
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. (2008)

Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/spip.387

Rationale Modeling for
Software Process Evolution

Research Section

Alexis Ocampo* ,† and Jürgen Münch
Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

Evolving a software process without a retrospective on its evolution and, in consequence,
without an appropriate understanding, can lead to important problems for a software
development organization. Two examples of such problems are inefficient performance as a
consequence of the arbitrary introduction of changes or difficulty in demonstrating compliance
to a given standard. Capturing information on the rationale underlying process changes
provides a means for better understanding process evolution. This article presents two studies
aimed at understanding and identifying information needs for describing the rationale for
process evolution. Additionally, it presents an approach for incrementally evolving processes
supported by this rationale. This approach is derived from the results of the studies and a
survey of related work. An application of the approach during the evolution of a reference
process for developing service-oriented applications is presented together with experience and
open questions for future research work. Copyright 2008 John Wiley & Sons, Ltd.

KEY WORDS: sofware process evolution; rationale; software process models; process changes; resource description framework; process
management

1. INTRODUCTION

Software process models support software engi-
neers in systematically performing the engineering
processes needed to develop and maintain software
products. As these models are enacted, suggestions
for process adjustment or refinement arise, which,
in turn, demands evolution of the models. Usu-
ally, certain events such as the introduction of a
new software development technology (e.g. new
testing support tools or platform), new/updated
standards/guidelines for software development or
process engineering, or new/updated best prac-
tices emerging from community experience gener-
ate situations that must be resolved, i.e. issues, by

∗ Correspondence to: Alexis Ocampo, Fraunhofer Institute for
Experimental Software Engineering Fraunhofer-Platz 1, 67663
Kaiserslautern, Germany
†E-mail: ocampo@iese.fhg.de

Copyright 2008 John Wiley & Sons, Ltd.

changing the engineering processes and the process
models underlying them. Changing these models
in organizations is typically a complex and expen-
sive task (Nejmeh and Riddle 2006). In many cases,
because of budget and time constraints, arbitrary
decisions are made, and process models are evolved
without storing or keeping track of the justification
behind such changes (Armbrust et al. 2005). This, in
turn, frequently results in inconsistencies or ambi-
guity being introduced into the process models.

The justification for a decision has been defined
as rationale by researchers, who have done extensive
investigation on capturing, organizing, and analyz-
ing product design decisions (Dutoit et al. 2006).
Rationale modeling is considered to be critical in
two areas: knowledge capture and decision making.
By making rationale information explicit, decision
elements such as criteria, priorities, and arguments
can improve the quality of software development
decisions. Additionally, when a change in a prod-
uct’s functions or an addition, respectively removal,

Research Section A. Ocampo and J. Münch

is considered or implemented, rationale models
enable developers to track those decisions that
should be revisited and those alternatives that
have already been evaluated. Dutoit et al. (2006)
provide a description of potential uses of design
rationale and design rationale methods and argue
that these can also apply to any other kind of
rationale-based software engineering activity apart
from software design. Drawing a parallel to pro-
cess evolution, some of these potential uses are the
following: it supports reworking of software pro-
cess model/standards; it supports identification of
the potential impact area of a process change; it
encourages self-reflection when making decisions;
and it supports the identification and analysis of
nonsystematic and rushed decisions. Additionally,
we have observed during the execution of a pro-
cess evolution project (Armbrust et al. 2005) that
information about the rationale of the process evo-
lution can help process engineers or the person(s)
responsible for the process in the organization to
effectively and efficiently tailor process models or
update them. What matters to real-world organiza-
tions is how fit their process is regarding current and
future needs. Tailoring a reference process model or
a software process engineering standard can be sup-
ported by knowing about the issues, alternatives,
arguments, and criteria that justified the definition
of the current reference process model/standard.
The process engineer can define a tailoring strat-
egy that finds a balanced compromise for ade-
quate process changes, taking into account both
the rationale behind the current reference process
model/standard and the current and future needs of
his/her organization. Equally, updating a reference
process model/standard whose history is known
can lead to changes to process models/standards
that reflect actual practices and are oriented towards
satisfying current and future needs of development
organizations.

The main contribution of this article consists of
transferring the concepts defined by the design
rationale community to the process modeling com-
munity, especially to the problem of process evo-
lution. It is important to notice that large amounts
of rationale information could become a straight-
jacket for the process of evolving a software pro-
cess. Therefore, we followed an experience-based,
bottom-up approach for defining the concepts, the
classification of issues, the approach, and a tool (our
specific contributions) to be used by organizations

for collecting appropriate amounts of information
about the rationale underlying process changes and
for evolving the process in a systematic way. We
have defined a roadmap for moving iteratively
forward towards such concepts, classification of
issues, approach, and tool. It can be summarized
in the following three main steps: The first step is
to understand the nature of process changes. This
means understanding what is needed for describ-
ing a change and the reason for it. Additionally, we
assume that by having a predefined classification
of the most common situations for process changes,
the task of collecting the information related to the
rationale can be simplified and become more suit-
able for use in real process evolution projects. Once
this is understood, in a second step, a structured con-
ceptual model of rationale can be produced together
with an approach that provides guidance on how
to perform systematic process evolution supported
by the developed conceptual model. In a final third
step, the conceptual model and the approach can
be applied in process evolution projects, supported
by a tool. The experience acquired in trial projects
is used for fine-tuning the conceptual model, the
approach, and the tool before using them in new
projects. So far, we have derived our current results
from the experience acquired in the context of
traditional, plan-driven (in Boehm’s sense) pro-
cesses, i.e. development is performed following
a requirements/design/build paradigm with stan-
dard, well-defined processes (Boehm and Turner
2004).

On the basis of the definition of software engi-
neering validation models provided by Zelkowitz
and Wallace (1998), our contributions are the prod-
uct of three different case studies performed in the
context of a large and a small organization: the
European Space Agency (ESA) and the Adaptive
Services Grid (ASG) project, respectively. The first
study was concerned with the problem of capturing
the justification of changes to aerospace engineering
standards (Armbrust et al. 2005). The second study
aimed at understanding the most common issues
behind process changes (Ocampo and Münch 2006).
Both studies were performed in the context of the
ESA. The results of these studies and the results of
a search on rationale literature provided the input
for a new conceptual model tested in the second
organization (ASG project), which constitutes our
third case study.

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

Table 1. Comparison of some common rationale concepts

Approach Rationale

Kunz and Rittel (1970) Issue Position Argument
MacLean et al. (1991) Question Option Argument Criterion
Lee (1990) Issue Alternative Claim Criteria Procedure
Bruegge and Dutoit (2004) Issue Alternative Argumentation Criteria Resolution
Chung et al. (1999) Goal Alternative Claim Criteria
Sauer (2002) Argument prototypes Assessment function
Ramaesh and Dhar (1994) Issue Position Argument Assumption Decision

This article presents the progress obtained from
the research roadmap as follows: Section 2 provides
short descriptions of related work, where concepts
for understanding process changes and rationale
were developed. Section 3 presents the context
and enhanced results of our previous studies
performed for understanding rationale information
needs. Section 4 presents the conceptual model
and approach developed incrementally with the
findings of the case studies. Section 5 discusses the
application of the conceptual model and approach
during the evolution of a process for developing
service-oriented applications in the context of
the ASG project. Section 6 summarizes the most
relevant findings with respect to the conceptual
model and approach as well as new research
questions to be addressed in the future.

2. RELATED WORK

This section discusses how research work from the
design domain and the process modeling domain
has addressed the problem of understanding the
nature of decisions, changes, and their rationale.

