
ACM SIGSOFT Software Engineering Notes vol 20 no 2 April 1995 Page 14

Experimental Design and Analysis in
Software Engineering

Part 3: Types of Experimental Design

Shari Lawrence Pfleeger
C e n t r e fo r S o f t w a r e Re l i ab i l i t y

C i t y U n i v e r s i t y
Northampton Square

London E C 1 V 0 H B E n g l a n d
phone: -{-44-71-477-8426

fax: ~ 4 4 - 7 1 - 4 7 7 - 8 5 8 5
sha r i@cs r . c l t y . a c . uk

In previous tutorials, we have looked at why you might want
to performance experiment, and how you go about planning
one. Next, we address the different types of experimental
designs.

T Y P E S O F E X P E R I M E N T A L D E S I G N

It is useful to know and understand the several types of de-
signs that you are likely to use in software engineering re-
search, since the type of design constrains the type of anal-
ysis that can be performed and therefore the types of con-
clusions that can be drawn. (A description of these analysis
techniques can be found in [Kitchenham 1992].) For example,
there are several ways to calculate the F-statistic for an analy-
sis of variance; the choice of calculation depends on the exper-
imental design, including the number of variables and the way
in which the subjects are grouped and balanced. Similarly,
the measurement scale of the variables constrains the anal-
ysis. Nominal scales simply divide data into categories and
can be analyzed by using statistical tests such as the Sign test
(which looks at the direction of a score or measurement); on
the other hand, ordinal scales permit rank ordering and can
be investigated with more powerful tests such as Wilcoxon
(looking at the size of the measurement differences). Para-
metric tests such as analysis of variance can be used only on
data that is at least of an interval scale.

The sampling also enforces the design and constrains the anal-
ysis. For example, the amount of random variance should be
equally distributed among the different experimental condi-
tions if parametric tests are to be applied to the resulting data.
Not only does the degree of randomization make a difference
to the analysis, but also the distribution of the resulting data.
If the experimental data is normally or near-normally dis-
tributed, then you can use parametric tests. However, if the
data is not normally distributed, or if you do not know what
the distribution is, nonparametric methods are preferable.

Many investigations involve more than one independent vari-
able. In addition, the experiment invokes changes in the de-
pendent variable as one or more of the independent variables
changes. An independent variable is called a f a c t o r in the
experimental design. For example, a study to determine the

effects of experience and language on the productivity of pro-
grammers might have two factors: experience and language.
The dependent variable is productivity. Various values or
classifications for each factor are called the levels of the fac-
tor. Levels can be continuous or discrete, quantitative or
qualitative. If experience is measured in years of experience
as a programmer, then each integer number of years can be
considered a level. If the most experienced programmer in
the study has eight years of experience, and if there are five
languages in the study, then the first factor has eight levels
and the second factor five.

There are several types of factors, reflecting such things as
treatments, replications, blocking and grouping. This article
does not tell you what factors should be included in your de-
sign. Neither does it prescribe the number of factors nor the
number of levels. Instead, it explains how the factors can be
related to each other, and how the levels of one factor are
combined with the levels of another factor to form the treat-
ment combinations. The remainder of this section explains
how to derive a design from the number of factors and levels
you want to consider in your investigation.

Most designs in software engineering research are based on
two simple relations between factors: crossing and nesting;
each is discussed separately.

Cros s ing

The design of an experiment can be expressed in a notation
that reflects the number of factors and how they relate to
the different treatments. Expressing the design in terms of
factors, called the f a c t o r i a l des ign , tells you how many dif-
ferent treatment combinations are required. Two factors, A
and B, in a design are said to be c r o s s e d if each level of each
factor appears with each level of the other factor. This re-
lationship is denoted A X B. The design itself is illustrated
in Figure 1, where ai represents the levels of factor A and bj
the levels of factor B. The figure's first row indicates that you
must have a treatment for level 1 of A occurring with level 1
of B, and of level 1 of A occurring with level 2 of B. The first
column shows that you must have a treatment for level 1 of B
occurring with each of the two levels of A. In the previous ex-
ample, the effects of language and experience on productivity
can be written as an 8 X 5 crossed design, requiring 40 dif-
ferent treatment combinations. This design means that your
experiment must include treatments for each possible combi-
nation of language and experience. For three factors, A, B
and C, the design A X B X C means that all combinations of
all the levels occur.

