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Abstract

It is not uncommon in software engineering measure-
ment to deal with attributes measured with nominal or ordi-
nal scales. Also, it has long been debated whether it is pos-
sible to find ordinal scales for the structural complexity of
software code. In this paper, we address two problems: (1)
the definition of concentration and dispersion indices for
nominal scales; (2) the conditions under which the compar-
isons of arithmetic means or geometric means are meaning-
ful for scales that are ordinal or not even ordinal.

1. Introduction

Nominal and ordinal scales are often used in software
engineering measurement applications, even though they
are considered to be less information bearing than inter-
val or ratio ones. Some pieces of information are intrin-
sically nominal, like the programming language of a soft-
ware module. In other cases, ordinal scales are used be-
cause it would not make much sense to use ratio or inter-
val scales. For instance, software failures are classified on
an ordinal criticality scale during debugging. Using a ra-
tio scale would entail precise knowledge of, say, the eco-
nomic damage produced by a failure, which is hardly ever
possible to assess. Thus, nominal and ordinal scales some-
times provide the only pieces of information available for
some software product or process attributes. So, it is impor-
tant to extract as much information as possible from them.

Aggregate indices play a special role when dealing with
data measured with any kind of scale, because they provide
a concise idea about the data set at hand. Various kinds of
indices have been used for statistical populations, and the
best known ones are indices of central tendency (e.g., the
mean) and indices of dispersion (e.g., the standard devia-

tion). The actual index used in a measurement application
clearly depends on the kind of scale used. For instance, us-
ing the mean for nominal data or the standard deviation for
ordinal data may lead to meaningless statements and results.

In this paper, we address issues related to aggregate in-
dices for nominal and ordinal scales. Specifically, we first
provide properties and example indices that show how it is
possible to define concentration indices for nominal scales.
Our properties generalize properties that are the counterpart
of those used to define dispersion indices (e.g., Shannon’s
information content). Then, contrary to conventional wis-
dom, we show that it may be meaningful to compare the
mean values of ordinal scales in some circumstances, and
we prove a theorem that provides the necessary and suffi-
cient condition to this end. Finally, we extend this result to
scales that are not even ordinal.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces Measurement Theory, where we describe
two irregular scale types, in addition to regular scales. Sec-
tion 3 describes a proposal for characterizing and defining
concentration indices for nominal scales. Section 4 charac-
terizes the cases in which arithmetic and even geometric
means may be used for ordinal scale, while Section 5 gener-
alizes these results to the irregular scales introduced in Sec-
tion 2. Section 6 summarizes the results presented in the pa-
per and outlines future work in this field.

2. Measurement Theory

We first describe the basic concepts of Measurement
Theory used in the remainder of the paper (Section 2.1).
Then, we discuss some of the usual regular scale types (Sec-
tion 2.2), and we introduce two irregular scale types (Sec-
tion 2.3) that may be found in software measurement.
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2.1. Basics of Measurement Theory

Measurement Theory [6, 10] separates the “intuitive,”
empirical knowledge on a specified attribute of a specified
set of entities, captured via the so-called Empirical Rela-
tional System (Definition 1), from the “quantitative,” nu-
merical knowledge about the attribute, captured via the so-
called Numerical Relational System (Definition 2).

Definition 1 (Empirical Relational System) Given an at-
tribute, let

• E denote the set of entities for which we would like to
measure the attribute

• R1,. . . , Ry denote y empirical relations capturing our
intuitive knowledge on the attribute: each Ri has an
arity ni, so Ri ⊆ Eni; we write (e1, . . . , eni

) ∈ Ri to
denote that tuple (e1, . . . , eni

) is in relation Ri; if Ri

is a binary relation, we use the infix notation e1Rie2

• o1, ..., oz denote z empirical binary operations on the
entities that describe how the combination of two en-
tities yields another entity, i.e., oj : E × E → E; we
use an infix notation, e.g., e3 = e1oje2.

An Empirical Relational System is is an ordered tuple
ERS = (E,R1, . . . , Ry, o1, ..., oz).

