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passed $15.2-billion for 1994. The problem is most rampant 
in Indonesia and Kuwait, where about 99% of all software is 
copied illegally. [Toronto Financial Post, 6 May 1995, p. 8, 
from Edupage, 7 May 1995.] 

British man convicted as malicious virus w r i t e r  
(George Smith) 

Chris Pile (Black Baron), a 26-year-old unemployed computer 
programmer, pleaded guilty to 11 charges of computer viruses 
activities (including SMEG/Pathogen and SMEG/Queeg).  
This was the first conviction under the British Computer Mis- 
use Act of 1990. (R 17 16) has more details. PGN] 

O N E - L I N E R  S U M M A R I E S  of additional items from the 
on-line Risks Forum: 

Ford Motor Co promotional floppy disk contains mon- 
key virus (R 17 23) 

Randal Schwartz convicted after finding security flaws 
in Intel (R 17 23,28) 

German intruder forges White House messages (R 17 
31,32) 

Sony satellite dishes remotely reprogrammable? (R 17 
33) 

Microsoft Network E-mail binaries can contain executa- 
bles (R 17 31,32,33) 

Phony ATM installed on High St in London, nets 
£120K (R 17 34) 

Emergency call-boxes ripped off, cell-phone serial nos. 
reused (R 17 35) 

German telephone card system cracked, many free calls 
made (R 17 36) 

British Telecom replaces payphone software after flaw 
exploited (R 17 36) 

London Underground gets hacked by insider posting 
nasty messages (R 17 36) 

Cardiffsoftware shipped Teleforms 4.0 with self-destruct 
t imebomb (R 17 36) 
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After you have run an experiment and collected the relevant 
data, you must analyze it in an appropriate way. This ar- 
ticle describes the items you must consider in choosing the 
analysis techniques. We describe typical situations for which 
you may be performing an experiment, and what technique is 
most appropriate for each situation. Specifc statistical tech- 
niques are described and used in the discussion, but the de- 
tails of each statistical approach (including formulae and ref- 
erences to other statistical textbooks) are found in [Kitchen- 
ham 1992], [Caulcutt 1993] and [Chatfield 1993]. 

There are three major items to consider when choosing your 
analysis techniques: the nature of the data  you collected, why 
you performed the experiment, and the type of experimental 
design you used. We consider each of these in turn. 

D I S T R I B U T I O N  O F  T H E  D A T A  

The nature of your data will help you to decide what analysis 
techniques are available to you. Thus, it is very important  
for you to understand the data  as a sample from a l a rge r  
population of all the data you could have gathered, given 
infinite resources. Because you do not have infinite resources, 
you are using your relatively small sample to generalize to that 
larger population, so the characteristics of the population are 
important.  Many statistical techniques assume that  the data 
is normally distributed, and your sample is randomly chosen 
from that larger distribution. 

However, most software-related measurements are not nor- 
mally distributed. Whereas a normal distribution is contin- 
uous and symmetric about its mean, much software data  is 
discrete and not symmetric. In fact, it is unusual for software 
data  to be a random sample from a well-defined population. 
For example, the distribution of software module size data can 
be very different from a normal distribution. You can tell if 
your data is normal by doing several tests. For instance, in a 
normal distribution, the three major indicators of central ten- 
dency (mean, median and mode) are the same. [Kitchenham 
1992] describes several others. If you are not sure whether 
your data is normal or not, you must assume that  it is not, 
and use techniques for evaluating non- normal data.  

There are several ways to analyze data  that is non-normal: 

• Use robust statistics and non-parametric analysis meth- 
ods. 
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• Transform your measurements to a scale (such as the 
logarithmic scale) that  conforms more closely to a nor- 
mal distribution. 

• Determine the true underlying distribution and choose 
techniques appropriate to it. 

In the examples that follow, we will consider both normal and 
non-normal cases, depending on the type of data. 

P U R P O S E  OF T H E  E X P E R I M E N T  

In Part 2, we noted four I~ajor reasons to conduct a formal 
experiment: 

• to confirm a theory 
• to explore a relationship 
• to evaluate the accuracy of a model 
• to validate a measure 

Each of these requires analysis carefully designed to meet the 
stated experimental objective. In particular, the objective is 
expressed formally in terms of the hypothesis, and the analysis 
must address the hypothesis directly. 