Historically, much research about rationale has
focused on design (Dutoit et al. 2006). Rationale
models represent the reasoning that leads to a
system, including its functionality and its imple-
mentation (Bruegge and Dutoit 2004). Kunz and
Rittel (1970) developed the IBIS issue model for
design rationale, which has been used as a basis
for other work on rationale modeling such as Lee
(1990), MacLean et al. (1991), Bruegge and Dutoit
(2004), and Chung et al. (1999). This model con-
tains three types of nodes: issues, positions, and
arguments. Issues are used to state the problem.
A position is a solution suggested by a developer.
Arguments either support or contradict a position.
The assumption made for issue modeling is that

the design of a system/component is performed
as follows: first, an issue is identified; then sev-
eral alternatives to resolve the issue are proposed;
at the same time, such alternatives are evaluated
against relevant project criteria; finally, a decision is
made by selecting the alternative that best matches
the criteria and resolves the issue. The ideas of
Kunz and Rittel were implemented by Conklin and
Burgess-Yakemovic in a tool called gIBIS (Conklin
and Burgess-Yakemovic 1991).

Table 1 presents our classification of some of the
approaches for representing rationale information.

This comparison identifies possible commonali-
ties among the approaches. For example, an issue
for Kunz and Rittel (1970) is similar to a question
or a goal for MacLean et al. (1991) and Chung et al.
(1999), respectively. Kuntz and Rittel’s issue mod-
eling is the basis for most of the approaches. The
MacLean et al. (1991), Bruegge and Dutoit (2004),
and Chung et al. (1999) approaches propose that
the rationale should be the driver for design activ-
ities. This way, rationale-related activities become
a part of the software development process and
not merely a parallel, additional activity. These
approaches extend the issue model with concepts
such as criteria/criterion/assumption, and resolu-
tion/procedure. Criteria are desirable qualities that
the selection of a proposal should satisfy. For exam-
ple, during requirements analysis, criteria include
usability or performance, while during project man-
agement criteria include timeframe, costs, or risks.
Finally, a decision is the resolution of an issue.
It contains the selected proposal and the justifica-
tion of the selection. At the same time, a resolution
could trigger more issues. Ramaesh and Dhar (1994)
developed a conceptual model and a prototype that
relates the use of knowledge about design ratio-
nale to the use of knowledge in design tasks. They
extended the IBIS model (Kunz and Rittel 1970)

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

with concepts necessary for representing knowl-
edge components involved in system design (e.g.
data flow, data storage).

A common drawback of all the previous
approaches is that these are prescriptive approaches
that call for discussions before creating or updating
a design, something that may not be necessary in
cases where changes are trivial.

Sauer (2002) presents a procedure for extract-
ing rationale information from the project log and
for justifying project decisions. The concepts used
are taken from the Event-Based Design Rationale
Model (EDRM) developed for the Minimally Inva-
sive Long-Term Organizational Support (MILOS)
environment (Maurer et al. 2000). Sauer claims that
by following his procedure, rationale information
can be generated semiautomatically, thereby over-
coming one of the major obstacles to capturing
rationale, namely the costs and effort required
for its elicitation. The concepts are similar to the
ones presented by the IBIS issue model, with
the major difference being that the information is
derived from an analysis of a project trace that
contains events and their interdependencies. How-
ever, Sauer’s approach does not capture information
about the positions/alternatives/options that were
not taken into account, which is valuable informa-
tion for future decisions. In other words, semiauto-
matic generation of possible strategies for making
a decision is very helpful, but this must be com-
plemented with the information captured from the
experts who actually make the decision (e.g. actual
discussion, criteria for selecting the best alternative).

In general, several design rationale concepts and
approaches that provide a structured basis for sys-
tematically performing and documenting changes
to a software product are available. Almost all of
the approaches offer tool support (often in the form
of hyper-linked information) and put an emphasis
on it. Most criticism regarding these approaches is
related to the costs of collecting and maintaining
such rationale information (Lee 1997, Buckingham
Shum et al. 2006). Since this prior work is highly
relevant to our work, and since we are aware of
its pros and cons (Bruegge and Dutoit 2004), we
surveyed how process modeling approaches per-
form and document changes, with a focus on their
similarities to the design rationale domain and on
determining whether such approaches adequately
address the criticism regarding cost.

We found that research work has been directed
toward developing approaches (Nguyen and Con-
radi 1996, Ahmed 2004, Bhuta et al. 2005, Nejmeh
and Riddle 2006, Madhavji), and process support
environments (PSEs)1 (Jaccheri and Conradi 1993,
Kaba and Derniame 1995, Koskinen and Martiin
1998, Maurer et al. 2000, Alloui et al. 2001, Green-
wood et al. 2001, Seet et al. 2003, Weber et al. 2005,
Cunin et al. 2001), for controlling software process
evolution. Some researchers propose encapsulat-
ing information about the process, its context, and
its changes. Examples are process components pro-
posed by Bhuta et al. (2005), dependency and change
structures proposed by Madhavji, the change pat-
terns proposed by Nguyen and Conradi (1996),
update taxonomies proposed by Ahmed (2004), and
the execution logs, change logs, and cases proposed
by Weber et al. (2005).

Other investigators have proposed conceptual
frameworks as in the case of Nejmeh and Riddle
(2006).

AU of the approaches recognize the need for
concepts and tools that can be used for collecting
information about process model changes that
help evolve the process in a systematic way.
However, most of them have not considered
rationale information as an important part of their
frameworks. Those approaches that do consider
concepts similar to the ones from design rationale
provide little evidence (i.e. collected data) on
reasons that trigger process evolution in a given
context (Madhavji, Nguyen and Conradi 1996,
Weber et al. 2005). Their research was mostly
oriented toward developing structures and patterns
to apply in PSEs that evolved both the instance and
the model of the process.

One alternative approach called software process
redesign (SPR) (Scacchi 2000) is concerned with
the identification, application, and refinement of
new ways to dramatically transform or improve
a process. The main inputs for SPR are the so-
called SPR heuristics and knowledge about the
use of a process. SPR heuristics can be classified
as being of two types: domain-independent SPR
heuristics, which can be applied to a large set
of processes, and domain-specific SPR heuristics,
which can be applied only to certain processes

1 PSEs are defined as human-oriented systems intended to serve
the interaction of computerized tools and humans (Seet et al.
2003).

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

in certain circumstances. The knowledge used to
derive the heuristics is obtained from narrative
reports on how to dramatically improve the life
cycle or prevent defects. Such narrative reports
are extracted from case studies, lessons learned,
best practices, and experience reports. It is here
that rationale concepts can contribute to the SPR
approach because they can be used for structuring
and therefore improving the sources of knowledge
needed for elicitation of redesign heuristics.

In summary, there has been a lot of research in
the design rationale domain targeted at providing
support to software engineers for making decisions
about changes to the software product. There has
also been a lot of research in the process modeling
domain concerning the evolution of processes, with
a focus on how to make changes to processes being
enacted, and how to reflect such changes at the
process model level. However, less emphasis has
been put on the reasons for changing a process
model and on how these can be used as input
for future decisions that change a process. This
motivates our research goal and contribution, which
consist of creating a clearer and more systematic
link between the domains of design rationale
and software process evolution. The next section
presents the results of a first step toward our goal,
namely understanding rationale information needs.
This has been realized by performing a study of the
concepts needed for expressing the rationale for
process changes and a study of the most common
issues for changing a process.

3. STUDIES FOR UNDERSTANDING
RATIONALE INFORMATION NEEDS

Two studies that were performed in the context
of a project focused on the evolution of aerospace
engineering standards are presented in this section.
The first study was performed with the objective
of identifying which information should be part of
the description of a rationale for process changes.
Additionally, a second study was performed, with
the objective of identifying those most common
issues that triggered changes to the process.