For example, to study the control-flow com-
plexity (attribute) of program segments (set of en-
tities E), as a possible empirical binary relation
we may use less complex than ⊆ E × E, i.e.,
e1less complex thane2 represents the fact that e1 is
less complex than e2. An operation may be concatena-
tion, i.e., e3 = e1; e2. The relations Ri need not be “com-
plete” in any way. For instance, suppose that Ri is a bi-
nary relation. Given two entities e1, e2, we may have
¬(e1Rie2) ∧ ¬(e2Rie1).

The Empirical Relational System does not make use of
any kind of measurement values, which are introduced by
the Numerical Relational System.

Definition 2 (Numerical Relational System) Given an at-
tribute, let

• V denote the set of values with which we would like to
measure the attribute

• S1,. . . , Sy denote y relations on the values: each Si

has the same arity ni of Ri

• •1, ..., •z denote z numerical binary operations on the
values, so each •j has the form •j : V × V → V ; we
use an infix notation, e.g., v3 = v1 •j v2.

A Numerical Relational System is an ordered tu-
ple NRS = (V, S1, . . . , Sy, •1, ..., •z).

We have chosen to represent V as a set of “values” and
not necessarily numbers for greater generality and because
in some cases numbers are not really needed (e.g., for nomi-
nal or ordinal measures as described below). In our segment
complexity example, V = Re0+ may be the set of nonneg-
ative real numbers, a binary relation may be “>”, and a bi-
nary operation–for instance–may be ’+’.

The Numerical Relational System in itself does not pro-
vide any information about the entities and the attribute. The
Empirical Relational System and the Numerical Relational
System are linked by a measure (Definition 3), which asso-
ciates entities and values.

Definition 3 (Measure) A function m : E → V is said to
be a measure.

Not all measures are sensible ones, since any m ∈ V E

is a measure. Given program segments e1, e2, e3 such that
e1less complex thane2 and e2less complex thane3,
a measure m may be such that m(e1) < m(e2) and
m(e3) < m(e2). A sensible measure must be consis-
tent with the empirical knowledge about the attribute, as
follows.

Definition 4 (Representation Condition) A measure must
satisfy the two conditions

∀i ∈ 1 . . . n,∀(e1, . . . , eni
) ∈ Eni

(e1, . . . , eni
) ∈ Ri ⇔ (m(e1), . . . , m(eni

)) ∈ Si (1)
∀j ∈ 1 . . . m,∀(e1, e2) ∈ E × E

(m(e1oje2) = m(e1) •j m(e2)) (2)

In our segment complexity example, the Representation
Condition states that e1less complex thane2 ⇔ m(e1) <
m(e2) and (m(e1; e2) = m(e1) + m(e2). This leads to the
concept of scale (Definition 5).

Definition 5 (Scale) A scale is a triple (ERS, NRS,m),
where ERS is an Empirical Relational System, NRS is a
Numerical Relational System, and m is a measure that sat-
isfies the Representation Condition.

The definition of scale restricts sensible measures to
be a subset M(ERS,NRS) ⊆ V E of the set of possi-
ble measures. In what follows, we assume that measures
satisfy the Representation Condition, so we use the terms
“scale” and “measure” interchangeably. It is well-known
that M(ERS,NRS) is in general a set, i.e., given ERS
and NRS, more than one legitimate measure may be built.
As a consequence, the actual values obtained via measures
have no actual information content for scales (with the ex-
ception of so-called absolute scales [6, 10], which we do not
address in this paper). For example, the fact that an object
weighs 2 does not convey any information. The value kg 2
is certainly more informative, but (1) it conveys the same in-
formation as g 2000, and (2) it is actually a statement that
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involves the weight of the object and the weight of a refer-
ence object that weighs 1 kg. Thus, the value itself has little
interest. Only what is invariant across scales is of interest,
e.g., the fact that the ratio between the weights of two ob-
ject is the same regardless of the scale used. Invariant prop-
erties of scales are called meaningful statements and pro-
vide the real information content of a scale.

Definition 6 (Meaningful Statement) A statement
S(m) that depends on a measure m is meaning-
ful if its truth value does not change across all
scales, i.e., ∀m ∈ M(ERS,NRS)(S(m)) ∨ ∀m ∈
M(ERS,NRS)(¬S(m)).

