
M. Oivo and S. Komi-Sirviö (Eds.): PROFES 2002, LNCS 2559, pp. 4-18, 2002.
 Springer-Verlag Berlin Heidelberg 2002

A Systems Perspective on Software Process Improvement

Andreas Birk1 and Dietmar Pfahl2

1 sd&m AG, Industriestraße 5, D-70565 Stuttgart, Germany
Andreas.Birk@sdm.de

2 Fraunhofer IESE, Sauerwiesen 6, D-67661 Kaiserslautern, Germany
Dietmar.Pfahl@iese.fhg.de

Abstract. Software process improvement often lacks strong links to
project management and control activities, which are concerned with
identifying the need of process change and triggering improvement
initiatives. Project management, on the other hand, often fails at
selecting appropriate software engineering methods and technology that
help to ensure project success. This paper proposes a model that guides
project managers (1) to set up a project so that it can reach its specific
goals and (2) to identify corrective actions (or changes) once a project
is at risk of failing its goals. The model complements established
improvement methods such as CMMI, GQM, and Experience Factory
and links them to those project management activities that often are the
starting point of improvement initiatives.

1 Introduction

Today's software process improvement (SPI) methods offer little guidance for
decision making on concrete improvement actions. For instance, when a project
manager identifies a schedule overrun that threats timely product delivery, then
improvement methods hardly give any specific recommendations nor guidance to get
the project into schedule again. At the other hand, improvement methods are useful
for emphasizing the role of software engineering methods and technology within a
project, an aspect that conventional project planning widely neglects.

Instead of offering concrete problem solutions, improvement methods either guide
organizations towards the identification of general improvement potential (i.e.,
benchmarking-based improvement) or help an organization to enhance its basic
problem solving capabilities (i.e., feedback-based improvement). Examples of
benchmarking-based improvement are ISO/IEC standard 9000:2000 [14] and the
Software Engineering Institute's (SEI) Capability Maturity Model (CMMI) [10].
Examples of feedback-based improvement are the Experience Factory approach [2],
measurement methods like Goal/Question/Metric (GQM) [3][7][18][25], the SEI's
PSM [11], and the Balanced Scorecard [15], as well as knowledge management
approaches to SPI (e.g., project post mortems [16][5]).

Project planning focuses on aspects like deliverables, milestones, staff and other
project resources, time, budget, risk, etc. Software engineering method and

A Systems Perspective on Software Process Improvement 5

technology do usually not play a central role in project planning, although it can be
crucial for project success to chose the right methods and to deploy them in the right
way. For instance, an insufficient integration and testing strategy can easily make a
project fail, even if all other project phases went extraordinary well.

This paper proposes a model that guides project managers (1) to set up a project so
that it can reach its specific goals and (2) to identify corrective actions (or changes)
once a project is at risk of failing its goals. Both aspects are equally relevant to project
management and software process improvement. The model adds a focus of software
engineering method and technology to project management. It also complements
established software process improvement methods and grounds them stronger in core
project management activities.

The model is defined as a systems model, which facilitates rapid and well-
informed decision making. It also provides a framework for the detailed analysis of
specific project phenomena, such as identifying root causes of schedule overruns and
assessing the effects of adding new staff to the project. Throughout this paper, the
model is denoted SPI Systems Model. This name is not fully appropriate, because we
focus on the project management related aspects of SPI and do not address long-term
organizational improvement activities in the first place. However, those long-term
aspects of improvement are covered by most established improvement methods, and it
will become clear how the proposed model integrates with them. For this reason we
find it acceptable to stick with the simplifying but concise model name.

The sections of this paper briefly introduce the fundamentals of systems thinking
(Section 2), present the SPI Systems Model (Section 3), and explain how the SPI
Systems Model can be deployed by project management (Section 4). Section 5
discusses the presented approach with regard to project management and other SPI
approaches. Section 6 summarizes the main conclusions of the paper.

2 Systems Thinking

In this paper we use systems thinking and cybernetics as a paradigm for modeling and
discussing software project management and software process improvement. Systems
models contain the main concepts of a phenomenon of interest (e.g., software
projects) and describe how these concepts interact with each other (e.g., a project goal
determines some aspects of a project plan, and an external event can impact the
course of a project).