3.1. Context

The European Cooperation for Space Standardiza-
tion (ECSS) is an initiative established to develop

a coherent, single set of easy-to-use standards for
all European aerospace-related engineering activ-
ities, covering all areas, including engineering,
quality assurance, and project management. For
the ESA, the relevant standards applicable for
developing software are the following: ECSS-E-
40B Space Engineering – Software (ECSS-E-40 Part
1B Space Engineering: Software – Part 1: Princi-
ples and Requirements 2003) (mostly based on
the ISO 12207 standard : Information Technol-
ogy – Software Life Cycle Processes International
Organization for Standardization), and ECSS-Q80-B
Space Product Assurance – Software (2003). Organi-
zations or projects that are part of ESA are required
to develop and use specific tailoring(s) of the ECSS
standards suited to their work. This is a particularly
complex task because it requires detailed under-
standing of the whole standard, something that an
average software developer or project manager usu-
ally does not have (Ponz and Spada 2006). At the
ESA Space Operations Center ESOC (the ESA orga-
nization where this project took place), this tailoring
was called the Software Engineering and Manage-
ment Guide (SEMG) (Jones et al. 2002) and was used
for all their major projects.

After some years of experience with the ECSS
standards, they were revised by ESA, and a new
version was published. This also meant that the
SEMG had to be revised, in order to be compliant
with the revised ECSS standard. This compliance
had to be proven by means of traceability of every
ECSS requirement to its implementation and by
providing a tailoring justification for every tailored
requirement.

Another important task was to improve the
usability of the SEMG. For the purposes of this
project, process engineers (i.e. the authors of this
article) considered that the ease of use of a document
is positively influenced by improving (i) internal
consistency, i.e. avoiding contradictions between
parts of the document, (ii) external consistency, i.e.
avoiding contradictions with other documents and
assuring that links to external sources are correct,
and (iii) conciseness, e.g. ensuring that indexed
tables of contents allow people to find important
things quickly, that different concepts are explained
and marked clearly, and that the document is not
larger than necessary.

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

3.2. First Study

The setting of this project allowed the definition of
research goals oriented towards obtaining insights
about the rationale for process changes. This section
describes the specific research goal defined for the
study, the way the study was performed, and its
results.

3.2.1. Goal and Operation
The goal of the first study was to understand which
type of information was needed for describing the
rationale for changes to a process model/standard.
In order to instrument this goal, process engineers
maintained detailed meta-information tables on
a per-section basis that allowed introducing the
description of the change and the reason for that
change. This table was to satisfy the demands of a
wide variety of different stakeholders who wanted
to keep track of the changes performed to the SEMG
and their justifications (Armbrust et al. 2005).

Table 2 shows a meta-information table. The
table contained not only the section’s unique
identifier (field invariant ID) but also a change
log and a list of traceability relationships. The
fields for storing the traceability relationships (ECSS
Coverage section) corresponded to the analog fields
in a database where this information was stored. The
ECSS ID column corresponded to the requirements
identifier in the ECSS standard, and the compliance
column was used for selecting one out of the
following: tailored, tailored out, and compliant.
The justification column captured the rationale for
the changes. In case the compliance changed, the

Table 2. Table for collecting the rationale for changes to the
SEMG

Meta-information

Invariant ID <ID of the standard’s section>

Change log <description of changes from previous
version to this version>

Reviewer’s comments <feedback of reviewers concerning the
changes and rationale>

ECSS coverage

ECSS ID Compliance Justification

<ID ECSS
requirement>

<compliant; tailored;
tailored out>

<rationale for
change>

<ID ECSS
requirement>

<compliant; tailored;
tailored out>

<rationale for
change>

justification provided the rationale for the new
value. Therefore, if a requirement was compliant,
i.e. was found implemented in the SEMG, but a
decision was made to tailor it out, i.e. to remove
its implementation from the SEMG, the description
provided in the justification column supported such
a decision and the changes performed to the SEMG.
The opposite case can also be taken as an example.
In case an ECSS requirement was not found in
the SEMG, i.e. was tailored out, the rationale for
implementing it in the SEMG, i.e. for making
it compliant, was described in this justification
column.

The SEMG was modified iteratively and incre-
mentally, resulting in the SETG (Tailoring of
ECSS Software Engineering Standards for Ground
Segments in ESA) as follows: Process engineers
changed the SEMG and delivered a new version for
review. Afterwards, reviewers discussed changes
performed to the SEMG and accepted or rejected
such changes. The reviewers documented their deci-
sions and sent comments and suggestions to the
process engineers. Process engineers reworked the
SEMG on the basis of the comments and sugges-
tions. This iterative process allowed updating the
SEMG in a controlled way and enabled a continual
review of the accomplishment of the tasks.

Two versions of the SEMG resulted from the
editing–reviewing iterations.

3.2.2. Study Results
The collected rationale for changes was validated by
means of reviews performed by the project partner
members of the review committee and additional
process engineers. They studied each rationale and
provided feedback accordingly.

The validated rationale stored in a database was
used as a basis for automatically generating a part
of the standard called ‘Part D Traceability Against
ECSS’ (Tailoring of ECSS Software Engineering
Standards for Ground Segments in ESA). This docu-
ment presents tables with traceability relationships
between the SETG (old SEMG) and ECSS standards
as well as the justification for changes to affected
parts of the SETG standard.

The process engineers documented observations
with respect to the use of the meta-information
tables and their structure as a means for describing
the rationale. Below are some of these observations:

The tables were used by process engineers for
describing what changed and why. Sometimes the

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

information about what changed was too detailed,
sometimes too abstract. This might be due to the
fact that the structure provided did not contemplate
a difference between finely granular changes (e.g.
grammar errors or misspellings) and larger ones
(e.g. wrong control flow). Some SEMG changes
collected, such as the correction of misspellings or
grammar errors, or format changes, were not helpful
for recognizing important decisions. However, the
opposite was also observed, i.e. sets of changes
that helped to identify important decisions. One
example was a set of changes to the product
flow, where we observed a clear attempt to
separate system and software engineering activities,
something that was needed in the organization.
For example, many activities (such as system
criticality analysis, system requirements review,
system partitioning) that were performed by system
engineering personnel and their produced artifacts
were irrelevant for the software engineers and were
still part of the SEMG. This generated a lot of
frustration, because software engineers had to show
evidence of artifacts they did not need or use.

The lack of structure of text fields (change log
and justification) used in the meta-information table
influenced the understandability of the collected
information. The ESA reviewers commented on
confusing justifications that contained what was
performed instead of information on why. In other
cases, the change log contained information about
the change and about the reason in the same place.
These findings motivated the need to change the
conceptual model and try to use it in a new project.
The resulting conceptual model and its application
will be presented in Sections 4 and 5.

3.3. Second Study

Once we collected the information about the SEMG
changes, we used it as the basis for a second study
of the most important and common issues that were
resolved by each change. This section presents the
goal of the study together with its operation and
results.

3.3.1. Goal and Operation
The goal of the second study was to analyze the
changes performed to the SEMG for the purpose of
characterizing the issue types that triggered changes
in the context of the evolution of ESA standards.

We accomplished this by querying the database
that contained information on changes to the
SEMG and by manually analyzing each change’s
justification. A process ID uniquely identified the
changed entity during both iterations. Each record
provided information about the date of the change,
the entity’s name, and the change justification. First,
we assigned each justification a particular situation
or problem faced during the SEMG evolution. Then,
we proceeded to review in internal meetings the set
of situations and problems and grouped them into
a list of most common issues faced while doing the
SEMG evolution. A group of three process experts
outside the project reviewed the list of issues in two
iterations and provided feedback. Their comments
were used for refining the list.

3.3.2. Study Results
The list of issues was validated by means of reviews
performed by three external process experts who
provided feedback. The following is the refinement
of the list presented in Ocampo and Münch (2006)
and an explanation of the issues:

1. Process model is inaccurate
(a) Process engineers found that the pre-

scribed control flow among activities dif-
fered from the one followed in real
projects;

(b) Process engineers found that the pre-
scribed product flow differed from the one
observed in real projects.