C o n f i r m i n g  a t h e o r y  

Your experiment may be designed to explore the truth of 
a theory. The theory usually states that use of a certain 
method, tool or technique (the treatment) has a particular 
effect on the experimental subjects, making it better in some 
way than another treatment (usually the existing method, 
tool or technique). For example, you may want to investigate 
the effect of the cleanroom technique by comparing it with 

y o u r  existing testing methods. The usual analysis approach 
for this situation is analysis of variance. That is, you consider 
two populations, the one that uses the old technique and the 
one that uses the new, and you do a statistical test to see if 
the difference in treatment results is statistically significant. 

There are two cases to consider: normal data and non-normal 
data. If the data comes from a normal distribution and you 
are comparing two groups, you can use the Student's t-test 
to analyze the effects of the two treatments. If you have 
more than two groups to compare, a more general analysis 
of variance test, using the F statistic, is appropriate. Both of 
these are described in most statistics books. 

For example, suppose you are investigating the effect on pro- 
ductivity of the use of a new tool. You have two groups that 
are otherwise equal except for use of the tool: group A is us- 
ing the existing method, while group B is using the tool to 
perform the designated task. You are measuring productivity 
in terms of thousands of delivered source code instructions 
per month, and you feel confident that  the productivity data 
comes from a normal distribution. You can use a Student's 
t-test to compare group A's productivity data with group B's 
to see if the use of the tool has made a significant change in 
productivity. 

On the other hand, suppose you want to investigate whether 
the cleanroom technique yields higher-quality code than your 
current testing technique. Your hypothesis is stated as 

Code developed using the cleanroom technique 
has the same number of defects per fines of code as 
code developed using current testing techniques. 

You collect data on number of defects per lines of code for 
each of two groups, and you seek an analysis technique that 
will tell you whether or not the data  supports the hypothesis. 
Here, the data on defects per lines of code is not normally 
distributed. You can analyze the defect data by ranking it and 
using the Kruskal-Wallis test to tell you if the mean rank of 
the Cleanroom defects is lower than that of the non-cleanroom 
data. 

E x p l o r i n g  a r e l a t i o n s h i p  

Often, an experiment is designed to determine the relation- 
ship among data points describing one variable or across 
multiple variables. For example, you may be interested in 
knowing the normal ranges of productivity or quality on your 
projects, so that you have a baseline to compare for the fu- 
ture. A case study may be more appropriate for this objective, 
but you may want to answer this question as part of a larger 
experiment. There are three techniques to use to answer ques- 
tions about a relationship: box plots, scatter diagrams, and 
correlation analysis. 

A boz plot can depict for you a summary of the range of a set 
of data. It shows you where most of the data is clustered and 
where any outlier data may be. Whereas a box plot shows 
information about one variable, a scatter diagram depicts the 
relationship between two variables. By viewing the relative 
positions of pairs of data points, you can visually determine 
the likelihood of an underlying relationship between the vari- 
ables. You can also identify data points that a re  atypical, 
because they are not organized or clustered in the same way 
as the other data points. 

Correlation analysis goes a step further than a scatter dia- 
gram by using statistical methods to confirm whether there 
is a true relationship between two attributes. Correlation 
analysis can be done in two ways: by generating measures of 
association that indicate the closeness of the behavior of the 
two variables, or by generating an equation that  describes 
that behavior. For example, you may be investigating the 
relationship between number of control paths in a module 
and the number of defects identified in the module. A sta- 
tistical analysis of these two variables can yield a measure of 
association, between -1 and 1, that indicates whether a high 
number of control paths usually means a large number of de- 
fects. That is, the measure of association is 1 if there is a 
perfect positive linear relationship between the two variables, 
-1 if there is a perfect negative linear relationship, and 0 if 
there is no relationship. If you want to be able to predict 
the number of defects from the number of control paths, then 
the measure of association is insufficient; correlation analysis 
techniques can generate an equation of the form: 

(number of defects) = (constantl)(number of con- 
trol paths) + (constant2) 
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to permit  such prediction. 

When measures of association are sufficient, it is important  
to know if the da ta  is normally distributed or not. For 
normally-distributed values, a Pearson correlation coefficient 
is a measure of association that  indicates whether the two 
variables are highly correlated or not. For non-normal data, 
you must rank the da ta  and use the Spearman rank correla- 
tion coefficient as a measure of association. An alternative 
for non-normal da ta  is the Kendall robust correlation coef- 
ficient, which investigates the relationships among pairs of 
da ta  points and can identi[y partial  correlations. If  the rank- 
ing contains a large number of tied values (that is, repeats of 
the same value, so that  they rank the same), a A 2 test on a 
contingency table can be used to test the association between 
the variables. 

