
ACM SIGSOFT Software Engineering Notes vol 20 no 5 December 1995 Page 14

passed $15.2-billion for 1994. The problem is most rampant
in Indonesia and Kuwait, where about 99% of all software is
copied illegally. [Toronto Financial Post, 6 May 1995, p. 8,
from Edupage, 7 May 1995.]

British man convicted as malicious virus w r i t e r
(George Smith)

Chris Pile (Black Baron), a 26-year-old unemployed computer
programmer, pleaded guilty to 11 charges of computer viruses
activities (including SMEG/Pathogen and SMEG/Queeg).
This was the first conviction under the British Computer Mis-
use Act of 1990. (R 17 16) has more details. PGN]

O N E - L I N E R S U M M A R I E S of additional items from the
on-line Risks Forum:

Ford Motor Co promotional floppy disk contains mon-
key virus (R 17 23)

Randal Schwartz convicted after finding security flaws
in Intel (R 17 23,28)

German intruder forges White House messages (R 17
31,32)

Sony satellite dishes remotely reprogrammable? (R 17
33)

Microsoft Network E-mail binaries can contain executa-
bles (R 17 31,32,33)

Phony ATM installed on High St in London, nets
£120K (R 17 34)

Emergency call-boxes ripped off, cell-phone serial nos.
reused (R 17 35)

German telephone card system cracked, many free calls
made (R 17 36)

British Telecom replaces payphone software after flaw
exploited (R 17 36)

London Underground gets hacked by insider posting
nasty messages (R 17 36)

Cardiffsoftware shipped Teleforms 4.0 with self-destruct
t imebomb (R 17 36)

Experimental Design and Analysis in
Software Engineering

Part 5: Analyzing the Data

Shari Lawrence Pfleeger
Centre for Software Reliability

City University
N o r t h a m p t o n Square

London E C l V 0HB England
phone: + 4 4 - 7 1 - 4 7 7 - 8 4 2 6 - fax: +44-71-477-8585

shari@esr.city.ac.uk

After you have run an experiment and collected the relevant
data, you must analyze it in an appropriate way. This ar-
ticle describes the items you must consider in choosing the
analysis techniques. We describe typical situations for which
you may be performing an experiment, and what technique is
most appropriate for each situation. Specifc statistical tech-
niques are described and used in the discussion, but the de-
tails of each statistical approach (including formulae and ref-
erences to other statistical textbooks) are found in [Kitchen-
ham 1992], [Caulcutt 1993] and [Chatfield 1993].

There are three major items to consider when choosing your
analysis techniques: the nature of the data you collected, why
you performed the experiment, and the type of experimental
design you used. We consider each of these in turn.

D I S T R I B U T I O N O F T H E D A T A

The nature of your data will help you to decide what analysis
techniques are available to you. Thus, it is very important
for you to understand the data as a sample from a l a rge r
population of all the data you could have gathered, given
infinite resources. Because you do not have infinite resources,
you are using your relatively small sample to generalize to that
larger population, so the characteristics of the population are
important. Many statistical techniques assume that the data
is normally distributed, and your sample is randomly chosen
from that larger distribution.

However, most software-related measurements are not nor-
mally distributed. Whereas a normal distribution is contin-
uous and symmetric about its mean, much software data is
discrete and not symmetric. In fact, it is unusual for software
data to be a random sample from a well-defined population.
For example, the distribution of software module size data can
be very different from a normal distribution. You can tell if
your data is normal by doing several tests. For instance, in a
normal distribution, the three major indicators of central ten-
dency (mean, median and mode) are the same. [Kitchenham
1992] describes several others. If you are not sure whether
your data is normal or not, you must assume that it is not,
and use techniques for evaluating non- normal data.

There are several ways to analyze data that is non-normal:

• Use robust statistics and non-parametric analysis meth-
ods.

ACM SIGSOFT Software Engineering Notes vol 20 no 5 December 1995 Page 15

• Transform your measurements to a scale (such as the
logarithmic scale) that conforms more closely to a nor-
mal distribution.

• Determine the true underlying distribution and choose
techniques appropriate to it.

In the examples that follow, we will consider both normal and
non-normal cases, depending on the type of data.

P U R P O S E OF T H E E X P E R I M E N T

In Part 2, we noted four I~ajor reasons to conduct a formal
experiment:

• to confirm a theory
• to explore a relationship
• to evaluate the accuracy of a model
• to validate a measure

Each of these requires analysis carefully designed to meet the
stated experimental objective. In particular, the objective is
expressed formally in terms of the hypothesis, and the analysis
must address the hypothesis directly.