2. Process model lacks precision
(a) Process engineers found activity descrip-

tions that could be understood in two or
more possible senses or ways;

(b) Process engineers found examples that
could be understood in two or more
possible senses or ways;

(c) Process engineers found names that did not
reflect the meaning of the process element
as commonly understood by practitioners.
A process element can be any of the
concepts used to model processes, e.g.
activity, tool, role, or artifact.

3. Process model is not concise
(a) Process engineers found activity descrip-

tions that contained superfluous or unnec-
essary statements;

(b) Process engineers found examples that
contained superfluous or unnecessary
statements;

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

Figure 1. No. of occurrences per issue

(c) Process engineers found duplicate descrip-
tions of activities.

4. The activity is noncompliant
• Process engineers found cases where activi-

ties did not fulfill the requirements stated in
the ECSS standards.

5. Process model is inconsistent
• Process engineers found examples that were

incorrectly referenced.

Figure 1 reflects the number of changes caused
by the issues listed above when changing the SEMG
during the first and second iterations. The list of
issues derived from analyzing the database with
the information about the evolution of process
standards provides an initial insight into the type
of changes performed in the context of this type
of project. It can be observed that the issues that
generated the highest number of occurrences such
as ‘process model is inaccurate’ (1) and ‘process
model lacks precision’ (2) reflect the distance that
existed between the process model and the actual
understanding of the process by its practitioners.
A more detailed description of the results can be
found in Ocampo and Münch (2006).

Unfortunately, the analysis performed for extract-
ing the list of most common issues was not repeated
afterwards by process engineers not belonging to
the project. This constitutes a threat of validity to

be further investigated. However, this list of issues
was taken into account for the definition of the con-
ceptual model presented in Section 4 and reused
during its application described in Section 5.

4. RATIONALE CONCEPTS AND
APPROACH

Although the required tracking of changes was
supported during the first case study, the project
gave clear indications that advanced rationale
management could be beneficial. This motivated
us to design a new version of the conceptual model
and approach.

According to researchers in the design rationale
community (Fischer et al. 1991, Bratthall et al. 2000,
Burge and Brown 2004, Dutoit et al. 2006), main-
tainability and controlled evolution of a system are
dependant on the understanding of what is cur-
rently present, as changes in design are affected
by prior design. This means that in the case of
software process evolution, one should be able
to describe the relationships between an existing
process model and its previous version(s). Such
relationships denote differences between versions
due to distinguishable modifications. The purpose
of such modifications can be distinguished if one
can understand the rationale behind them. Figure 2

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

Figure 2. Rationale support for organizational process evolution

shows one scenario where rationale knowledge sup-
ports organizational process evolution. Here, an
organizational process must be followed by dif-
ferent projects inside the organization. However,
owing to the special contextual characteristics and
needs, each project changes the organizational pro-
cess. In this example, project 1 evolves the process
and produces two new versions, while project 2 pro-
duces three new versions. At certain points in time,
the organization’s management or roles responsible
for the process take a look at the changes performed
by each project with the purpose of understanding
what is new, what was not suitable, and what could
be relevant for other projects. Such questions can be
answered better if the reasons for changes R (ratio-
nale) between project process versions are known.
Furthermore, the rationale available can be used as
input for changing the organizational process.

Rationale knowledge provides the decision-
making elements that lead to the process knowledge
at both the project and organizational level (Dutoit
et al. 2006). It also augments the process knowl-
edge, i.e. the work required to develop the system,
including knowledge about roles, resources, tasks,
and work products.

According to Kneuper (2002), the knowledge
representation schemes must fulfill the following
characteristics:

• Expressiveness: refers to the ability to represent
the desired knowledge at the appropriate levels
of granularity.

• Effectiveness: concerns the means that a rep-
resentation scheme provides for inferring new
knowledge from old.

• Efficiency: means that the user must be able to
find the knowledge needed within a reasonable
time frame, and be able to find and use it with
acceptable effort.

• Explicitness: allows different levels of detail or
abstraction.

• Accessibility: is accessible from different techni-
cal environments.

• Modifiability: is easy to improve and adapt to
changing environments.

• Understandability: is easy to understand and
use by users.

• Searchability: refers to appropriate search and
selection mechanisms.

One lesson learned from the first study on the
evolution of SEMG standards (Armbrust et al. 2005)
was that the information provided in the respective
change logs by the process engineers who changed
the standards was not sufficient for understanding
the evolution.

Our conceptual model lacked expressiveness,
effectiveness, efficiency, explicitness, and under-
standability. However, the technology that we chose
supported us in providing appropriate accessibility,
modifiability, and search and selection mechanisms
(Armbrust et al. 2005).

Before the study, we were convinced that one
major value of such meta-information tables is to
document information to be used in the future. This

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

was not the case, because our meta-information
tables lacked the structure for describing why and
where a process was changed, what the changes
were, what triggered them, what the alternatives
were, and which one was selected as the final
decision. We arrived at the conclusion that the
lack of a structure of and guidelines for the meta-
information tables were the main factors leading to
this confusing information. This led us to develop a
second version of our conceptual model targeted at
understanding the information needs for capturing
the rationale behind process changes (Figure 3). We
started with a small set of concepts that will be
refined with time. The reason for keeping the model
as simple as possible comes from the criticism
regarding the high costs of capturing rationale
information (Bruegge and Dutoit 2004, Burge and
Brown 2004, Dutoit et al. 2006). We wanted to avoid
these high costs and find those appropriate concepts
needed to describe the rationale of changes.

We took the most common concepts used in
the design rationale domain (Table 1) as a basis,
customized them to our needs, and connected
them to four entities that were relevant for us,
i.e. event, changes, process element, and version
(the non-shadowed classes in Figure 3). An event is
considered to be the trigger of issues. Events can be
external or internal. Examples are:

• External
– New/updated process engineering technol-

ogy (e.g. a new process modeling technique)
– New/updated regulatory constraints

• Internal
– Responses to failures to pass internal or

external appraisals, assessments or reviews
(e.g. changes needed to address results from
a process assessment based on the ISO
15504 standard (International Organization
for Standardization. ISO/IEC 15504 : 2003))

– New/updated best practices emerging from
lessons learned in just-completed projects
(e.g. a new best practice approach to han-
dling design reviews)

Changes are the result of the decision captured
in the resolution. They are performed on process
elements and are produced in a given version.
Some examples of changes performed on process
elements are: activity x has been inserted; artifact y
has been deleted; activity x has been moved to be a
sub-activity of activity z. The version is composed
of a set of process elements.

Issues are situations that arise as a consequence
of an event which need to be solved and are
related to a (part of a) process. An issue contains a
question, a description, a status (open, closed), and a
discussion. The discussion is intended for capturing
the emails, memos, letters, etc. where the issue was
treated by process engineers. Additionally, an issue
can be categorized by a type. This type must be
selected from a classification of issues that needs
to be developed or customized for an organization.
The classification presented as a result of the second
case study in Section 3.3 can be used as a basis,

Figure 3. Rationale model (UML static structure diagram)

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

but it should be refined continually on the basis of
experience gained from process evolution projects.

Alternatives are proposals for resolving the issue.
Alternatives can be captured with subject (short
description) or long descriptions. Alternatives
are evaluated and assessed by process engineers
regarding their impact and viability.

Finally, a resolution chooses an alternative whose
implementation causes changes to the process
elements. At the same time, one resolution could
lead to opening more issues. Note that a resolution
has a subject (short description), a long description,
and a justification. The justification is intended for
capturing a summary of the analysis of the different
alternatives, the final decision, and the proposed
changes. Table 3 shows an example taken from a
real project, where we illustrate the concepts.