When you need to understand the nature of the association 
as well, you can use linear regression to generate an equation 
to describe the relationship between two variables you are 
examining. This technique produces a line that  minimizes the 
sum of the squares of the residuals. Tha t  is, linear regression 
minimizes the distance from the line to the points off the fine. 
For more than two variables, multivariate regression can be 
used. 

The da ta  to which regression is applied does not need to be 
normally distributed. However, regression techniques assume 
that  the residuals (the distance from each point to the line) 
are normally distributed. When they are not, two techniques 
can be used instead of standard regression. Theil's robust 
regression uses the slopes of a carefully-defined set of lines to 
determine the slope of the regression line. Or, the data  points 
can be transformed to a more normal distribution by viewing 
their logarithms, rather than the da ta  itself; then, regression is 
applied to the new data  to generate a formula, and conversion 
back to non-logarithmic variables completes the process. 

E v a l u a t i n g  t h e  a c c u r a c y  o f  a m o d e l  

For many software engineering tasks, a model of behavior is 
used to predict what should happen. These predictions aid 
the project manager  in making major  decisions about  resource 
planning and the duration or extent of activities. For exam- 
ple, the manager may model the likely cost of a project as a 
basis for decisions about  resource allocation. Alternatively, he 
or she may use a defect model to predict how long to test be- 
fore turning over the product  to the customer. It is important  
to be able to evaluate the accuracy of these models. In these 
cases, although the intent of the experiment is different from 
confirming a theory or exploring a relationship, the analysis 
techniques are the same. The model in question generates a 
set of predicted data, and it is to be compared with the set 
of actual data.  Thus, the steps described for confirming a 
theory can be followed here as well. If  the data  is normally 
distributed, a Student 's  t-test can be used to determine if 
there is a significant difference between the predictions and 
the actual numbers. If  the data  is not normally distributed, 
then the Kruskal-Wallis test will suffice. 

V a l i d a t i n g  a m e a s u r e  

Validating a measure means verifying that  the measure actu- 
ally captures the at t r ibute it claims to reflect. For example, 
the McCabe cyclomatic number [McCabe 1976] claims to cap- 
ture the complexity of source code, when in fact it actually 
measures the number of decision points (plus one) in the code. 
Experiments are often designed to validate a measure by ex- 
ploring the relationship between the measure and da ta  that  
is known to be highly correlated with the a t t r ibute  in ques- 
tion. For this reason, the analysis techniques used to explore 
a relationship are also the appropriate ones for validating a 
m e a s u r e .  

D E S I G N  C O N S I D E R A T I O N S  

The experimental design must be considered in choosing the 
analysis techniques. At the same time, the complexity of anal- 
ysis can influence the design chosen, as noted in Par t  3. Mul- 
tiple groups usually generate the need to use the F statistic 
with a full-blown analysis of variance, rather than  a simple 
Student t-test with two groups. For complex factorial designs 
with more than two factors, more sophisticated tests of asso- 
ciation and significance must be used. Statistical techniques 
can be used to account for the effects of one set of variables on 
others, or to compensate for timing or learning effects. These 
techniques are beyond the scope of this series of articles, and 
you should consult a statistician for help with this type of 
design. 

2 groups ~ Student's t-test (5.1) 
Normal >2 groups -~- F statistic (5,1) 

C o n f i r m i n g - ~  
a theory Non-normal *. Kruskal-Wallis (5.2) 

Box plot (3, 6.1) 
Baseline ,~catter diagrams (4) 

J 
Exploring " =- Pearson (4.1) 
a relationship Measure of .~rNormal 

Statistical association'=" Non-normal~," not tied 
" ~  confirmation/~¢ ~ Spearman (4.1) 

with ~ " , 4 ,  Kendall (4.1) 
correlational tied 
analysis chi-squared 

N o r m a l ~  variables (4,1) 
~ "  ~ .  linear regression (4.3) 

Equation \ >2 variables 
multivariate regression 

(4,3) 
Non-normal == Logarithmic 

transformation (5.1.2) 
Thiel (4.3.1) 

Table 2. Decision tree for analysis techniques 

D E C I S I O N  T R E E  

To help you understand when to use one analysis technique or 
another, you can use the decision tree in Table 2 to take into 
account the major  considerations discussed in this section. 
The decision tree is to be read from left to right. Beginning 
with the objective of your experiment, move along the branch 
that  fits your situation until you reach a leaf node with the 
appropriate analysis technique(s). In parentheses after each 
analysis technique is a cross-reference to [Kitchenham 1992]; 
this reference will enable you to read about  that  technique 
in more detail, complete with examples. For simplicity, the 
number of experimental objectives had been reduced from 
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four to two, consistent with the discussion above. 