Thus, it is meaningful to say that an object is twice as
heavy as another. Instead, suppose we can just tell if a soft-
ware failure is more critical than another, so we can clas-
sify failures with a 5-value criticality measure m′

cr with val-
ues Range(m′

cr) = {1, 2, 3, 4, 5}, where 1 is least severe
and 5 is most severe. It it meaningless to say that critical-
ity 2 failures are twice as severe as a criticality 1 failure,
as the truth value of this statement depends on the specific
choice of values. If we choose another scale m′′

cr with val-
ues Range(m′′

cr) = {7, 19, 34, 981, 4365}, the truth value
of the statement changes.

2.2. Regular scale types

It may be possible to map one scale into another. In the
weight example, any proportional transformation provides
a legitimate scale with a different weight unit. In the failure
criticality example, we can map one scale into another by
applying a monotonically increasing transformation. This
leads to the definition of admissible transformation.

Definition 7 (Admissible Transformation) Given a scale
(ERS,NRS,m), the transformation of scale f is admissi-
ble if m′ = f ◦ m (i.e., m′ is the composition of f and m)
and (ERS,NRS,m′) is a scale.

The set of admissible transformations depends on the
kind of invariant statements that need to be preserved. The
scales for which admissible transformations exist are called
regular and may be classified according to the set of admis-
sible transformations they can undergo.

Nominal scales. The values of these scales are labels–
not necessarily numbers–for equivalence classes (which we
call “categories” from this point on) in which the entities are
partitioned, with no notion of order among the categories.
The invariant property states that the actual labels used do
not matter, as long as different labels are used for differ-
ent categories. Formally, ∀e1, e2 ∈ E

∀m ∈ M(ERS,NRS)(m(e1) = m(e2)) ∨
∀m ∈ M(ERS,NRS)(m(e1) 	= m(e2))

Thus, the set of categories is the information that needs to be
preserved, so nominal scales can be transformed into other
nominal scales via one-to-one transformations.

Ordinal scales. The values of these scales are labels–
not necessarily numbers–for categories in which the entities
are classified, with a total order across values. The invari-
ant property states that the actual labels used do not matter,
as long as the order of the values that label different cate-
gories is preserved. Formally, ∀e1, e2 ∈ E

∀m ∈ M(ERS,NRS)(m(e1) > m(e2)) ∨
∀m ∈ M(ERS,NRS)(m(e1) = m(e2)) ∨

∀m ∈ M(ERS,NRS)(m(e1) < m(e2))

Thus, the ordering across the categories needs to be pre-
served, so ordinal scales can be transformed into other
scales via strictly monotonic transformations.

Interval scales. Each entity is associated with a numeri-
cal value. The invariant property states that the actual values
used do not matter, as long as the ratios between all pairs of
differences between values are preserved. Formally, by de-
noting the set of real number by Re, ∀e1, e2, e3, e4 ∈ E

∃k1, k2 ∈ Re,∀m ∈ M(ERS,NRS)
k1(m(e1) − m(e2)) = k2(m(e3) − m(e4))

An interval scale m′ can be transformed into another inter-
val scale m′′ only via linear transformations m′′ = am′+b,
with a > 0, i.e., we can change the origin of the values (by
changing b) and the unit of measurement (by changing a).

Ratio scales. Each entity is associated with a numeri-
cal value. The invariant property states that the actual val-
ues used do not matter, as long as the ratios between the all
pairs of values are preserved. Formally, ∀e1, e2 ∈ E

∃k1, k2 ∈ Re,∀m ∈ M(ERS,NRS)
k1m(e1) = k2m(e2)

A ratio scale m′ can be mapped into another ratio scale m′′

only via proportional transformations m′′ = am′, with a >
0, i.e., we can change the measurement unit by changing a.

The description of scale types has important practical
consequences. Some mathematical operations may not be
applied to measures of certain types, e.g., summing nu-
merical values of ordinal or even interval measures. Sup-
pose that m′ is an interval measure. If statement m′(e3) =
m′(e1) + m′(e2) was meaningful, it would have the same
truth value as m′′(e3) = m′′(e1)+m′′(e2) under the trans-
formation m′′ = am′ + b. By replacing m′′ with am′ + b,
we have am′(e3) + b = am′(e1) + b + am′(e2) + b, from
which we obtain b = 0, which is a specific value of b.