The approach we propose for evolving a process
based on rationale is illustrated in Figure 4.

This approach is inspired by the existing rationale
management approaches presented in Section 2

Table 3. Example of a rationale for process changes

Concept Value

Event 1 - name: Process review;
- type: Internal;
- description: Review performed by process

engineers based on interviews with
practitioners.

Issue 1 - type: Process model is inaccurate;
- description: The processes that describe the

engineering of flight software are performed
by another team of engineers.

Alternative 1 - description: Remove all processes concerned
with the engineering of flight software;

- assessment: Positive – It shall be clear that
these processes are performed by another
special team of engineers and therefore
products that are to be checked during the
reviews shall not be produced at this team.

Alternative 2 - description: Declare this process optional;
- assessment: Negative – The engineers at this

team do not follow these processes. This is
not their area of competence.

Resolution 1 - description: The review board agreed
to remove these processes;

- justification: Process engineers agreed that
alternative 1 was more appropriate
because it reflects better what is being done
at the team and avoids confusion during the

reviews.
Changes - Existent processes related to the engineering

of flight software must be removed;
- The products generated by such processes

must be removed along with their templates.

and traditional change management processes that
can be found in several software development
standards, e.g. (IEEE Std-828-2005). Despite its
similarity to existing approaches, what is new in the
approach of Figure 4 is that it attempts to explicitly
describe the steps.

First, an internal or external event that has taken
place is communicated to the process engineer in
charge of the process via mail, memo, official doc-
ument, or by the most convenient artifact. In the
activity ‘identify issues’, the process engineer iden-
tifies the issue(s) he or she is facing due to the
event and documents them using the previously
described concepts. The process engineer proceeds
to ‘identify conflicting issues’. He does this by
querying and visualizing previous rationale infor-
mation in order to find open issues that conflict
with this new one. He could also identify issues
treated before and how they were resolved. He also
analyzes dependencies on issues, and the impact
of the issues on the process model. The process
engineer ‘proposes alternatives’ for discussing with
other involved roles (e.g. quality assurer, project
manager, quality manager, trainer, software devel-
oper) to resolve the issue(s). The process engineer
then ‘resolves the issue(s)’ by selecting the most
appropriate alternative(s) and defining a strategy
of changes to be realized. Then, either the process
engineer or the role assigned inside the organization
‘extracts the process model version’ to be modified
and ‘updates the process model’ using the reso-
lution information as input. Once the changes are
finalized, the process engineer ‘stores a new process
model version’ and closes the issue(s).

5. APPLICATION OF CONCEPTS
AND APPROACH

The conceptual model and the approach have been
applied for the purpose of characterization in a
real environment. This has given us insights into
the extent to which process engineers used the
terminology to capture rationale, and the extent
to which such an approach can be introduced
successfully in industry.

5.1. Context

The environment where we applied our concep-
tual model corresponds to the ASG project (ASG:

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

Figure 4. Approach (product flow – Spearmint notation (Becker-Kornstaedt et al. 1999))

Adaptive Services Grid). The ASG was intended
to develop a software infrastructure that enables
the design, implementation, and use of appli-
cations based on adaptive services, namely the
ASG platform. Although the basic concepts of
service-oriented architectures and web services
have become very popular in the last few years,
much confusion remains concerning strategies and
processes suitable for engineering adaptive web ser-
vices (Bayer et al. 2006). Owing to this problem, we
were in charge of defining, establishing, evaluating,
and systematically evolving the development pro-
cess applied in the project to develop the platform.
Development activities within the ASG project were
performed, for instance, by several teams from
different companies, universities, and research insti-
tutes. Development teams ranged from two-person

teams consisting of a PhD student and a master
student to ten professional programmers. Develop-
ment teams were not co-located and team members
spoke different native languages.

Software processes were described in terms of
activities (e.g. plan project or design module),
artifacts (e.g. project plan, module design), roles
(e.g. project manager, designer), and assets (e.g.
plan template, design guidelines). The difference
between artifacts and assets is that artifacts are
tangible results whereas assets are resources sup-
porting process performance (Nejmeh and Riddle
2006). The resulting process models include both
textual descriptions and diagrams that illustrate the
relationships between the entities of the model in
a graphical way (e.g. workflows and role-specific
views).

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

5.2. Study Goals and Operation

The goal of this study was to analyze the conceptual
model and the approach for the purpose of eval-
uation in the context of the evolution of the ASG
reference process model.

The ASG reference process model was developed
mainly in three iterations. This means that there
are three versions of the model. At certain project
milestones, we interviewed developers about the
current process model version. Such interviews
were taken as a basis for performing changes
to the process model. Mapped to the previously
presented conceptual rationale model (Section 4),
such interviews can be seen as the event that
triggered issues to improve the process. We found
these interviews very useful for eliciting issues
and alternatives, since developers usually provided
information about possible solutions to the problem
as observed in Table 4.

We discussed the interviews, decided on the
changes, and documented their rationale. Then we
proceeded to perform the approved changes.

In general, the main idea behind the system-
atic evolution approach followed was to start with
commonly accepted process knowledge, refine it
with information gathered from the development

cycles, and therewith improve the textual descrip-
tions and diagrams of the process according to the
real project needs. We extended a tool-assisted way
of editing and reviewing the process description
(Armbrust et al. 2005) with a means for editing
and visualizing rationale (Figure 5). To achieve
this, we created a persistent connection of standard
word processor documents containing the process
description to a model of the documents in a rela-
tional database, which allowed us to keep rationale
meta-information as well as automate advanced
consistency checks. Our tool called ‘Rationale-
driven Evolution and Management Information
System’ (REMIS) (Ocampo and Münch 2007) also
allowed us to visualize rationale information in the
form of graphs before editing the process.

Our solution relied on the fact that modern
word processing programs increasingly support the
Extensible Markup Language (XML) as a document
format (Merz 2004). As an open format, XML can be
processed using a variety of widely available tools,
including high-level libraries that can be invoked
from most modern programming languages. Using
the interpreted, object-oriented Python program-
ming language (Lutz 2001), we developed a parser
that was able to navigate through the XML versions

Table 4. Excerpt of interview with software developers

Interview 3: software developer 1

Interview conducted in - Tromsø, Wednesday, July 13, 2005, 11 : 00 AM–12 : 00 noon
Interviewed person - User 1
Organization - Organization 1
ASG subsystem - Service Composer (C-2)
Role in prototype development - Subsystem Manager and Integrator
Team size - Two persons (incl. Subsystem Manager)
Team experience - More that 10 years programming experience with several languages

(object-oriented, imperative, and functional)
ASG development process - The ASG process was followed. The ASG process description on ASG Wiki was

known and used. Software developer 1 is the author of many of the linked pages
for assets and tool descriptions

Process change/improvement proposals - Owing to the short-termed synchronization points defined for the prototype
development, the steps defined within the subsystem-related activities seem
to be unnecessarily complex

- The process description should explain how the platform, the applications, and the
underlying services are developed/integrated

- Role-specific views on the overall process should be provided in order to improve
readability

- The activities Integration and Integration Test should be merged, since they are
concurrently performed by the same persons with the aid of the same
supporting tools

- The process description is too verbose

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

Figure 5. Tool support for process evolution supported by rationale

of the ASG process model description, identify-
ing the section headings and rationale information
tables, and moving information to and from the
database as necessary. This functionality allowed
us to update the database automatically after a
set of changes, and to check the data for consis-
tency before doing any further editing. We used
the Resource Description Framework (RDF) as a
basis for representing rationale information and
process evolution information (Klyne and Carroll
2004). In brief, RDF was originally designed for rep-
resenting metadata about web resources, such as
the title, author, modification date of a web page,
and copyright. However, it is possible to generalize
the concept of ‘Web Resource’ and say that RDF can
be used to represent ‘things’ that are identifiable.
RDF’s conceptual model allows describing ‘things’
by using statements and models such as nodes and
arcs in a graph. We use the RDF/XML (Manola and
Miller 2004) syntax for storing and querying RDF
graphs in the database. We see rationale as metadata
about processes. Such metadata can be queried for

describing the evolution of processes. The visual-
ization tools developed so far allow us to display
rationale information in the form of graphs. This
approach is similar to the one proposed by Scacchi
(2000) for representing, querying, and visualizing
process model information and redesign heuristics.
One key difference between the two approaches lies
in the way information is captured. In REMIS, the
conceptual model structures the knowledge infor-
mation to be captured, whereas Scacchi’s approach
does not provide a structure for it and references dif-
ferent kinds of knowledge, such as narrative reports
or case studies. These are analyzed and used for
deriving SPR heuristics. Another key difference is
that Scacchi’s approach uses inference mechanisms
for deriving the SPRs, while REMIS does not use
them yet for suggesting resolutions to issues that
happened in the past.