S U M M A R Y  

We have described the key activities necessary for designing 
and analyzing an exper iment  in software engineering. We 
began by explaining how to choose an appropriate research 
technique to fit the goals of your project. In particular, we 
taught you how to state your hypothesis and determine how 
much control you need over the variables involved. If control 
is not possible, then a formal experiment is not possible; a 
case study may be a betteJ approach. 

Next, we explained the principles of formal experimentation. 
We listed the six stages of an experiment: conception, design, 
preparation, execution, analysis and dissemination. The de- 
sign of an experiment was discussed in some detail. In par- 
ticular, we pointed out that you must consider the need for 
replication, randomization and local control in any experi- 
ment that you plan to perform. We showed you how you can 
think of your design in terms of two types of relationships be- 
tween factors (crossing and nesting), and we described several 
issues to be considered when selecting an appropriate design. 

Once your experimental design was determined, we discussed 
how to analyze the results. We explained how the distribution 
of the data can influence the choice of analysis technique, as 
can the purpose of the experiment and the design considera- 
tions. 

We hope these articles are useful not only in helping you set 
up your own experiments, but also in assessing the work of 
others. There is a profusion of experiments reported in the 
software engineering literature, many of which suggest that 
you adopt a particular method, tool or technique. With the 
analysis suggested here, you should develop a criticM eye that 
will enable you to determine when the reported results are 
valid and whether the results can be applied to your particular 
situation or organization. 

As I am in the process of moving back to the US, I have 
asked Barbara Kitchenham of the UK National Computing 
Centre to take over for the next few installments. She will 
write a series of articles addressing case studies, much in the 
same way that we have explored the major issues involved 
in conducting experiments. Both the experimental and case 
study work was performed as part of the DESMET project, 
led by the National Computing Centre and funded by the UK 
Department of Trade and Industry. 
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The 10th International Software Process Workshop, being 
held June 17-19, 1996, in Dijon, France, will be emphasizing 
a software reuse-oriented theme: Process Support of Software 
Product Lines. 

Much of the technology currently available to support the 
software process has focused on the process of developing 
and evolving a single software product. Increasingly, orga- 
nizations are finding advantages in product~llne software ap- 
proaches, involving investments in domain engineering, prod- 
uct line architectures, and rapid applications composition 
with extensive use of commercial-off-the-shelf (COTS) and 
other reusable software assets. These new approaches involve 
significant software process challenges: for example, large- 
scale software packages (COTS and in-house) often provide 
so much of an application system's desired functionality that  
the most effective software approach is for the COTS/reuse 
capabilities to drive the requirements, rather than the tradi- 
tional requirements-to-capabilities process model. 

Candidate issues to be addressed by the Workshop are Reuse- 
Sensitive Process Models; Product-Line Oriented Process 
Models; Reuse of Process Elements; and Effect of Product- 
Line Considerations on Current Process Technology. Exam- 
ples of more detailed issues are: How are reuse considerations 
reflected in models of requirements engineering, architecting, 
risk management, development, testing, evolution, and pro- 
cess maturity? How are process models affected if the focus 
is not on a single applications product, but on a product line 
family of applications? How do these considerations of process 
support of software product lines affect process representation 
languages, process enactment support, process management 
tools, the role of human beings in the software process, and 
the selection of representative example problems for the soft- 
ware process community to address? 

The workshop will consist of intensive discussions of these is- 
sues by at most 35 participants, selected on a basis of submit- 
ted position papers. Prospective participants should submit 
a maximum three-page position paper by 5 January 1996, ex- 
plicitly addressing the workshop theme, and suitable for pub- 
lication in the proceedings. Papers (7 copies or email in ascii 
or Postscript format only) should be sent to the address above. 
A Web page at ht tp: / /sunset .usc.edu/Events .html provides 
more information on the Workshop. 