Crossed

1

A

2

Factor B

Level 1 Level 2

a l b l a l b2

a2 b l a2 b2

Figure I. Example of a Crossed Design

ACM SIGSOFT Software Engineering Notes vol 20 no 2 April 1995 Page 15

Nesting

Factor B is n e s t e d within factor A if each meaningful level of
B occurs in conjunction with only one level of factor A. The
relationship is depicted as B(A), where B is the nested factor
and A is the nest factor. For example, consider again the
effects of language and experience on productivity. However,
let factor A be the language, and B be the years of experience
with a particular language. Now B is dependent on A, and
each level of B occurs with only one level of A. Tha t is, B
is nested within A. A two-factor nested design in depicted in
Figure 2.

Nested

Factor A

Level 1 Level 2

Factor B Factor B

Level Level Level Level
1 2 1 2

e l b l a l b2 a2 b l a2 b2

Figure 2. Example of a Nested Design

Nesting can involve more than two factors. For example, three
factors can be nested as C(B(A)). In addition, more complex
designs can be created as nesting and crossing are combined.

There are several advantages to expressing a design in terms
of factorials. First, factorials ensure that resources are used
most efficiently. Second, information obtained in the experi-
ment is complete and reflects the various possible interactions
among variables. Consequently, the experimental results and
the conclusions drawn from them are applicable over a wider
range of conditions than they might otherwise be. Finally,
the factorial design involves an implicit replication, yielding
the related benefits in terms of reduced experimental error.

On the other hand, the preparation, administration and anal-
ysis of a complete factorial design is more complex and time-
consuming than a simple comparison. With a large number
of t reatment combinations, the selection of homogeneous ex-
perimental units is difficult and can be costly. A n d some of
the combinations may be impossible or of little interest to
you, wasting valuable resources. For these reasons, we look
at how to choose an appropriate experimental design for your
situation.

S E L E C T I N G A N E X P E R I M E N T A L D E S I G N

There are many choices for how to design your experiment,
but the ult imate choice depends on two things: the goals of
your investigation and the availability of resources. Here are
guidelines on how to decide which design is right for your
situation.

C h o o s i n g t h e n u m b e r o f factors

Many experiments involve only one variable or factor. These

experiments may be quite complex, in tha t there may be many
levels of the variable that are compared (e.g. the effects of
many types of languages, or of several different tools). One-
variable experiments are relatively simple to analyze, since
the effects of the single factor are isolated from other vari-
ables that may affect the outcome. However, it is not always
possible to eliminate the effects of other variables. Instead,
we strive to minimize the effects, or at least distribute the
effects equally across all the possible conditions we are exam-
ining. For example, techniques such as randomization aim to
prevent variability among people from biasing the results.

But sometimes the absence of a second variable affects per-
formance in the first variable. Tha t is, people act differently
in different circumstances, and you may be interested in the
variable interactions as well as in individual variables. For
instance, suppose you are considering the effects of a new
design tool on productivity. The design tool may be used dif-
ferently by designers who are well-versed in object-oriented
design from those who are new to object-oriented design. If
you were to design a one-factor experiment by eliminating the
effects of experience with object-oriented design, you would
get an incomplete (and probably incorrect) view of the effects
of the tool. It is better to design a two-factor experiment
that incorporates both use of the tool and designer experi-
ence. Tha t is, by looking at the effects of several independent
variables, you can assess not only the individual effects of each
variable (known as the main effect of each variable) but also
any possible interactions among the variables.

To see what we mean by interaction, consider the reuse of
existing code. Suppose your organization has a repository of
code modules that is made available to some of the program-
mers but not all. You design an experiment to measure the
time it takes to code a module, distinguishing small modules
from large. When the experiment is complete, you plot the
results, separating the times for those who reused code from
the times of those who did not. This experiment has two
factors: module size and reuse. Each factor has two levels;
module size is either small or large, and reuse is either present
or absent. I f the results of your experiment resemble Figure
3, then you can claim that there is no interaction between the
two factors.