5.3. Study Results

We observed that attaching the rationale and
change information directly to each of the process

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

document sections, and collecting it automatically
from there, facilitated the whole evolving activ-
ity, in the context of this project. Our conceptual
model played an important role, because it allowed
structuring the reasoning behind a decision and
motivated self-reflection about the need for chang-
ing the process. Equally, the structure of the con-
ceptual model allowed reusing this information in
a straightforward way, before performing future
changes. This improves the quality of the deci-
sions and support traceability from the changed
process entity to the issue as well as knowledge
transfer.

Table 5 shows an example taken from a real
project, where we illustrate the concepts.

We also noted that rationale visualization can be
useful for answering different types of questions

relevant for process managers or quality assurers
before designing the strategy to resolve issues.
Examples of such questions are:

• What was the event that triggered certain issues?
• What is the type of issue that causes most

changes to process elements?
• Which are the still open issues that may conflict

with the resolution of a new issue?
• What was the resolution that caused certain

changes to a process element?
• How many processes were affected by a

resolution?
• Which are the rejected alternatives for a closed

issue? Why?

Figure 6 shows a generated graph-like visualiza-
tion for answering the question ‘How many ASG
process elements were affected by resolution 1?’ (for

Table 5. Example of rationale for process changes in the ASG project

Concept Value

Event 1 - name: Process review;
- type: Internal;
- description: Review of the ASG life cycle process performed by process engineers based on interviews with
developers.

Issue 1 - type: Process description lacks precision;
- description: The ASG platform offers capabilities such as the integration of external services and provision of
services to external applications. Some groups of developers are in charge of external services, while others
implement applications to exploit the power of the platform. Additionally, they are geographically distributed. The
current ASG life cycle process description guides developers on platform development. However, the ASG life
cycle process description does not explain how applications and external services can be developed and integrated
into the platform;
- question: What is the best strategy for transforming the actual process description into one suitable for platform,
service, and application engineering?

Alternative 1 - description: Create one reference process model that covers all three disciplines (platform, service, and application
engineering), but clearly mark those processes that belong to each one;
- assessment: Positive – Reworking cost of the process description due to redundancy and inconsistency between
the different disciplines can be lowered.

Alternative 2 - description: Create a process description for each engineering discipline, i.e. one for process, one for application,
and one for platform engineering;
- assessment: Negative – The risk of process inconsistencies, and/or redundancies because of maintenance of three
similar but at the same time different disciplines can lead to high reworking costs, and low quality products.

Resolution 1 - description: The review board agreed to create one reference process model that covers all disciplines;
- justification: Process engineers agreed on alternative 1; process engineers agreed that alternative 2 was less
appropriate because the risk of inconsistencies and redundancies was too high. Process engineers agreed that
alternative 1 was more appropriate not only because of minimizing the process reworking risks but also because
one reference model can lead to a better understanding of the interactions between service, platform, and
application engineering.

Changes - existent processes were renamed with a prefix according to the discipline they belong to;
- the existent activities’ purposes were modified in order to differentiate that a process belongs to a certain
discipline;
- the product flow was modified in order to appreciate the separation among disciplines more clearly;
- the involvement of roles was modified accordingly;
- new activities were introduced;
- new roles were created.

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

Figure 6. Impact of a resolution (partial view of a graph generated by the REMIS tool)

a description of resolution 1, see Table 5). It shows
the specific name of the processes belonging to three
different disciplines (platform, service, and appli-
cation engineering) present in the ASG reference
process, which were affected by several changes
performed because of such a resolution. The alter-
natives, issue, type of issue, and event could also
be displayed by using our tool to generate a larger
graph, which also includes these concepts and their
relationships.

Our tool provided us with functionalities for flex-
ibly querying rationale information and visualizing
the results of such queries. Figure 7 shows an exam-
ple of such a capability with a simple visualization
that helped us to answer the question ‘Which are
the rejected alternatives for an issue?’ Having the
possibility to get this visualization can be useful
for avoiding inconsistencies and rework in cases
where process engineers face an issue they believe
to have solved in the past. Process engineers can
have better means to analyze why other alterna-
tives were rejected at the time and assess if this
still continues to be the case. Further research is
needed into defining common queries and their
most appropriate visualization.

Some observations regarding the collection of
rationale gained in relevance. For example, we
found that sometimes it was difficult to differentiate

between the descriptions of the alternatives and the
description of the resolution. We also felt there was
redundancy when documenting the justification of
the resolution. This led us to the discussion of the
need for an additional, lighter rationale approach,
because sometimes special types of issues do not
require the formulation of alternatives, but rather a
direct resolution (Figure 8).

In those cases, the process engineer should be
able to document light rationale information after
performing the changes. This can be done by
using a tool that helps a process engineer to
detect changes between two process model versions
automatically, such as in the approach presented in
Soto and Münch (2006). The comparison tool shows
a summary of changes done on the work version,
which serves as input for the process engineer
for going through each change and documenting
a light rationale consisting of short descriptions
of the event, the issue, and the resolution. An
example of how to collect this rationale information
and connect it to the changed process elements
after changes have been performed is presented in
Ocampo and Soto (2007). Before we start to follow
this ‘light’ variation of the rationale approach, we
might further investigate differentiating between
those issues that need a very well documented
rationale and those that do not. This can be helpful

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

Figure 7. Issues, their alternatives and assessment (graph generated by the REMIS tool)

Figure 8. Lighter collection of rationale information

for minimizing the risk of over-expenditure and
addressing the criticism associated with capturing
rationale information (Burge and Brown 2004,
Dutoit et al. 2006).

6. SUMMARY AND OUTLOOK

Processes may be changed more consistently if
the information about the process, its context, and

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

the rationale of its evolution is captured. Existing
approaches recognize the need for concepts and
tools that can be used for collecting information
about process model changes that could help evolve
the process in a systematic way. We observed that
most of the approaches did not consider rationale
information as an important part of their work
(Madhavji, Nguyen and Conradi 1996, Weber et al.
2005). This is one possible reason for the small
amount of evidence available on the rationale of
process evolution. With a predefined classification
of the issues that trigger process model changes,
the task of collecting the information related to such
rationale becomes simpler and more suitable for use
in real process evolution projects.

In this article, we have presented a classification of
issues based on a study performed on data collected
in change logs during the evolution of software
engineering process standards from the aerospace
engineering domain. More research work has to be
done on describing this initial list of issues more
precisely, so that they are as orthogonal as possible.
More empirical data is needed for that purpose.
We will analyze in a postmortem study the actual
type of issues documented during the evolution
of the ASG process, in order to contribute to the
significance of the actual list of issues presented in
this article. It is important to note that the studies
used as a basis for the work have been performed
mainly by the authors. This intrinsically biases the
results. However, the application in the ASG project
was supported by the partners involved, which
provided feedback to the conceptual model and
method and contributed to diminishing this bias.