DeviceInput Output

Disturbances

System

Fig. 1. Open system without feedback

6 Andreas Birk and Dietmar Pfahl

DeviceInput Output

Controller

Controls Measurements

Disturbances

System

Fig. 2. Closed system with feedback and control

The usual paradigm for analyzing software projects is the process paradigm. It
focuses on sequences of activities and addresses questions like "what is done when
and by whom?". We want to take a different perspective: Our interest is not "what" is
done, but "why" it is being done. For this purpose, systems thinking is a much better
paradigm for analyzing and understanding the managerial, organizational, and socio-
technical problems in software projects. It describes how and why systems behave the
way they do.

Originating in the seminal work done by Norbert Wiener on cybernetics [28], until
today there have probably been given as many definitions of systems thinking as there
were scientists working in the field (e.g., Forrester [13], Checkland [8], Weinberg
[27], van Bertanlaffny [4], etc.). In this paper, we follow the sufficiently broad but
still concise definition given by Peter Senge who considered systems thinking the
activity of contemplating the whole of a system and understanding how each part
influences the rest [24]. In the case of a socio-technical system, like, for example, a
car with a driver and passengers, this would include the analysis of how the actions of
the individuals sitting in the car influence the behavior of the system.
An important step toward systems thinking is to recognize that the internal structure
of a system and the feedback processes that govern the relationships between system
elements are the explanatory factors for its overall behavior rather than external
disturbances. This way of looking at the source of system behavior requires that the
system be considered essentially closed and not open. An open system (cf. Figure 1)
basically is considered a device, e.g., a car without driver and passengers, that
receives some input, e.g., the pressure on the gas pedal executed by the driver, and
produces some output, e.g., the velocity with which the car moves. In a closed system
(cf. Figure 2), e.g., a car with driver, again there is some input, e.g., the request or
goal to reach the next town within 30 minutes, and some output, e.g., the velocity
with which the car has to move in order to reach the goal.
In contrast to the case of the open system where the velocity of the car was dependent
on some external influence, in the case of the closed system, the velocity of the car is
controlled by the system itself. This happens through information feedback. By
collecting measurement data, i.e. observing the speedometer and the clock, the driver
(the controller in Figure 2) can calculate at any point in time how fast he must drive in
order to achieve the defined goal. Based on measurements and some calculations, the
driver decides whether he should change the pressure on the gas pedal (the control in

A Systems Perspective on Software Process Improvement 7

Figure 2). It should be mentioned that in the case of the closed system, the controller
would automatically take under consideration external disturbances (e.g. a steep hill)
as long as the effect on the device is adequately reflected by the measurements – and
neither misperceptions nor miscalculations occur.

3 A Systems Thinking Foundation of SPI

In the previous section we argued that systems thinking is the application of feedback
control systems principles and techniques to managerial, organizational, and socio-
technical problems. In this section, we will discuss further the assumptions and
concepts that are important in the context of systems thinking, and – by using these
concepts – we introduce the SPI Systems Model.

3.1 Control and Feedback

Control theory is based on the explicit premise that the change of a system is, or can
be planned. Control is the process of ensuring that operations proceed according to
some plan by reducing the difference between the plan (or goal) and reality. Control
can only be exercised over the components internal to the system and cannot be
affected upon the external environment. Using feedback mechanisms facilitates
control over the system.

Feedback is concerned with the control of a mechanism (or device) on the basis of
its past performance. It consists of procedures that determine deviations from plans
and desired states and that indicate and execute corrective action regarding these
deviations. This entails gathering data on the state of the output, searching for
deviations from the plan, and adjusting the input based on the results of the output. It
thus establishes a relatively closed system of causes and effects. It also reduces the
risk of failure and the effect of residual complexity and ambiguity.

Both feedback and control presuppose planning, at least in the form of setting goals
and performance levels, as plans furnish the baselines and standards of control. The
pattern of goal seeking behavior exhibited by a system is then expected to stay true to
the identified goal. The implicit and rather mechanistic assumption is that the plan or
target does not change and that future conditions will remain identical to past
conditions. In a change intensive environment these assumptions, and the resulting
self-regulating mechanisms, clearly do not work and either a forward looking
anticipation strategy or a double-loop feedback system must be employed.

Double-loop feedback offers a more sophisticated alternative that allows for the
adjustment of the input variables to the process as well as the adjustment to plans that
are used to dictate performance standards. The ability to respond to change and alter
performance standards encourages adaptability and improves the chance of long-term
survival. It also enables the control mechanism to benefit from most feedback data
and avoid defensive routines to discredit suspect data.