C o n f i r m i n g a t h e o r y

Your experiment may be designed to explore the truth of
a theory. The theory usually states that use of a certain
method, tool or technique (the treatment) has a particular
effect on the experimental subjects, making it better in some
way than another treatment (usually the existing method,
tool or technique). For example, you may want to investigate
the effect of the cleanroom technique by comparing it with

y o u r existing testing methods. The usual analysis approach
for this situation is analysis of variance. That is, you consider
two populations, the one that uses the old technique and the
one that uses the new, and you do a statistical test to see if
the difference in treatment results is statistically significant.

There are two cases to consider: normal data and non-normal
data. If the data comes from a normal distribution and you
are comparing two groups, you can use the Student's t-test
to analyze the effects of the two treatments. If you have
more than two groups to compare, a more general analysis
of variance test, using the F statistic, is appropriate. Both of
these are described in most statistics books.

For example, suppose you are investigating the effect on pro-
ductivity of the use of a new tool. You have two groups that
are otherwise equal except for use of the tool: group A is us-
ing the existing method, while group B is using the tool to
perform the designated task. You are measuring productivity
in terms of thousands of delivered source code instructions
per month, and you feel confident that the productivity data
comes from a normal distribution. You can use a Student's
t-test to compare group A's productivity data with group B's
to see if the use of the tool has made a significant change in
productivity.

On the other hand, suppose you want to investigate whether
the cleanroom technique yields higher-quality code than your
current testing technique. Your hypothesis is stated as

Code developed using the cleanroom technique
has the same number of defects per fines of code as
code developed using current testing techniques.

You collect data on number of defects per lines of code for
each of two groups, and you seek an analysis technique that
will tell you whether or not the data supports the hypothesis.
Here, the data on defects per lines of code is not normally
distributed. You can analyze the defect data by ranking it and
using the Kruskal-Wallis test to tell you if the mean rank of
the Cleanroom defects is lower than that of the non-cleanroom
data.

E x p l o r i n g a r e l a t i o n s h i p

Often, an experiment is designed to determine the relation-
ship among data points describing one variable or across
multiple variables. For example, you may be interested in
knowing the normal ranges of productivity or quality on your
projects, so that you have a baseline to compare for the fu-
ture. A case study may be more appropriate for this objective,
but you may want to answer this question as part of a larger
experiment. There are three techniques to use to answer ques-
tions about a relationship: box plots, scatter diagrams, and
correlation analysis.

A boz plot can depict for you a summary of the range of a set
of data. It shows you where most of the data is clustered and
where any outlier data may be. Whereas a box plot shows
information about one variable, a scatter diagram depicts the
relationship between two variables. By viewing the relative
positions of pairs of data points, you can visually determine
the likelihood of an underlying relationship between the vari-
ables. You can also identify data points that a re atypical,
because they are not organized or clustered in the same way
as the other data points.

Correlation analysis goes a step further than a scatter dia-
gram by using statistical methods to confirm whether there
is a true relationship between two attributes. Correlation
analysis can be done in two ways: by generating measures of
association that indicate the closeness of the behavior of the
two variables, or by generating an equation that describes
that behavior. For example, you may be investigating the
relationship between number of control paths in a module
and the number of defects identified in the module. A sta-
tistical analysis of these two variables can yield a measure of
association, between -1 and 1, that indicates whether a high
number of control paths usually means a large number of de-
fects. That is, the measure of association is 1 if there is a
perfect positive linear relationship between the two variables,
-1 if there is a perfect negative linear relationship, and 0 if
there is no relationship. If you want to be able to predict
the number of defects from the number of control paths, then
the measure of association is insufficient; correlation analysis
techniques can generate an equation of the form:

(number of defects) = (constantl)(number of con-
trol paths) + (constant2)

ACM SIGSOFT Software Engineering Notes vol 20 no 5 December 1995 Page 16

to permit such prediction.

When measures of association are sufficient, it is important
to know if the da ta is normally distributed or not. For
normally-distributed values, a Pearson correlation coefficient
is a measure of association that indicates whether the two
variables are highly correlated or not. For non-normal data,
you must rank the da ta and use the Spearman rank correla-
tion coefficient as a measure of association. An alternative
for non-normal da ta is the Kendall robust correlation coef-
ficient, which investigates the relationships among pairs of
da ta points and can identi[y partial correlations. If the rank-
ing contains a large number of tied values (that is, repeats of
the same value, so that they rank the same), a A 2 test on a
contingency table can be used to test the association between
the variables.

