a program with (control-)flow graph F, the
cyclomatic number is calculated as:

V(F) = e – n + 2p
where

e: #edges of F
n: #nodes of F
p: #programs (modules)

or, for p=1:
V(F) = d + 1, where d: #decision nodes of F

V(F1) = 1

V(F2) = 3

V(F3) = 1

V(F5) = 1

V(F) = 11 – 13 + 2 x 5 = 6 < 1 + 3 + 1 + 1 + 1

with F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ⊆ F and F2 ∩ F5 ≠ Ø

V(F4) = 1

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 95

Part 06: Measurement-based Improvement

Example: System Complexity (cont’d)
Answer 1:
• McCabe’s cyclomatic complexity

measure does not appropriately capture
program complexity

– What about: V(F) := e – n + p (p: #modules)

Answer 2:
• We might have to convince ourselves –

and the community of researchers and
practitioners – that Property 3
(Monotonicity) is not necessary

What does this
result tell us
about the
proposed
measure of
program
complexity?

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 96

Part 06: Measurement-based Improvement

Usefulness of Measurement Concepts [Mor01]

• Sets of properties for measurement concepts such
as the one described above are useful to:

– Model intuition about the properties that measures of
an attribute should possess

– Show similarities and differences among measures of
different attributes

– Check whether a given measure is consistent with
intuition

• Note: the check of measurement results can either lead to
rejection of a measure or provide supporting evidence for the
validity of a measure, but it can never proof validity

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 97

Part 06: Measurement-based Improvement

Validity of a Measure – 2 Issues
• When I apply a proposed measure, do the

measurement results represent my/others
intuition/understanding of what “modularity”
/ “cohesion” / “coupling” mean?

• Is the measure practical, i.e., can it be used
to predict values of other interesting
attributes (e.g., maintainability), does it help
explain other interesting phenomena, can it
be collected automatically, is it “cheap”, etc.

Issue 1
Theoretical
Validity

Issue 2
Empirical
Validity

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 98

Part 06: Measurement-based Improvement

Reliability of Measures – Definition

• Definition:
– The extent to which a measurement process will yield

exactly the same value if applied repeatedly to the same
object

• Remark:
– In software measurement, reliability is mainly an issue

related to Subjective Measures

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 99

Part 06: Measurement-based Improvement

Reliability versus Validity

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 100

Part 06: Measurement-based Improvement

2 Types of Measurement Error

Random Error (Noise) Systematic Error (Bias)

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 101

Part 06: Measurement-based Improvement

Reliability Estimation Techniques – Classes
• It is not possible to assess the reliability of a measure (or

measurement instrument) directly, it has to be estimated based on
empirical data

– e.g., by using test data taken from a subset of the actual population

• There are four main classes of Reliability Estimation Techniques:
1. Inter-Rater (or Inter-Observer) Reliability (or Agreement):

• To assess the degree to which different raters/observers give consistent estimates of
the same phenomenon (using the same measure)

2. Internal Consistency Reliability:
• To asses the consistency of measurement results across items within a (one-

dimensional) measurement instrument
3. Test-Retest Reliability:

• To asses the consistency of a measurement instrument from one time to another
4. Parallel Forms (or Alternative Forms) Reliability:

• To assess the consistency of the results of two measurement instruments

INF5180 – Spring 2010

Copyright 2010 © Dietmar PfahlPage 102

Part 06: Measurement-based Improvement

Reliability Estimation Techniques – Classes
• Number of

administrations is the
number of times that
the same object is
measured (per
observer)

• Number of
instruments is the
number of different but
equivalent instruments
that would need to be
administered

Number of Instruments

One Two

Number of
Administrations

(per Observer /
Rater)

One Inter-Rater

Internal
Consistency

Parallel Forms
(immediate)

Two Test-Retest Parallel Forms
(delayed)

http://www.socialresearchmethods.net/kb/reltypes.php