Notice that the lines in Figure 3 are parallel; the parallelism
is an indication that the two variables have no effects on each
other. Thus, an individual line shows the main effect of the
variable it represents. In this case, each line shows that the
time to code a module increases with the size of the module.
In comparing the two lines, we see that reuse reduces the time
to code a module, but the parallel lines indicate that size and
degree of reuse do not change the overall trend. However, if
the results resemble Figure 4, then there is indeed interaction
between the variables, since the lines are not parallel. Such a
graph may result if there is considerable t ime spent searching
through the repository. For a small module, it may actually
take more time to scan the repository than to code the module
from scratch. For large modules, reuse is bet ter than writing
the entire module, but there is still significant t ime eaten up

ACM SIGSOFT Software Engineering Notes vol 20 no 2 April 1995 Page 16

in working with the repository. Thus, there is interaction
between size of module and reuse of code.

without reuse

Time to

code with reuse

I I
smal l large

Size of module

Figure 3. No interaction between factors

Thus, there is far more information available from the two-
factor experiment than there would have been from two one-
factor experiments. The latter would have confirmed that the
time to code increases with the size of the module, both with
and without reuse. But the two-factor experiment shows the
relationship between the factors as well as the single-factor
results. In particular, it shows that , for small modules, reuse
may not be warranted. In other words, multiple-factor ex-
periments offer multiple views of the data and enlighten us
in ways that are not evident from a collection of single-factor
experiments.

Time to
code

without reuse

with reuse

I L
small large

Size of module

Figure 4. Interaction between factors

Another way of thinking about whether to use one factor or
more is to decide what kind of comparison you want to make.
If you are examining a set of competing treatments, you can
use a single-factor experiment. For example, you may want
to investigate three design methods and their effects on qual-
ity. Tha t is, you apply design methods A, B and C to see
which yields the highest quality design or code. Here, you
do not have other variables that may interact with the design
method.

On the other hand, you may want to investigate t reatment
combinations, rather than competing treatments. For exam-
ple, instead of looking just at design methods, you want to
analyze the effects of design methods in conjunction with tool
assistance. Thus, you are comparing design method A with
tool assistance to design method A without tool assistance, as
well as design method B with tool assistance and without tool
assistance. You have a two-factor experiment: one factor is
the design method, and the other is the absence or presence
of tool assistance. Your experiment tests n l + n2 different

treatments, where n l is the number of levels in factor 1, and
n2 is the number of levels in factor 2.

In the next issue, we will look at other design issues, including
deciding between factors and blocks, how to choose between
nested and crossed designs, and how to match subjects.

R E F E R E N C E

Kitchenham, Barbara (1992), DESMET Handbook of Da ta
Collection and Metrication Book 3: Analysing Software Data,
National Computer Centre, Manchester, England.

Copyright 1995 Shari Lawrence Pfleeger

Revolutionary DCF System to Replace
CMM

M a tt Sejnowski
9016 Yucca Mr, R d
A u s t in , T X 78759

Mat t S e jnowski@Wayne . Corn

API Austin - First there were software metrics. With these,
software developers and their management could finally mea-
sure something for the output of the software creation pro-
cess. In the 80's these techniques flourished. Funny names
for these measurements emerged, like "McCabe complexity"
and "software volume".

Soon it was realized that there needed to be a way not only to
measure the quality of the software output , but also to mea-
sure the quality of the engineering organization itself. The
Capability Maturi ty Model, CMM, was developed in the early
90's. Organizations are audited by professionals and rated on
a scale of 1 to 5. Low scores mean the software production
process is chaotic, while 5 means that all aspects of software
development are fully understood and carefully applied, all
bu t assuring a quality product every time. Sadly, most soft-
ware organizations today weigh in at a meager 1, and there 's
a surprising number of O's out there.

Now, a revolutionary new measurement technique has been
developed by a small s tar tup consulting firm in Austin, Texas.
The new system is simply known as DCF. The simplicity and
elegance of the new measuring system belies its power in ac-
curately judging the soundness of a software organization.

The inventor of DCF and founder of the DiCoFact Founda-
tion, Mat t Sejnowski, says the new measurement system is
"simple and fool-proof, but modifications are being made to
make it management -proof as well".

One Sunday morning Matt was performing his normal ritual
of reading the most important parts of the newspaper first,
when he came across his favorite comic strip, "Dilbert" by
Scott Adams. Mat t and his work colleagues loved this comic
strip and were amazed by how many of the silly storylines
reminded them of actual incidences at their company. They
even suspected that Scott Adams was working there in dis-