Also, based on the type of a scale, it is commonly be-
lieved that different indices of central tendency should be
used, i.e., the mode for nominal scales, the mode and the
median for ordinal scales, the mode, the median, and the
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Figure 1. Control Flow Graphs.

arithmetic mean for interval scales, and the geometric mean
as well for ratio and absolute scales. We elaborate on this in
Sections 4 and 5.

2.3. Two irregular scale types

Meaningful statements are probably the central aspect
of Measurement Theory. The meaningful statements asso-
ciated with the scale types of Section 2.2 have one common
characteristic, i.e., a universal quantification on all the en-
tities that appear in them. For instance, the invariant prop-
erty for interval scales begins with “∀e1, e2, e3, e4 ∈ E . . .”
However, these are specific kinds of invariant statements.
Suppose that we know that we believe that program seg-
ment emin is the least complex program segment. The cor-
responding invariant statement states that ∀e 	= emin ∈
E,∀m ∈ M(ERS,NRS)(m(e) > m(emin). In this state-
ment, entity e is universally quantified, but emin is not.
On a related note, an admissible transformation may not

always exists [10]. For instance, in our program complex-
ity example, let ERS = (E,R), with E = {e1, e2, e3}
and R = {(e1, e2), (e1, e3)}, and let NRS = (Re,�),
where � is a binary relation on Re such that x � y if
and only if x < y − 1. Let m′ be such that m′(e1) = 0,
m′(e2) = 2, m′(e3) = 2, and m′′ such that m′′(e1) = 0,
m′′(e2) = 2.1, m′′(e3) = 2. Both m′ and m′′ are legiti-
mate scales, but there is no admissible transformation that
transforms m′ into m′′. Scales of this kind are called ir-
regular. The invariant statement preserved in these scales
is m(e1) � m(e2) ∧ m(e1) � m(e3). Now, suppose we
chose a Numerical Relational System like NRS = (Re, <
), and suppose that m′′ is a scale. The Representation Con-
dition (Definition 4) requires that also e3Re2, which is not
in our empirical intuition on the ordering of the segments.
So, it would be impossible to have a scale only because we
are using NRS = (Re,<), but not because of some intrin-
sic problem in ERS = (E,R).

The situation in which we are not able to provide an em-
pirical total order among entities is not infrequent in soft-

s1

s2 s3

s
4

s5

s6
v1

v
2

v
3

v4

v5 v6

Figure 2. Hierarchy for the graphs of Figure 1.

ware measurement [4]. For instance, suppose we have six
program segments s1, . . . , s6 that we model with the six
control flow graphs cfg(si) of Figure 1, and suppose we
come up with the order represented in Figure 2, where

• each node represents a segment si

• the annotation inside a node represents the value asso-
ciated by some complexity measure m with the control
flow graph represented by the node, e.g., m(s4) = v4

• an arc from si to sj represents the fact that
siless complex thansj and m(si) < m(sj).

For instance, we can say that s1less complex thans2

and v1 < vb, but we are unable to order s2 and s4, and s3

and s4, on the entities’ side; v2 and v4, and v3 and v4, on
the values’ side. Thus, in several cases, the best kind of re-
lation that we can establish among the entities is a hierar-
chy.

Definition 8 (Hierarchy) Let X be a set and Q ⊆ X × X
a relation. The pair (X,Q) is a hierarchy if and only if Q is

• asymmetric, i.e., ∀x, y ∈ X , xQy ⇒ ¬yQx

• transitive, i.e., ∀x, y, z ∈ Q, xQy ∧ yQz ⇒ xQz

A hierarchy can be modeled by a Directed Acyclic Graph
(DAG), like in Figure 2, where it is shown that we have a hi-
erarchy for both the entities (with X = E and RX = R)
and the values (with X = V and RX = S). For complete-
ness only, we now explicitly represent both the Empirical
and the Numerical Relational Systems:

• ERS = (E,R), where E is the set of all possible pro-
gram segments that produce control flow graphs like
the ones in Figure 1, and

R = {(sx, sy) ∈ E2|∀s1, s2, s3, s4, s5, s6 ∈ E

(s1 < s2 ∧ s2 < s3 ∧ s1 < s4 ∧
s3 < s5 ∧ s4 < s5 ∧ s5 < s6) ∧

(sx = s1 ∧ sy ∈ {s2, s3, s4, s5, s6} ∨
sx = s2 ∧ sy ∈ {s3, s4, s5, s6} ∨

sx = s3 ∧ sy ∈ {s4, s5, s6} ∨
sx = s4 ∧ sy ∈ {s2, s3, s5, s6} ∨

sx = s5 ∧ sy ∈ {s6})} (3)
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• NRS = (V, S), where V = Re0+ and