Double-loop control requires long-term planning in designing the double-loop and
will consume larger resources. It enables the system to become more adaptable and to
do so more rapidly rather than bind itself to historical patterns. This adaptation means

8 Andreas Birk and Dietmar Pfahl

that the system is capable of long-term learning and continuous improvement in a
search for greater efficiency. In contrast, single-loop feedback only focuses on the
short-term adjustments during the duration of the control activity that will maximize
the efficiency of the current product. Such improvements only apply to the current
control loop and do not feed back into long-term changes to the overall process. In
other words, lessons are neither learned nor retained.

The phenomenon that double-loop learning requires substantial investments which
will pay-off only on a long-term time scale, while simple (isolated) single-loop
feedback will only have local impact that is not sustained, is quite well reflected in the
SPI literature by the duality of strategic management and project management. By
offering an SPI Systems Model that has well-defined links to strategic management,
we offer a perspective on organizational learning that puts the focus to the project as
the heart of any sustained SPI program without de-coupling it from the strategic level.

3.2 The SPI Systems Model

Figure 3 presents the SPI Systems Model. The initiation of a software development
project is triggered by business goals (BusG) from which the specific project goals
(ProjG) are derived (arc 1). An example of a business goal would be: “We need to
increase our market share in the database marked from 10% to 20% within the next
two years“. The project goals for the development of the next database release could
then be: “Compared to the previous release, shorten lead time by enforcing concurrent
engineering and reuse; at the same time, improve product quality by at least 20% and
reduce development cost by 10%“.

In order to make ProjG operational, a transformation into product goals (ProdG)
and process goals (ProcG) is necessary (arcs 2). Typically, ProdG is associated with
functionality and quality (i.e. functional and non-functional requirements), while
ProcG is associated with time and cost (or effort). In our example, ProdG would relate
to the planned increase of quality by at least 20%, while process goals would relate to
the planned reduction of lead time and development cost. It should be noted that the
definition of ProcG not only depends on ProjG but also on ProdG (arc 3). For
example, the improvement of product quality might impose a change in the process
that is going to be executed, say by increasing the inspection intensity (i.e., the
number of inspections) during the design phase.

The joint set of ProdG and ProcG forms the starting point for developing ProjP
(arcs 4). ProjP is the result of the planning stage and the central control for the
development stage of the project. It can be seen as an instantiation of available
process, product and resource models in the organization (yielding, for example, a
Gantt chart, a resource allocation plan, and a high-level product architecture) that
serves project management (ProjM) as an instrument to define and control
development activities such as execution of processes and creation of product-related
artifacts (arcs 5). The process situation (ProcS) can be determined based on
observation (measurement) of project progress, i.e. activities that have been
concluded, milestones that have been passed, resources that have been consumed, etc.
The product situation (ProdS) can be determined based on observation (measurement)
of certain characteristics (e.g., size, quality) of intermediate products and the final
product. Because creation of intermediate and final products is inherently dependent

A Systems Perspective on Software Process Improvement 9

on the execution of processes, and thus the current process situation, Figure 3 shows a
synchronization link between ProcS and ProdS (arc 6).

The project situation is a result of combining ProcS and ProdS (arcs 7). Based on
measurement data and by using adequate models, e.g., static predictive models or
dynamic process simulation models, a projection can be made until project end in
order to facilitate comparison with ProjG for project control. This projection is
labeled with ProjS in Figure 3.

Project management (ProjM) takes the role of the controller. Its main task is to
compare ProjG with ProjS (arcs 8) and to initiate a change action if needed, e.g.,
when project deadline or product quality are at risk. There are two types of change
actions possible that would create a single-loop feedback (arcs 9 and 10). The first
case (arc 9), which can only induce a corrective change of ProjP without changing
ProjG is labeled “single-loop feedback (inner loop)“. The second case (arc 10), which
may induce a corrective change of ProjG and, due to that, a change of ProjP, is
labeled “single-loop feedback (outer loop)“. Since it is not realistic to assume that
ProjM can simply change ProjG without asking for and receiving the agreement from
higher-level management, the outer loop feedback cycle is not fully endogenous to the
system.

In addition to BusG, there are two important concepts that serve as an input to the
system (i.e., the software project): Information and knowledge about the Context of
the project (arc 11) and Experience about planning and development (arc 12). Context
information is a relevant input to many planning and development activities and thus
should be reflected in ProjP. Also Experience, e.g., best practices, should be taken
into account when developing ProjP. Typically, Experience is available in the form of
personal and implicit mental models, or it is made explicit and stored in an experience
base in the form of quantitative and qualitative models (e.g., process models, product
models, and resource models) that represent the past and current state-of-practice.

