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In previous tutorials, we have looked at why you might want 
to performance experiment, and how you go about planning 
one. Next, we address the different types of experimental 
designs. 

T Y P E S  O F  E X P E R I M E N T A L  D E S I G N  

It is useful to know and understand the several types of de- 
signs that  you are likely to use in software engineering re- 
search, since the type of design constrains the type of anal- 
ysis that  can be performed and therefore the types of con- 
clusions that  can be drawn. (A description of these analysis 
techniques can be found in [Kitchenham 1992].) For example, 
there are several ways to calculate the F-statistic for an analy- 
sis of variance; the choice of calculation depends on the exper- 
imental design, including the number of variables and the way 
in which the subjects are grouped and balanced. Similarly, 
the measurement scale of the variables constrains the anal- 
ysis. Nominal scales simply divide data  into categories and 
can be analyzed by using statistical tests such as the Sign test 
(which looks at the direction of a score or measurement); on 
the other hand, ordinal scales permit rank ordering and can 
be investigated with more powerful tests such as Wilcoxon 
(looking at the size of the measurement differences). Para- 
metric tests such as analysis of variance can be used only on 
data  that is at least of an interval scale. 

The sampling also enforces the design and constrains the anal- 
ysis. For example, the amount  of random variance should be 
equally distributed among the different experimental condi- 
tions if parametric tests are to be applied to the resulting data. 
Not only does the degree of randomization make a difference 
to the analysis, but also the distribution of the resulting data. 
If the experimental data  is normally or near-normally dis- 
tributed, then you can use parametric tests. However, if the 
data  is not normally distributed, or if you do not know what 
the distribution is, nonparametric methods are preferable. 

Many investigations involve more than one independent vari- 
able. In addition, the experiment invokes changes in the de- 
pendent variable as one or more of the independent variables 
changes. An independent variable is called a f a c t o r  in the 
experimental design. For example, a study to determine the 

effects of experience and language on the productivity of pro- 
grammers might have two factors: experience and language. 
The dependent variable is productivity. Various values or 
classifications for each factor are called the levels of the fac- 
tor. Levels can be continuous or discrete, quantitative or 
qualitative. If experience is measured in years of experience 
as a programmer, then each integer number of years can be 
considered a level. If the most experienced programmer in 
the study has eight years of experience, and if there are five 
languages in the study, then the first factor has eight levels 
and the second factor five. 

There are several types of factors, reflecting such things as 
treatments, replications, blocking and grouping. This article 
does not tell you what factors should be included in your de- 
sign. Neither does it prescribe the number of factors nor the 
number of levels. Instead, it explains how the factors can be 
related to each other, and how the levels of one factor are 
combined with the levels of another factor to form the treat- 
ment combinations. The remainder of this section explains 
how to derive a design from the number of factors and levels 
you want to consider in your investigation. 

Most designs in software engineering research are based on 
two simple relations between factors: crossing and nesting; 
each is discussed separately. 

Cros s ing  

The design of an experiment can be expressed in a notation 
that  reflects the number of factors and how they relate to 
the different treatments. Expressing the design in terms of 
factors, called the f a c t o r i a l  des ign ,  tells you how many dif- 
ferent treatment combinations are required. Two factors, A 
and B, in a design are said to be c r o s s e d  if each level of each 
factor appears with each level of the other factor. This re- 
lationship is denoted A X B. The design itself is illustrated 
in Figure 1, where ai represents the levels of factor A and bj 
the levels of factor B. The figure's first row indicates that  you 
must have a treatment for level 1 of A occurring with level 1 
of B, and of level 1 of A occurring with level 2 of B. The first 
column shows that  you must have a treatment for level 1 of B 
occurring with each of the two levels of A. In the previous ex- 
ample, the effects of language and experience on productivity 
can be written as an 8 X 5 crossed design, requiring 40 dif- 
ferent treatment combinations. This design means that  your 
experiment must include treatments for each possible combi- 
nation of language and experience. For three factors, A, B 
and C, the design A X B X C means that  all combinations of 
all the levels occur. 