When you need to understand the nature of the association
as well, you can use linear regression to generate an equation
to describe the relationship between two variables you are
examining. This technique produces a line that minimizes the
sum of the squares of the residuals. Tha t is, linear regression
minimizes the distance from the line to the points off the fine.
For more than two variables, multivariate regression can be
used.

The da ta to which regression is applied does not need to be
normally distributed. However, regression techniques assume
that the residuals (the distance from each point to the line)
are normally distributed. When they are not, two techniques
can be used instead of standard regression. Theil's robust
regression uses the slopes of a carefully-defined set of lines to
determine the slope of the regression line. Or, the data points
can be transformed to a more normal distribution by viewing
their logarithms, rather than the da ta itself; then, regression is
applied to the new data to generate a formula, and conversion
back to non-logarithmic variables completes the process.

E v a l u a t i n g t h e a c c u r a c y o f a m o d e l

For many software engineering tasks, a model of behavior is
used to predict what should happen. These predictions aid
the project manager in making major decisions about resource
planning and the duration or extent of activities. For exam-
ple, the manager may model the likely cost of a project as a
basis for decisions about resource allocation. Alternatively, he
or she may use a defect model to predict how long to test be-
fore turning over the product to the customer. It is important
to be able to evaluate the accuracy of these models. In these
cases, although the intent of the experiment is different from
confirming a theory or exploring a relationship, the analysis
techniques are the same. The model in question generates a
set of predicted data, and it is to be compared with the set
of actual data. Thus, the steps described for confirming a
theory can be followed here as well. If the data is normally
distributed, a Student 's t-test can be used to determine if
there is a significant difference between the predictions and
the actual numbers. If the data is not normally distributed,
then the Kruskal-Wallis test will suffice.

V a l i d a t i n g a m e a s u r e

Validating a measure means verifying that the measure actu-
ally captures the at t r ibute it claims to reflect. For example,
the McCabe cyclomatic number [McCabe 1976] claims to cap-
ture the complexity of source code, when in fact it actually
measures the number of decision points (plus one) in the code.
Experiments are often designed to validate a measure by ex-
ploring the relationship between the measure and da ta that
is known to be highly correlated with the a t t r ibute in ques-
tion. For this reason, the analysis techniques used to explore
a relationship are also the appropriate ones for validating a
m e a s u r e .

D E S I G N C O N S I D E R A T I O N S

The experimental design must be considered in choosing the
analysis techniques. At the same time, the complexity of anal-
ysis can influence the design chosen, as noted in Par t 3. Mul-
tiple groups usually generate the need to use the F statistic
with a full-blown analysis of variance, rather than a simple
Student t-test with two groups. For complex factorial designs
with more than two factors, more sophisticated tests of asso-
ciation and significance must be used. Statistical techniques
can be used to account for the effects of one set of variables on
others, or to compensate for timing or learning effects. These
techniques are beyond the scope of this series of articles, and
you should consult a statistician for help with this type of
design.

2 groups ~ Student's t-test (5.1)
Normal >2 groups -~- F statistic (5,1)

C o n f i r m i n g - ~
a theory Non-normal *. Kruskal-Wallis (5.2)

Box plot (3, 6.1)
Baseline ,~catter diagrams (4)

J
Exploring " =- Pearson (4.1)
a relationship Measure of .~rNormal

Statistical association'=" Non-normal~," not tied
" ~ confirmation/~¢ ~ Spearman (4.1)

with ~ " , 4 , Kendall (4.1)
correlational tied
analysis chi-squared

N o r m a l ~ variables (4,1)
~ " ~ . linear regression (4.3)

Equation \ >2 variables
multivariate regression

(4,3)
Non-normal == Logarithmic

transformation (5.1.2)
Thiel (4.3.1)

Table 2. Decision tree for analysis techniques

D E C I S I O N T R E E

To help you understand when to use one analysis technique or
another, you can use the decision tree in Table 2 to take into
account the major considerations discussed in this section.
The decision tree is to be read from left to right. Beginning
with the objective of your experiment, move along the branch
that fits your situation until you reach a leaf node with the
appropriate analysis technique(s). In parentheses after each
analysis technique is a cross-reference to [Kitchenham 1992];
this reference will enable you to read about that technique
in more detail, complete with examples. For simplicity, the
number of experimental objectives had been reduced from

ACM SIGSOFT Software Engineering Notes vol 20 no 5 December 1995 Page 17

four to two, consistent with the discussion above.