BusG ProjG

ProdG

ProcG

ProdS

ProcSProjP

ProjM

ProjS

ExperienceContext

Planning Development

Unexpected EventsPlanning Errors

2

10

1

2

3

6

54

5

7

7

8 8

9

14 13

1211
Project

4

16 16

ProdC15

Fig. 3. SPI Systems Model with single-loop and double-loop feedback

10 Andreas Birk and Dietmar Pfahl

There are two major types of disturbances that impact the system: Unexpected
Events (arc 13) and Planning Errors (arc 14).

The system output (arc 15), i.e., the project outcome, is the end product that will be
delivered to the customer after project end (ProdC).

By extending the system boundaries and including strategic management (dealing
with BusG) and experience management (dealing with Experience) into the system
under observation, i.e., the software organization is the “device“ on which the
“controllers“ strategic and experience management work, establishment of double-
loop feedback becomes possible. In the extended model, double-loop feedback is
possible in two ways (arcs 16). Either observations, lessons learned and best practices
resulting from the project (and reported by ProjM) are used by strategic management
(StratM) to alter BusG, or they are used by experience management (ExpM) to alter
the models in the experience base.

It should be noted, that the structural similarity between Figure 2 and Figure 3 is
not directly visible, because in Figure 3, apart from the project plan (ProjP), which
represents the control, and the project management (ProjM), which represents the
controller, no real world entities are depicted that would represent the device (or
mechanism) on which control is applied. In the SPI Systems Model, the device is
constituted by (1) the set of real world artifacts – besides ProjP – ,i.e., process
handbooks, standards and guidelines, development documents, technical
documentation, test reports, user documentation, etc., and (2) all persons – besides
ProjM – that assume a certain role within the project and their interaction. It can be
argued, however, that project goals (ProjG), product goals (ProdG), and process goals
(ProcG), are associated with the device during the planning stage, while the project
situation (ProjS), process situation (ProcS), and product situation (ProdS) are
associated with the device during the development stage. Inputs to the system are
business goals (BusG), and – in a more indirect way – context information and
experience from previous projects. Output from the system is the product that is
eventually delivered to the customer (ProdC).

4 Deployment and Systems Thinking in SPI

This section illustrates how the SPI Systems Model can be deployed by project
management. It addresses the following four kinds of deployment: (1) Goal-driven
project planning, (2) project monitoring, (3) determination of change actions, and (4)
performance of root cause and impact analysis by simulation.

4.1 Goal-Driven Project Planning

The key principle of the SPI Systems Model is that software development should be
goal-driven, i.e., projects should be planned based on explicitly set goals. But how
can this be done effectively?

First, it must be noted that the SPI Systems Model is not a process model. This
means that one does not need to start with identification of project goals but can also
start with an existing project plan and re-examine it in the light of relevant product

A Systems Perspective on Software Process Improvement 11

and process goals. At the end it is important that the various goals and the project plan
are consistent with each other. There are various ways through which this can be
ensured.

Project goals are those that are raised by the project's customers and those set by
the development company's internal authorities (e.g., product management or senior
management). Each project goal should be written down together with information
about who has raised it.

Table 1. Examples of product goals

Product goal Goal category Notes
The software system shall have a
maximum downtime of 6 h /
year.

Quality
This is a Reliability goal, a
typical kind of Quality goal.

It shall be possible to operate the
system from web browsers (via
HTTP) and from mobile phones
(via WAP). Functionality

Functionality is usually
defined in the system
requirements; the most
important such requirements
should be made explicit as
product goals.

The first product release shall not
cost more than € 1,2 Million. Cost

The pilot application shall be
available within four months. Time

Cost and Time can also be
process goals. However, here
they are clearly attributed to
product.

Table 2. Examples of process goals

Process goal Goal category Notes
The total project budget until
product release 1 shall be € 1,04
Million.

Cost

Project duration for stage 1 (pilot
application) shall be four months. Time

These Cost and Time goals
are attributed to process.
They are associated to similar
product goals.

It shall be possible to introduce
additional browser compatibility
requirements until two months
before delivery of release 2.

Flexibility

Flexibility goals usually
address the project's software
development process and
project organization.

The entire development staff
shall gain experience in
development and testing of
internet software.

Staff
Qualification

Process goals can also relate
to human resources aspects of
project performance.

System tests shall document that
the system will have a downtime
not longer than 6 h / year.

Quality

The project shall develop the
system for operation with web
browsers (via HTTP) as well as
mobile phones (via WAP).