S = {(x, y) ∈ Re2
0+|∀v1, v2, v3, v4, v5, v6 ∈ Re0+

(v1 < v2 ∧ v2 < v3 ∧ v1 < v4 ∧
v3 < v5 ∧ v4 < v5 ∧ v5 < v6) ∧

(x = v1 ∧ y ∈ {v2, v3, v4, v5, v6} ∨
x = v2 ∧ y ∈ {v3, v4, v5, v6} ∨

x = v3 ∧ y ∈ {v4, v5, v6} ∨
x = v4 ∧ y ∈ {v2, v3, v5, v6} ∨

x = v5 ∧ y ∈ {v6})} (4)

Given the similarities in the structure of R and S, it is
not difficult to show that a set of scales can be built. For all
scales m, we have m(e1) < m(e2), for instance, but there
exist three scales m′,m′′,m′′′ such that m′(e2) < m′(e4),
m′′(e2) = m′′(e4), m′′′(e2) > m′′′(e4).

At any rate, given an entity ê, there in general is a subset
of entities ē ∈ E such that ∀m ∈ M(ERS,NRS), m(ê) =
m(ē). For instance, if we assess program segment complex-
ity based only on control flow graphs, for any two program
segments ŝ and s̄ modeled by the same control flow graph
we have m(ŝ) = m(s̄) for all measures m. Thus, the set of
entities is partitioned in categories: for instance, each node
of the hierarchy of Figure 2 actually represents an entire
subset of entities, which is the subset of entities that are al-
ways associated with a common value by all measures, and
the specific entities denoted in Figure 2 are only represen-
tative ones for their categories. Also, it is possible to estab-
lish (asymmetric and transitive) order relationships between
some of the categories, but not all of them. Each category is
associated with a value of a measure in a way that is con-
sistent with the order relationships between the entities. K
will represent the set of categories into which the set of en-
tities E is partitioned.

We now deal with an important particular kind of hierar-
chies, i.e., strict weak orders 1.

Definition 9 (Strict Weak Order) Let X be a set and Q ⊆
X × X a relation. The pair (X,Q) is a strict weak order
if and only if Q is asymmetric, transitive, and the indiffer-
ence relation IND is an equivalence relation, where IND
is the relation among those elements that are not ordered,
i.e., ∀x, y ∈ X , we have xINDy ⇔ (¬(xQy) ∧ ¬(yQx)).

In a strict weak order, the categories identified as ex-
plained above for hierarchies are organized in equiv-
alence classes, and it can be shown that the equiva-
lence classes of categories are indeed totally ordered.
We denote by IND(lev) the set of level lev cate-
gories, and by PREC(lev) =

⋃
h∈1...lev−1 IND(lev) the

1 Here we do not provide the “traditional” definition of strict weak or-
der, which is based the concept of “negatively transitive” relation, but
we characterize strict weak orders in an equivalent way, based on a
necessary and sufficient condition [10]

g

f

h

i

j

1 2 3 4

a

b
d

c

e

Figure 3. A strict weak order.

set of categories belonging to the levels before lev, with
PREC(1) = . The DAG in Figure 3, with the four equiv-
alence classes of categories denoted as levels 1 through 4,
represents a strict weak order.

Like in the case of measures based on general hi-
erarchies, we use an Empirical Relational System
ERS = (E,R) and a Numerical Relational System
NRS = (Re, S) that are both strict weak orders. R and
S can be built in much the same way as we did in formu-
lae (3) and (4). This is different from using a Numerical Re-
lational System that is a total order, i.e., NRS = (Re,<),
as is usually done. Note that the building of an ordi-
nal scale that links ERS = (E,R) to NRS = (Re,<) re-
quires that ERS = (E,R) be a strict weak order [4]. How-
ever, because of our choice of a strict weak order for the
Numerical Relational System, we are dealing with a differ-
ent type of scales than ordinal ones.

At any rate, what matters is the use that can be made of
scales. In Section 5, we show that the comparison of means
may be meaningful even for these irregular scales.