S U M M A R Y

We have described the key activities necessary for designing
and analyzing an exper iment in software engineering. We
began by explaining how to choose an appropriate research
technique to fit the goals of your project. In particular, we
taught you how to state your hypothesis and determine how
much control you need over the variables involved. If control
is not possible, then a formal experiment is not possible; a
case study may be a betteJ approach.

Next, we explained the principles of formal experimentation.
We listed the six stages of an experiment: conception, design,
preparation, execution, analysis and dissemination. The de-
sign of an experiment was discussed in some detail. In par-
ticular, we pointed out that you must consider the need for
replication, randomization and local control in any experi-
ment that you plan to perform. We showed you how you can
think of your design in terms of two types of relationships be-
tween factors (crossing and nesting), and we described several
issues to be considered when selecting an appropriate design.

Once your experimental design was determined, we discussed
how to analyze the results. We explained how the distribution
of the data can influence the choice of analysis technique, as
can the purpose of the experiment and the design considera-
tions.

We hope these articles are useful not only in helping you set
up your own experiments, but also in assessing the work of
others. There is a profusion of experiments reported in the
software engineering literature, many of which suggest that
you adopt a particular method, tool or technique. With the
analysis suggested here, you should develop a criticM eye that
will enable you to determine when the reported results are
valid and whether the results can be applied to your particular
situation or organization.

As I am in the process of moving back to the US, I have
asked Barbara Kitchenham of the UK National Computing
Centre to take over for the next few installments. She will
write a series of articles addressing case studies, much in the
same way that we have explored the major issues involved
in conducting experiments. Both the experimental and case
study work was performed as part of the DESMET project,
led by the National Computing Centre and funded by the UK
Department of Trade and Industry.

REFERENCES

Caulcutt, Roland (1991), Statistics in Research and Develop-
ment, Chapman and Hall, London, England.

Chatfield, Christopher (1993), Statistics for Technology,
Chapman and Hall, London, England.

Kitchenham, Barbara (1992), DESMET Handbook of Data
Collection and Metrication Book 3: Analysing Software Data,
National Computer Centre, Manchester, England.

R E U S E E M P H A S I Z E D AT N E X T
P R O C E S S W O R K S H O P

Barry Boehm
USC Computer Science Dept.

Los Angeles, CA 90089-0781, USA
boehm@sunset.usc.edu

The 10th International Software Process Workshop, being
held June 17-19, 1996, in Dijon, France, will be emphasizing
a software reuse-oriented theme: Process Support of Software
Product Lines.

Much of the technology currently available to support the
software process has focused on the process of developing
and evolving a single software product. Increasingly, orga-
nizations are finding advantages in product~llne software ap-
proaches, involving investments in domain engineering, prod-
uct line architectures, and rapid applications composition
with extensive use of commercial-off-the-shelf (COTS) and
other reusable software assets. These new approaches involve
significant software process challenges: for example, large-
scale software packages (COTS and in-house) often provide
so much of an application system's desired functionality that
the most effective software approach is for the COTS/reuse
capabilities to drive the requirements, rather than the tradi-
tional requirements-to-capabilities process model.

Candidate issues to be addressed by the Workshop are Reuse-
Sensitive Process Models; Product-Line Oriented Process
Models; Reuse of Process Elements; and Effect of Product-
Line Considerations on Current Process Technology. Exam-
ples of more detailed issues are: How are reuse considerations
reflected in models of requirements engineering, architecting,
risk management, development, testing, evolution, and pro-
cess maturity? How are process models affected if the focus
is not on a single applications product, but on a product line
family of applications? How do these considerations of process
support of software product lines affect process representation
languages, process enactment support, process management
tools, the role of human beings in the software process, and
the selection of representative example problems for the soft-
ware process community to address?

The workshop will consist of intensive discussions of these is-
sues by at most 35 participants, selected on a basis of submit-
ted position papers. Prospective participants should submit
a maximum three-page position paper by 5 January 1996, ex-
plicitly addressing the workshop theme, and suitable for pub-
lication in the proceedings. Papers (7 copies or email in ascii
or Postscript format only) should be sent to the address above.
A Web page at ht tp: / /sunset .usc.edu/Events .html provides
more information on the Workshop.