Crossed 

1 

A 

2 

Factor B 

Level 1 Level 2 

a l  b l  a l  b2 

a2 b l  a2 b2 

Figure I. Example of a Crossed Design 
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Nesting 

Factor B is n e s t e d  within factor A if each meaningful level of 
B occurs in conjunction with only one level of factor A. The 
relationship is depicted as B(A), where B is the nested factor 
and A is the nest factor. For example, consider again the 
effects of language and experience on productivity. However, 
let factor A be the language, and B be the years of experience 
with a particular language. Now B is dependent on A, and 
each level of B occurs with only one level of A. Tha t  is, B 
is nested within A. A two-factor nested design in depicted in 
Figure 2. 

Nested 

Factor A 

Level 1 Level 2 

Factor B Factor B 

Level Level Level Level 
1 2 1 2 

e l  b l  a l  b2 a2 b l  a2 b2 

Figure 2. Example of a Nested Design 

Nesting can involve more than two factors. For example, three 
factors can be nested as C(B(A)). In addition, more complex 
designs can be created as nesting and crossing are combined. 

There are several advantages to expressing a design in terms 
of factorials. First, factorials ensure that  resources are used 
most efficiently. Second, information obtained in the experi- 
ment is complete and reflects the various possible interactions 
among variables. Consequently, the experimental results and 
the conclusions drawn from them are applicable over a wider 
range of conditions than they might otherwise be. Finally, 
the factorial design involves an implicit replication, yielding 
the related benefits in terms of reduced experimental error. 

On the other hand, the preparation,  administration and anal- 
ysis of a complete factorial design is more complex and time- 
consuming than a simple comparison. With a large number 
of t reatment  combinations, the selection of homogeneous ex- 
perimental units is difficult and can be costly. A n d  some of 
the combinations may be impossible or of little interest to 
you, wasting valuable resources. For these reasons, we look 
at how to choose an appropriate  experimental design for your 
situation. 

S E L E C T I N G  A N  E X P E R I M E N T A L  D E S I G N  

There are many choices for how to design your experiment, 
but the ult imate choice depends on two things: the goals of 
your investigation and the availability of resources. Here are 
guidelines on how to decide which design is right for your 
situation. 

C h o o s i n g  t h e  n u m b e r  o f  factors 

Many experiments involve only one variable or factor. These 

experiments may be quite complex, in tha t  there may be many  
levels of the variable that  are compared (e.g. the effects of 
many types of languages, or of several different tools). One- 
variable experiments are relatively simple to analyze, since 
the effects of the single factor are isolated from other vari- 
ables that  may affect the outcome. However, it is not always 
possible to eliminate the effects of other variables. Instead, 
we strive to minimize the effects, or at least distribute the 
effects equally across all the possible conditions we are exam- 
ining. For example, techniques such as randomization aim to 
prevent variability among people from biasing the results. 

But sometimes the absence of a second variable affects per- 
formance in the first variable. Tha t  is, people act differently 
in different circumstances, and you may be interested in the 
variable interactions as well as in individual variables. For 
instance, suppose you are considering the effects of a new 
design tool on productivity. The design tool may be used dif- 
ferently by designers who are well-versed in object-oriented 
design from those who are new to object-oriented design. If  
you were to design a one-factor experiment by eliminating the 
effects of experience with object-oriented design, you would 
get an incomplete (and probably incorrect) view of the effects 
of the tool. It is better  to design a two-factor experiment 
that  incorporates both use of the tool and designer experi- 
ence. Tha t  is, by looking at the effects of several independent 
variables, you can assess not only the individual effects of each 
variable (known as the main effect of each variable) but also 
any possible interactions among the variables. 

To see what we mean by interaction, consider the reuse of 
existing code. Suppose your organization has a repository of 
code modules that  is made available to some of the program- 
mers but not all. You design an experiment to measure the 
time it takes to code a module, distinguishing small modules 
from large. When the experiment is complete, you plot the 
results, separating the times for those who reused code from 
the times of those who did not. This experiment has two 
factors: module size and reuse. Each factor has two levels; 
module size is either small or large, and reuse is either present 
or absent. I f  the results of your experiment resemble Figure 
3, then you can claim that  there is no interaction between the 
two factors. 