Functionality

The Quality- and
Functionality-related process
goals are derived from the
respective product goals.

12 Andreas Birk and Dietmar Pfahl

Product goals are related to functionality and quality of the product to be
developed. They can also be related to cost or time. Table 1 contains several examples
of product goals.

Process goals are related to project performance. They can (1) be related to cost
and time, (2) address other project performance attributes (e.g., agility of the project
organization, flexibility of the project processes, or work-based qualification
objectives of the project staff), or (3) be derived from quality- and functionality-
related product goals. Example process goals are shown in Table 2.

For defining a complete and consistent set of goals, a four-section grid can be used,
which contains one section for each kind of goal: Initial project goals, product goals
derived from project goals, process goals derived from project goals, and process
goals derived from product goals. Each individual product and process goals should
be checked for consistency with the other goals.

Once a consistent set of product and process goals is defined explicitly, a project plan
can be developed that ensures that the goals can be fulfilled. For each goal, it should
be possible to justify how the project plan helps attaining it. Project planning can be
supported by repositories that document experience about how specific software
engineering methods facilitate the achievement of certain goals (cf. [23][6]).

4.2 Project Monitoring

Project monitoring is the prerequisite for identifying the possible need for change and
improvement actions. It consists of tracking product and process situation, and
checking whether it is still likely that the respective goals can be attained. It is
essentially based on software measurement. Therefore, indicators of goal attainment
must be defined. They must allow for projecting the project situation at any given
point in time to the expected situation at the end of the project. There are two basic
strategies through which such project monitoring can be performed: Projection and
milestone checkpoints. In practice, both strategies are usually combined with each
other.

The projection strategy requires the identification of project indicators that can be
identified (i.e., measured) in relatively small time intervals (e.g., on a weekly basis) to
allow for sufficient projection quality. In addition, a projection function is required
using which the current project indicators can be transformed into the expected
project situation at project end time. Hence, in this case, monitoring is the comparison
of a measurement-based estimation (e.g., derived from measurement of weekly staff
effort) with the respective project goal (e.g., total effort budget of the project).

The strategy of milestone checkpoints breaks down the expected project situation
at project end time into several project situations at major milestones. This requires
some model from which the target values for each milestone can be derived (e.g., a
model of typical effort distribution across development phases). The milestones are
usually defined with time intervals of several weeks (e.g., each one or three months).
Indicator measurement (e.g., measurement of accumulated staff effort) is required at
least shortly before each milestone. In this case monitoring involves comparing the
actual measurement data at each milestone with the previously defined target value
for the respective milestone.

A Systems Perspective on Software Process Improvement 13

4.3 Determination of Change Actions

Change actions must be determined as soon as it occurs that the project is not likely to
meet its goals. This can be due to two reasons: (1) The project plan is not appropriate
for attaining the goals, or (2) the goals are not realistic. Both situations can happen
because initial planning did not consider all relevant decision criteria, or because of
the event of external changes that affect project goals or plan (e.g., customer changes
strategy and wants the system to be developed on a different platform).

In the following, we will focus on the case that the project plan must be changed
while the original goals can be kept. The other case (i.e., re-setting the goals) will not
be considered here any further. It is widely similar to the initial project planning.

Figure 4 shows the input and output of project management activity ProjM
(Determine Improvement Action), which establishes a feedback loop for project plan
updates based on identified deviations of product and process situations from the
respective goals. Input to the "Determine Change" activity are: Product goal and
situation, process goal and situation, project plan (current status prior to change),
context, and experience. Result and output of the Determine Improvement Action
activity is a process change decision, which leads to a change of project plan (ProjP).
Project managers can use this decision model for delineating their own individual
decision making process, or for structuring a decision-making workshop with selected
team members. In both cases it is useful when product and process goals are
documented explicitly, an up-to-date project plan is available, and key indicators of
the product and process status are known (cf. Section 4.2). In addition, information
about relevant project context as well as experience about appropriate improvement
measures for specific product or process goals will be helpful.

ProjM
Determine
Improvement

Action

ProjP

ProdG ProdS

ProcG ProcS

Context Experience

ProjG ProjS

Fig. 4. Input and output of the ProjM Activity (Determine Improvement Action)

4.4 Performing Root Cause and Impact Analysis by Simulation

The SPI Systems Model provides a framework for the further refinement of model
components and the relationships between them. In particular, the SPI Systems Model
can be used as a blueprint for the simulation of project performance. Systematic
application of simulation, in combination with measurement, can help uncover root

14 Andreas Birk and Dietmar Pfahl

causes of unexpected project behavior. It can also be used for evaluating planning
alternatives and for performing impact analyses of proposed change actions prior to
the actual implementation of the change [9][22].