We have also presented a conceptual model
that can be used as a basis for collecting the
rationale for changes. This conceptual model is
the result of combining lessons learned from
evolving aerospace engineering standards and an
extensive literature survey on design rationales
and software process evolution. Additionally, the
approach that uses the conceptual model and a
brief explanation of the tool support developed
were introduced. The observations obtained from
applying the approach during the evolution of
a reference process for developing a software
platform for adaptive services motivated us to
design an additional light rationale approach to
be applied in upcoming projects. This variation of
the approach will again be helpful for evaluating the
conceptual model and enhance it if necessary. We

also decided to define a common set of queries to
be displayed through visualization that empowers
rationale information. We observed that having
the means to visualize this information provides
process engineers with powerful analysis tools
that can be helpful when designing the strategy
to evolve a process model. As mentioned before,
not all process model changes are of value for
systematic process evolution. Therefore, we need
to continue experimenting (during the evolution of
processes used in industrial settings) on how to
capture and visualize such information in order
to more effectively identify those changes (and
their rationale) that impact the performance of
practitioners and really make a difference on their
software processes.

Furthermore, agile development practices and
techniques can be used as input for enriching our
contributions. According to Boehm and Turner
(2004), agile practices are characterized by the
following attributes: iterative (several cycles), incre-
mental (the entire product is not delivered at once),
self-organizing (teams determine the best way to
handle work), and emergence (processes, princi-
ples, work structures are recognized during the
project rather than predetermined). In the mean-
time, it can be assumed that in the context of new
methodologies like agile (and also open source),
which focus on the working code, the likelihood
of developers spending effort on carefully evolv-
ing their processes is low. However, this remains
an open issue for research in future projects. For
example, it can be investigated whether our contri-
butions can be used for enhancing self-organization
and emergence based on the principle of active
communication and discussion behind a rationale.
Other questions to investigate could be: Can our
conceptual model and approach become an impor-
tant tool for effective face-to-face communication in
agile practices? Could simple schems for capturing
and discussing agile practice rationale with good
tool support enhance the chances of acceptance?

Although agile practitioners emphasize the infor-
mality of their practices, such practices also evolve.
We assume that rationale can add value by self-
reflecting on the real reasons for such evolution.

Finally, we plan to relate the approach to popular
standards such as CMMI (CMMi Product Team
2006) or ISO 15504 (International Organization for
Standardization. ISO/IEC 15504 : 2003 2007).

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

ACKNOWLEDGEMENTS

We would like to thank Dr William E. Riddle
for his valuable comments on the list of issues
and discussion on process evolution. We thank
Michael Jones and Mariella Spada from the ESOC
for their reviews, support, and collaboration during
the ESOC project. We also would like to thank all
ASG project members who participated in the ASG
process interviews, and especially Fabio Bella from
Fraunhofer IESE, for eliciting and documenting
the information. Additionally, we would like to
thank Sonnhild Namingha from Fraunhofer IESE
for editing the English version of this article.
Finally, we thank the anonymous reviewers who
have contributed to the improvement of this article.
This work was partially supported by the German
Federal Ministry of Education and Research (V-
Bench Project, No.01| SE 11 A).

REFERENCES

Ahmed NM. 2004. Evolution of software processes and of
their models: a multiple strategy. Journal of Research and
Practice in Information Technology 36(1): 9–22.

Alloui I, Cı̂mpan S, Oquendo F. 2001. Monitoring
software process interactions: a logic-based approach.
In Proceedings of the 8th European Workshop on Software
Process Technology, Lecture Notes in Computer Science, vol.
2077, Ambriola V (ed.). Springer-Verlag: London, 39–46.

Armbrust O, Ocampo A, Soto M. 2005. Tracing process
model evolution: a semi-formal process modeling
approach. In ECMDA Traceability Workshop (ECMDA-TW)
2005 – Proceedings, Oldevik J, Aagedal J (eds): Trondheim,
SINTEF ICT, 2005 (SINTEF Report STF90 AO5133) ISBN:
82-14-03813-8, 57–66.

ASG: Adaptive Services Grid. Integrated Project
Supported By the European Commission, Available
at: http://asg-platform.org/cgi-bin/twiki/view/Public
Last checked 2008-03-05.

Bayer J, Bella F, Ocampo A. 2006. Characterization of
semantic grid engineering. In Workshop on Future
Research Challenges for Software and Services, Margaria T,
Fernandez-Villacanas JL, Banti M. (eds). FRCSS 2006:
Vienna, Austria, 112–124.

Becker-Kornstaedt U, Hamann D, Kempkens R, Rösch P,
Verlage M, Webby R, Zettel J. 1999. Support for the
process engineer: the spearmint approach to software
process definition and process guidance. Proceedings of
the Eleventh Conference on Advanced Information Systems

Engineering (CAISE ‘99), Lecture Notes in Computer Science.
Springer-Verlag: Berlin, New York, 119–133.

Bhuta J, Boehm B, Meyers S. 2005. Process Elements:
Components of Software Process Architectures, Software
Process Workshop, China.

Boehm BW, Turner R. 2004. Balancing agility and
discipline. A Guide for the Perplexed. Addison-Wesley:
Boston, MA.

Bratthall L, Johansson E, Regnell B. 2000. Is a design
rationale vital when predicting change impact? A
controlled experiment on software architecture evolution.
In Proceedings of the Second international Conference on
Product Focused Software Process Improvement, Lecture Notes
in Computer Science, vol. 1840, Bomarius F, Oivo M (eds).
Springer-Verlag: London, 126–139.

Bruegge B, Dutoit AH. 2004. Rationale management.
Object-oriented Software Engineering, Using UML, Patterns,
and Java, 2nd edn. Pearson Education: Upper Saddle
River, NJ.

Buckingham Shum SJ, Selvin AM, Sierhuis M, Conklin J,
Haley CB, Nuseibeh B. 2006. Hypermedia support
for argumentation-based rationale: 15 Years on from
gIBIS and QOC. Rationale management in software
engineering: concepts and techniques. In Rationale
Management in Software Engineering, Dutoit A, McCall R,
Mistrı́k I, Paech B (eds). Springer-Verlag: Berlin, 111–129.

Burge J, Brown DC. 2004. An integrated approach for
software design checking using rationale. In Design
Computing and Cognition ‘04, Gero J (ed.). Kluwer
Academic Publishers: Netherlands, 557–576.

Chung L, Nixon BA, Yu E, Mylopoulos J. 1999. Non-
functional Requirements in Software Engineering. Kluver
Academic: Boston, MA.

CMMi Product Team. 2006. CMMI for Development,
Version 1.2, Improving Processes for Better Products.
Software Engineering Institute, Carnegie Mellon
University, Pittsburg, USA: CMU/SEI-2006-TR-008.

Conklin J, Burgess-Yakemovic KC. 1991. A process-
oriented approach to design rationale. Human-Computer
Interaction 6: 357–391.

Cunin P, Greenwood RM, Francou L, Robertson I,
Warboys B. 2001. The PIE methodology – concept and
application. In Proceedings of the 8th European Workshop
on Software Process Technology, Lecture Notes in Computer
Science, vol. 2077, Ambriola V (ed.). Springer-Verlag:
London, 3–26.

Dutoit A, McCall R, Mistrı́k I, Paech B. 2006. Rationale
management in software engineering: concepts and
techniques. In Rationale Management in Software

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section A. Ocampo and J. Münch

Engineering, Dutoit A, McCall R, Mistrı́k I, Paech B (eds).
Springer-Verlag: Berlin, 1–43.

ECSS-Q-80B Space Product Assurance. 2003. Standard
available at http://www.ecss.nl. Last checked 2007-06-
02.