Notice that  the lines in Figure 3 are parallel; the parallelism 
is an indication that  the two variables have no effects on each 
other. Thus, an individual line shows the main effect of the 
variable it represents. In this case, each line shows that  the 
time to code a module increases with the size of the module. 
In comparing the two lines, we see that  reuse reduces the time 
to code a module, but the parallel lines indicate that  size and 
degree of reuse do not change the overall trend. However, if 
the results resemble Figure 4, then there is indeed interaction 
between the variables, since the lines are not parallel. Such a 
graph may result if there is considerable t ime spent searching 
through the repository. For a small module, it may actually 
take more time to scan the repository than to code the module 
from scratch. For large modules, reuse is bet ter  than writing 
the entire module, but there is still significant t ime eaten up 
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in working with the repository. Thus, there is interaction 
between size of module and reuse of code. 

without reuse 

Time to 

code with reuse 

I I 
smal l  large 

Size of module 

Figure 3. No interaction between factors 

Thus, there is far more information available from the two- 
factor experiment than there would have been from two one- 
factor experiments. The latter would have confirmed that  the 
time to code increases with the size of the module, both with 
and without reuse. But the two-factor experiment shows the 
relationship between the factors as well as the single-factor 
results. In particular, it shows that ,  for small modules, reuse 
may not be warranted. In other words, multiple-factor ex- 
periments offer multiple views of the data  and enlighten us 
in ways that  are not evident from a collection of single-factor 
experiments. 

Time to 
code 

without reuse 

with reuse 

I L 
small large 

Size of module 

Figure 4. Interaction between factors 

Another way of thinking about  whether to use one factor or 
more is to decide what  kind of comparison you want to make. 
If  you are examining a set of competing treatments,  you can 
use a single-factor experiment. For example, you may want 
to investigate three design methods and their effects on qual- 
ity. Tha t  is, you apply design methods A, B and C to see 
which yields the highest quality design or code. Here, you 
do not have other variables that  may interact with the design 
method.  

On the other hand, you may want to investigate t reatment  
combinations, rather  than competing treatments.  For exam- 
ple, instead of looking just  at design methods, you want to 
analyze the effects of design methods in conjunction with tool 
assistance. Thus, you are comparing design method A with 
tool assistance to design method A without tool assistance, as 
well as design method B with tool assistance and without tool 
assistance. You have a two-factor experiment: one factor is 
the design method,  and the other is the absence or presence 
of tool assistance. Your experiment tests n l  + n2 different 

treatments,  where n l  is the number of levels in factor 1, and 
n2 is the number of levels in factor 2. 

In the next issue, we will look at other design issues, including 
deciding between factors and blocks, how to choose between 
nested and crossed designs, and how to match subjects. 
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API Austin - First there were software metrics. With these, 
software developers and their management  could finally mea- 
sure something for the output  of the software creation pro- 
cess. In the 80's these techniques flourished. Funny names 
for these measurements emerged, like "McCabe complexity" 
and "software volume". 

Soon it was realized that  there needed to be a way not only to 
measure the quality of the software output ,  but  also to mea- 
sure the quality of the engineering organization itself. The 
Capability Maturi ty Model, CMM, was developed in the early 
90's. Organizations are audited by professionals and rated on 
a scale of 1 to 5. Low scores mean the software production 
process is chaotic, while 5 means that  all aspects of software 
development are fully understood and carefully applied, all 
bu t  assuring a quality product  every time. Sadly, most  soft- 
ware organizations today weigh in at a meager 1, and there 's  
a surprising number of O's out there. 

Now, a revolutionary new measurement  technique has been 
developed by a small s tar tup  consulting firm in Austin, Texas. 
The new system is simply known as DCF. The simplicity and 
elegance of the new measuring system belies its power in ac- 
curately judging the soundness of a software organization. 

The inventor of DCF and founder of the DiCoFact Founda- 
tion, Mat t  Sejnowski, says the new measurement  system is 
"simple and fool-proof, but modifications are being made to 
make it management -proof  as well". 

One Sunday morning Matt  was performing his normal  ritual 
of reading the most important  parts  of the newspaper first, 
when he came across his favorite comic strip, "Dilbert" by 
Scott Adams. Mat t  and his work colleagues loved this comic 
strip and were amazed by how many of the silly storylines 
reminded them of actual incidences at their company. They 
even suspected that  Scott Adams was working there in dis- 