The System Dynamics (SD) simulation modeling approach [12] closely follows the
principles of Systems Thinking (cf. Section 2). Hence, SD is the recommended choice
for building simulation models that represent and refine the SPI Systems Model
[1][17][26]. SD simulation models focus on the formal (i.e., mathematical)
representation of circular cause-effect structures that are held to be responsible for
generating observed behavior of a system. Due to their flexibility and the possibility
to combine hard data (empirical measurement) with soft data (beliefs and tacit
knowledge), the SD approach allows for constructing adequate project models on
different levels of detail according to the specific needs of project management. A
methodology that systematically integrates measurement, quantitative modeling,
process modeling, and project simulation using the SD approach has been presented
in [19] under the name IMMoS (Integrated Measurement, Modeling and Simulation).
Empirical evidence for the effectiveness and efficiency of the IMMoS methodology
was collected in industrial case studies [20][21].

5 Discussion

The management of complex systems, like those typically underlying industrial
software development processes, is very difficult. Based only on intuition and
experience, it is generally not possible to comprehend the dynamic implications of so
many interrelated loops carrying the system structure. If problems occur, their
diagnosis is far from trivial. People often fail to think in terms of circular causal
relationships and confound symptoms with causes. As a consequence, corrective
policies implemented supply poor results for three main reasons: (1) The treatment of
symptoms does not suppress the structural cause of the problem; (2) feedback systems
resist policy changes because of internal compensation mechanisms; (3) the long term
effects may be very different from short term effects, so that the implemented policy
may actually worsen the problem in the long run.

For these reasons, we advocate the use of systems thinking in software process
improvement. Established improvement methods implement systems thinking
principles only to a limited extent. Several of these principles are often neglected. The
SPI Systems Model presented in Section 3 aims at compensating this gap in
established improvement methods. It can help leveraging the strengths of individual
improvement methods and points out how specific improvement methods can be
combined in order to receive maximum benefit for a software project or improvement
program.

This section discusses the SPI Systems Model in the light of several improvement
methods: CMMI-based SPI, measurement-based improvement using GQM, and the
Experience Factory. Each method is compared with the SPI Systems Model, and
integration possibilities of improvement method and the SPI Systems Model are
outlined. The last subsection discusses appropriateness and justification of the
proposed SPI Systems Model.

A Systems Perspective on Software Process Improvement 15

5.1 CMMI-Based Improvement

Improvement based on CMMI and other process assessment approaches (e.g., ISO
15504/SPICE or ISO 9001) compare (or assess) a project's or organization's software
processes with a reference model of processes and evaluate the degree at which the
assessed processes cover the reference model. Improvement suggestions can then be
derived from the assessment results. However, the assessment methods do not include
any specific recommendations on specific improvement suggestions or on the order in
which possible process changes should be conducted.

From the viewpoint of the SPI Systems Model, assessment methods such as CMMI
are a means for monitoring a project's process situation. They do not explicitly
address any of the following concepts: Product-related aspects, project-specific
process goals (i.e., other goals than those implicitly underlying the reference model of
processes), specific decision making support for the identification of improvement
suggestions, nor explicit support for specific project management activities. Even
though it must be acknowledged that experienced process assessors usually take care
of all these aspects when performing an assessment, the method itself does not
address such issues.

5.2 GQM Measurement

Goal/Question/Metric (GQM) is a method for measurement and analysis in software
engineering. Starting from the definition of project-specific measurement goals,
appropriate measures (or metrics) are derived via a framework of question types.
Usually, this is done by a measurement engineer, who acquires the needed
information during interviews or group discussions with project team members.
Afterwards, GQM addresses the preparation and execution of measurements and
guides the analysis and interpretation of measurement results. Analysis and
interpretation are usually performed in structured group discussions (so-called
feedback sessions) of the project staff.

Concerning GQM's relation to the SPI Systems Model, GQM addresses the
monitoring of both product and process situation with regard to individual project
goals, offers a means for identifying improvement suggestions (i.e., the feedback
sessions), and has been positioned as a tool for project management's monitoring and
control tasks. Critics of GQM have argued that the approach is still too general,
offering little specific guidance for standard measurement tasks. Likewise, it does not
offer any specific decision making rules for the identification of improvement
suggestions. In general, the implementation of software measurement can involve
technical difficulties that make it not always easy to find a pragmatic approach to
implementing measurement. For instance, it might take a relatively long time until
measurement results are available and the first improvement suggestions can be made.
From this viewpoint, GQM is one candidate solution (among others) for performing
or supporting the measurement and control activities of the SPI Systems Model.