3. Concentration for nominal measures

In software measurement, nominal measures are used for
several attributes, including: programming language used to
write a software module; type of a system (e.g., real-time,
embedded, business application); type of a fault in software
code (e.g., dangling pointer, memory overflow, uninitialized
variable); type of an error made when coding a module,
(e.g., logical, omission, clerical); phase in which the error
was made; etc. The measures for all of these attributes con-
vey useful information that can be used before, during, and
after development. For instance, based on the type of soft-
ware system to be developed, different levels of require-
ments are set before development: a real-time system will
probably have higher reliability requirements than a non-
critical web application, but also lower usability require-
ments. The programming language of a module is a fun-
damental piece of information when assessing its size after
development, as the bare knowledge of the number of lines
of code is certainly not enough.

The mode is the main index for the “central tendency”
of the distribution of a nominal measure. It is one’s “best
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Figure 4. Four fault distributions.

guess” if no other information is available on a set of en-
tities. For instance, take the example in Figure 4(a) where
a set of software faults are categorized depending on their
type (A - D). The best guess on the type of a newly found
fault would be ’C’, i.e., the mode of the distribution. Also,
if Figure 4(b) contains the distribution of fault types of Java
modules, the best guess, conditional on the fact that the de-
fect was found in a Java module would be ’A’, which still is
the mode of the conditional distribution of Figure 4(b).

However, the mode does not provide information about
the concentration of the distribution, which may influence
our confidence in the knowledge we extract from a distri-
bution. If, instead of the distribution in Figure 4(b), we had
the distribution in Figure 4(c), our best guess would still be
’A’, but we would probably be less confident in our answer.

On a different, but related note, suppose that we have the
distribution in Figure 4(d), where two types of defects are
much more frequent than the others. We may reply that we
believe that the defect is most likely to be of type ’A’ or
’D’, but we would be more confident about our reply than
in the case of Figure 4(c). This kind of information can also
be used in decision making. Suppose that we would like to
subcontract the development of a component of an applica-
tion. We can have a panel of experts vote to decide which
contractor should get the job. Suppose we obtain a distribu-
tion of votes like the one in Figure 4(c). We would proba-
bly be quite uncomfortable when making the final decision.
With a distribution like the one in Figure 4(d), we may be
more confident about our decision if we choose the contrac-
tor that corresponds to the mode of the distribution or we
may narrow the alternatives to ’A’ and ’D’ and then ask our
experts to decide between only those two. This makes the
decision process faster and smoother.

A few indices have been proposed in the litera-
ture mainly to quantify the dispersion of the distribution
of a nominal measure. Information content H [3] is proba-
bly the best known dispersion index, since it has provided
the foundations for Information Theory

H = −
∑

v∈V

p(v) log2 p(v) (5)

We have used p(v) to denote the probability that m(e) = v,
as the different categories can be identified by means of the
different values of the measure. Other entropy measures are
the Renyi entropy measure [9]

HR
α =

1
1 − α

log2

∑

v∈V

pα(v) (6)

with α > 0 and the Tsallis entropy measure [12]

HT
α = c

∑
v∈V pα(v) − 1

1 − α
(7)

with α > 0 and c > 0, which is usually assumed c = 1.
Gini’s dispersion index G = 1 − ∑

v∈V p2(v) is a special
case with α = 2. Renyi’s and Tsallis’ entropy measures
tend to H as α tends to 0. It is important to note that these
indices were defined based on axioms, which were used to
substantiate their definition formulae.

These indices have been applied for instance in the build-
ing of decision or classification trees. Classification trees
use the values of the measures of independent attributes
for grouping data points into the categories of a depen-
dent attribute [8, 11]. A classification tree is built by recur-
sively splitting a subset of data points into subsets, each of
which is identified by specific values of the nominal mea-
sures for the independent attributes. At the beginning of the
tree building, the initial “subset” of data points is the entire
data set. Continuous independent measures are discretized
(with a partial exception in Classification and Regression
Trees [2, 1]) and the discretized, nominal version is used. At
each splitting step, for a subset of data points, several differ-
ent measures for the independent attributes may be chosen.
The idea is to choose the one that minimizes a combination
of the dispersions of the nominal measure used for the de-
pendent attribute measured on the newly created subsets. A
subset is not split any further if the dispersion of the distri-
bution of the measure used for the dependent variable is be-
low some specified threshold, or if the subset is too small.
H is probably the dispersion measure that has been used to
this end, but there is not necessary reason for this.