ECSS-E-40 Part 1B Space Engineering: Software – Part 1:
Principles and Requirements. 2003. Standard available at
http://www.ecss.nl, Last checked 2007-06-02.

European Cooperation for Space Standardization (ECSS).
Available at http://www.ecss.nl. Last checked 2008-03-
05.

Fischer G, Lemke AC, Mccall R, Morch AI. 1991. Making
argumentation serve design. Human-Computer Interaction
63&4: 393–419.

Greenwood RM, Balasubramaniam D, Kirby GN,
Mayes K, Morrison R, Seet W, Warboys B, Zirintsis E.
2001. Reflection and reification in process system evo-
lution: experience and opportunity. In Proceedings of the
8th European Workshop on Software Process Technology, Lec-
ture Notes in Computer Science, vol. 2077, Ambriola V (ed.).
Springer-Verlag: London, 27–38.

IEEE Standard for Software Configuration Management
Plans, IEEE Std 828 - 2005 (Revision of IEEE Std 828 -1998),
New York, USA, 2005, pages 0-1-19.

ISO/IEC 15504-5:2006(E): Information technology – Process
assessment – Part 5: An exemplar process assessment
model. International Organization for Standardization
(ISO). Genf, 2006.

ISO/IEC 12207:1995(E): Information technology – Software
Life Cycle Processes. International Organization for Stan-
dardization (ISO). Genf, 1995.

Jaccheri LM, Conradi R. 1993. Techniques for process
model evolution in EPOS. IEEE Transactions on Software
Engineering (Special Issue on Process Model Evolution 19(12):
1145–1156.

Jones M, Gomez E, Mantineo A. 2002. Mortensen U.K.
Introducing ECSS Software-Engineering Standards
within ESA. Practical approaches for space- and ground-
segment software. ESA bulletin 111 – august. Available at:
http://www.esa.int/esapub/bulletin/bullet111/
chapter21 bul111.pdf.

Kaba BA, Derniame J. 1995. Transients change processes
in process centered environments. In Proceedings of the
4th European Workshop on Software Process Technology,
Lecture Notes in Computer Science, vol. 913, Schäfer W
(ed.). Springer-Verlag: London, 255–259.

Klyne G, Carroll J (eds). 2004. World Wide Web
Consortuim (W3C). Resource Description Framework

(RDF): Concepts and Abstract Syntax W3C Recom-
mendation 10 February, Available at: http://www.
w3.org/TR/rdf-concepts/.

Kneuper R. 2002. Supporting software processes using
knowledge management. Handbook of Software Engineering
and Knowledge Engineering, Vol. II. World Scientific
Publishing Co Singapore.

Koskinen M, Martiin P. 1998. Developing a customizable
process modeling environment: lessons learnt and future
prospects. In Proceedings of the 6th European Workshop
on Software Process Technology (September 16–18, 1998),
Lecture Notes in Computer Science, vol. 1487, Gruhn V (ed.).
Springer-Verlag: London, 13–27.

Kunz W, Rittel H. 1970. Issues as Elements of Information
Systems, Working Paper No. 131. Institut für Grundlagen
der Planung, Universität Stuttgart: Germany.

Lee J. 1990. A qualitative decision management system.
In Artificial Intelligence at MIT: Expanding Frontiers, Vol.
1, Winston PH, Shellard S (eds). MIT Press: Cambridge,
MA, 104–133.

Lee J. 1997. Design rationale systems: understanding
the issues. IEEE Expert: Intelligent Systems and their
Applications 12(3): 78–85.

Lutz M. 2001. Programming Python, 2nd edn. O’Reilly &
Associates: Sebastopol, CA.

MacLean A, Young RM, Belloti V, Moran T. 1991.
Questions, options, and criteria: elements of design space
analysis. Human-Computer Interaction 6: 201–250.

Madhavji N. 1992. Environment evolution: the Prism
model of changes. IEEE Transactions on Software
Engineering 18(5): 380–392.

Manola F, Miller E (eds). 2004. World Wide Web
Consortuim (W3C). RDF Primer W3C Recommendation,
Available at: http://www.w3.org/TR/rdf-primer/.

Maurer F, Dellen B, Bendeck F, Goldmann S, Holz H,
Kötting B, Schaaf M. 2000. Merging project planning
and web-enabled dynamic workflow technologies. IEEE
Internet Computing 4(3): 65–74.

Merz D. 2004. XML for Word Processors, IBM Developer
Works: 25 February, Available at: http://www-
128.ibm.com/developerworks/library/x-matters33/.

Nejmeh BA, Riddle WE. 2006. The PERFECT approach
to experience-based process evolution. In Advances in
Computers, Zelkowitz M (ed.). Amsterdam, Academic
Press.

Nguyen MN, Conradi R. 1996. Towards a rigorous
approach for managing process evolution. Software

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

Research Section Rationale Modeling for Software Process Evolution

Process Technology: 5th European Workshop, EWSPT ‘96,
Nancy.

Ocampo A, Münch J. 2006. Process evolution supported
by rationale: an empirical investigation of process
changes. In Software Process Change: International
Software Process Workshop and International Workshop on
Software Process Simulation and Modeling, SPW/ProSim
2006 – Proceedings, Qing W, Wang Q, Pfahl D, Raffo DM,
Wernick P. (eds). Springer-Verlag: Berlin, 334–341.

Ocampo A, Münch J. 2007. The REMIS approach for
rationale-driven process model evolution. Proceedings
of the International Conference on Software Processes.
Minneapolis.

Ocampo A, Soto M. 2007. Connecting the rationale for
changes to the evolution of a process. Proceedings: PROFES
2007 (Product Focused Software Development and Process
Improvement) Riga, Latvia.

Ponz D, Spada M. 2006. Three Years of ECSS Software
Standards: An Appraisal and Outlook. OPS-G Forum,
Available at: http://esamultimedia.esa.int/multimedia/
esoc/opsg/2006-01-20-OPS-G-Forum sw stnds.ppt. Last
checked 2007-06-02.

Ramaesh B, Dhar V. 1994. Representing and maintaining
process knowledge for large-scale systems development.
IEEE Expert, IEEE 9(2): 54–59.

Sauer T. 2002. Project history and decision dependencies.
Diploma Thesis. University of Kaiserslautern.

Scacchi W. 2000. Understanding software process
redesign using modeling, analysis and simulation.
Software Process Improvement and Practice 5: 183–195.

Seet W, Warboys B, Oquendo F. 2003. A compliant
environment for enacting evolvable process models. In
Proceedings of the 9th European Workshop on Software Process
Technology, Lecture Notes in Computer Science, vol. 2786,
Oquendo F (ed.), Springer-Verlag: Berlin 154–163.

Soto M, Münch J. 2006. Process model difference analysis
for supporting process evolution. Proceedings of the
13th European Conference in Software Process Improvement,
EuroSPI 2006. Springer LNCS 4257 Berlin.

Tailoring of ECSS Software Engineering Stan-
dards for Ground Segments in ESA. Available
at ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/, Last
checked 2008-03-05.

Tailoring of ECSS Software Engineering Standards
for Ground Segments in ESA. Part D Trace-
ability Against ECSS, Available at: ftp://ftp.estec.
esa.nl/pub/wm/wme/bssc/SETG-D1.0.pdf. Last chec-
ked 2008-03-05.

Weber B, Reichert M, Rinderle S, Wild W. 2005. Towards
a framework for the agile mining of business processes.
Proceedings Workshop on Business Process Intelligence (BPI),
in Conjunction with BPM 2005, Nancy.

Zelkowitz M, Wallace DR. 1998. Experimental models for
validating technology. Computer 31(5): 23–31.

Copyright 2008 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2008)

DOI: 10.1002/spip