5.3 Experience Factory

The Experience Factory (EF) is a paradigm for experience-based (or learning-based)
continuous improvement in software engineering. It builds on a cyclic process (the
Quality Improvement Paradigm, QIP) of goal setting, planning, controlled action, and

16 Andreas Birk and Dietmar Pfahl

learning-based improvement. It also offers an organizational infrastructure that
supports experience collection and deployment.

With regard to the SPI Systems Model, the EF is a conceptual framework that
addresses most aspects of the SPI Systems Model. However, it does so on a relatively
abstract level and does not offer operational guidance for the various tasks: The EF
does not explicitly distinguish between product and process aspects, does not include
specific monitoring and control mechanisms (EF implementations often use GQM for
that purpose), and does not include specific improvement suggestions.

5.4 Appropriateness and Justification of the SPI Systems Model

The previous subsections have pointed out that the proposed SPI Systems Model
complements established improvement methods by shifting focus on important
project-related aspects of improvement. The SPI Systems Model includes key
principles of systematic, feedback-based improvement: Explicit goal setting,
systematic planning, informed decision making, and the need for accumulating
experience (or best practice or patterns) about improvement actions that are
appropriate within a specific given situation.
The importance of explicit goal setting and the separation of product goals from
process goals have been emphasized by the PROFES improvement method [23]. Its
relevance has been demonstrated in the PROFES application projects. The need for
informed decision making, which should be supported by a sound understanding of
the project situation and be based on accumulated past experience has been
emphasized since the introduction of the Experience Factory. Recent contributions
include the model-based simulation of software projects [19] and methods for
knowledge management within SPI [6].

The SPI Systems Model formulates a project-based feedback system similar to
GQM. However, it is not focusing on measurement alone and emphasizes the need for
combined product and process monitoring. The SPI Systems Model also is linked to
cross-project or organizational feedback (i.e., double-loop feedback) as formulated in
the Experience Factory.

Concerning cross-project feedback, the SPI Systems Model addresses the core
activity of identifying change actions. This is widely neglected in project management
methods as well as in established SPI methods. For this reason, the SPI Systems
Model guides project management's change activities and grounds established
(organizational) SPI methods in software projects. It can be expected that such a link
of project management and SPI helps overcome the still existing gap between both
fields: Project management might gain a higher awareness of software engineering
methods and technology, and SPI might easier attract project management's attention
for the importance of long-term, sustained improvement activities.

6 Conclusion

This paper has introduced the SPI Systems Model that builds on explicit goal setting,
separates software product from process, emphasizes monitoring of project state, and
seeks for understanding the "why" of improvement needs and improvement actions.

A Systems Perspective on Software Process Improvement 17

Anchor point of all these aspects is the software project plan, which transforms
project goals into appropriate planned action. For this reason, the SPI Systems Model
is grounded in project management: It views SPI as a tool that enables project
management to keep a project in line with its goals.

The SPI Systems Model complements established improvement methods, which
are usually not rooted in project management and lack guidance for the identification
of concrete improvement suggestions. The model offers a pragmatic starting point for
understanding how software project phenomena interrelate with each other, and why
specific improvement suggestions might be superior to others in a given project
situation. In cases where additional rigor and justification of decisions are needed, the
SPI Systems Model can be refined and provide the basis for simulation-based root
cause and impact analysis.

References

[1] Abdel-Hamid, T.K., Madnick, S.E.: Software Projects Dynamics – an Integrated
Approach. Prentice-Hall (1991)

[2] Basili, V.R., Caldiera, G., Rombach, D. H.: Experience Factory. In: Marciniak,
J.: Encyclopedia of Software Engineering, Vol. 1, pp. 511-519, Wiley (2001)

[3] Basili, V.R., Caldiera, G., Rombach, H.D., van Solingen, R.: Goal Question
Metric (GQM) Approach. In: J. Marciniak: Encyclopedia of Software
Engineering, Vol. 1, pp. 578-583, Wiley (2001)

[4] von Bertalanffy, L.: General Systems Theory, Foundations, Development,
Applications. Georges Braziller, New York (1968)

[5] Birk, A., Dingsøyr, T., Stålhane, T.: Postmortem: Never leave a project without
it. IEEE Software, 19(3), pp. 43-45, (2002)

[6] Birk, A.: A Knowledge Management Infrastructure for Systematic Improvement
in Software Engineering. PhD Theses in Experimental Software Engineering,
Vol. 3, Fraunhofer IRB, Stuttgart, Germany (2001)

[7] Briand, L.C., Differding, Ch., Rombach, H.D.: Practical Guidelines for
Measurement-Based Process Improvement. Software Process Improvement and
Practice 2 (4), pp. 253-280, (1996)

[8] Checkland, P.: Systems Thinking, Systems Practice. (1981)
[9] Christie, A.M.: Simulation: An Enabling Technology in Software Engineering.

In: CROSSTALK – The Journal of Defense Software Engineering, pp. 2-7
(1999)

[10] CMMI Product Team. Capability Maturity Model Integration (CMMI), Version
1.1. Software Engineering Institute, Pittsburgh, PA (2002)

[11] Florac, W.A., Park, R.E., Carleton, A.D.: Practical Software Measurement.
Software Engineering Institute, Pittsburgh, PA (1997)

[12] Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge (1961)
[13] Forrester, J.W.: Principles of Systems. Productivity Press, Cambridge (1971)
[14] International Organization for Standardization: ISO 9001:2000: Quality

Management Systems - Requirements. International Organization for
Standardization (2000)

18 Andreas Birk and Dietmar Pfahl

[15] Kaplan, R.S., and Norton, D.P.: The Balanced Scorecard: Translating Strategy
into Action. Harvard Business School Press, Boston (1996)

[16] Kerth, N.L.: Project retrospectives: A handbook for team reviews. Dorset
House, New York (2001)

[17] Lin, C.Y., Abdel-Hamid, T.K., Sherif, J.S.: Software-Engineering Process
Simulation Model (SEPS). In: Journal of Systems and Software 38, pp. 263-277
(1997)

[18] van Latum, F., van Solingen, R., Oivo, M., Hoisl, B., Rombach, D.H., Ruhe, G.:
Adopting GQM-based measurement in an industrial environment. IEEE
Software, 15(1):78–86 (1998)

[19] Pfahl, D.: An Integrated Approach to Simulation-Based Learning in Support of
Strategic and Project Management in Software Organisations. PhD Theses in
Experimental Software Engineering, Vol. 8, Fraunhofer IRB, Stuttgart,
Germany (2001)

[20] Pfahl, D., Lebsanft, K.: Knowledge Acquisition and Process Guidance for
Building System Dynamics Simulation Models. An Experience Report from
Software Industry. In: International Journal of Software Engineering and
Knowledge Engineering 10, 4, pp. 487-510 (2000)

[21] Pfahl, D., Lebsanft, K.: Using Simulation to Analyse the Impact of Software
Requirement Volatility on Project Performance. In: Information and Software
Technology 42, 14, pp. 1001-1008 (2000)

[22] Pfahl, D., Ruhe, G.: System Dynamics as an Enabling Technology for Learning
in Software Organisations. In: 13th International Conference on Software
Engineering and Knowledge Engineering. SEKE'2001. Knowledge Systems
Institute, Skokie, IL, pp. 355-362 (2001)

[23] The PROFES Consortium: PROFES User Manual. Fraunhofer IRB Verlag,
Stuttgart, Germany (2000)

[24] Senge, P.M.: The Fifth Discipline – the Art & Practice of the Learning
Organization. Doubleday, New York (1990)

[25] van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A practical
guide for quality improvement of software development. McGraw-Hill, London
(1999)

[26] Waeselynck, H., Pfahl, D.: System Dynamics Applied to the Modelling of
Software Projects. In: Software Concepts and Tools 15, 4, pp. 162-176 (1994)

[27] Weinberg, G.M.: An Introduction to General Systems Thinking. Wiley, New
York (1975)

[28] Wiener, N.: Cybernetics. Wiley, New York (1948)

	Introduction
	Systems Thinking
	A Systems Thinking Foundation of SPI
	Control and Feedback
	The SPI Systems Model

	Deployment and Systems Thinking in SPI
	Goal-Driven Project Planning
	Project Monitoring
	Determination of Change Actions
	Performing Root Cause and Impact Analysis by Simulation

	Discussion
	CMMI-Based Improvement
	GQM Measurement
	Experience Factory
	Appropriateness and Justification of the SPI Systems Model

	Conclusion
	References