Here, we focus on concentration indices. Concentration
may be seen as the ”flip side of the coin” with respect to
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dispersion. We choose to focus on concentration and not on
dispersion because, as we show later in this section, a fam-
ily of concentration indices may be easily built that satisfy
a set of axioms that are the counterpart of the axioms used
for dispersion. In what follows, C(p) denotes a concentra-
tion index based on the probability distribution p.

Axiom 1 (Symmetry) C(p) is a symmetric function of the
values p(v), i.e., if the values r(v) are a permutation of the
values p(v), we have C(p) = C(r).

Axiom 2 (Impossible events) An impossible event v, i.e.,
one with p(v) = 0 does not contribute to the concentration
index. If we denote by r the probability distribution on the
set of events V −{v} such that ∀x ∈ V −{v}, r(x) = p(x),
we must have C(p) = C(r).

Axiom 2 makes it impossible to change the value of C(p)
by adding fictitious events that cannot possibly occur.

Axiom 3 (Pairwise concentration) Given a proba-
bility distribution p, let r be a probability distri-
bution that coincides with p except for the val-
ues of the probabilities associated with two events
x and y, i.e., ∀v 	= x, v 	= y, p(v) = r(v). So,
p(x) + p(y) = r(x) + r(y) = P .

We have C(p) ≥ C(r) if and only if the values p(x) and
p(y) are not closer to each other than the values r(x) and
r(y), i.e., |p(x)−p(y)| ≥ |r(x)−r(y)|, which can be rewrit-
ten as |p(x) − P/2| ≥ |r(x) − P/2|.

In other words, the conditional distribution
{p(x)/P, p(y)/P} is not ”closer” to being equiproba-
ble than the conditional distribution {r(x)/P, r(y)/P}.

From Axioms 1 - 3, we can derive the following two ax-
ioms, on the minimum and the maximum values for C(p).

Derived Axiom 1 (Minimum value) C(p) is mini-
mum when all the events of the probability distribution p
are equiprobable, i.e., ∀v ∈ V p(v) = 1/|V |.
Derived Axiom 2 (Maximum value) C(p) is maxi-
mum when one event is certain, i.e., ∃v ∈ V p(v) = 1.

Based on Axiom 2, the maximum value of C(p) does
not depend on the number of possible events, so, for a given
functional form for C(p), it is the same for all distributions.

Function C(p) is not necessarily convex or continuous.
However, it can be shown based on Axiom 3 that C(p) is
limited for all probability distributions p, except the distri-
butions with one certain event, since, for any other distribu-
tion r, it is always possible to find a different distribution
p such that C(p) ≥ C(r). At any rate, for better tractabil-
ity, we add the following axiom.

Axiom 4 (Continuity) C(p) is a continuous function of the
values p(v) for p(v) < 1.

Based on these axioms, a number of concentration in-
dices can be defined as a function of the distribution p. Here,
we focus on a family of indices. The basic idea is that a
discrete distribution p is more concentrated if, when n ran-
dom drawings are carried out, there is a higher probability
that the same value is selected. The probability of select-
ing the same value n times is P (p, n) =

∑
v∈V pn(v), as

it is the sum of the probabilities of obtaining n times each
value v ∈ V . Different concentration indices can be de-
fined by weighting these probabilities P (p, n) with a func-
tion w(n) ≥ 0 for each n, and w(n) > 0 for at least one
n. So, we obtain the function (N denotes the positive inte-
gers)

C(p) =
∑

n∈N

w(n)
∑

v∈V

pn(v) (8)

We assume that the series of formula (8) converges, with
the possible exception of the probability distribution with
one certain event. Formula (8) shows that C(p) is a sym-
metrical function of the p(v)’s, so Axiom 1 is satisfied.
Impossible events cannot provide any contribution to the
value of C(p), so Axiom 2 is satisfied. In addition, Ax-
iom 3 is satisfied as well. With the same p and r as in
Axiom 3, take a value n and compute the two probabili-
ties P (p, n) =

∑
v∈V −{x,y} pn(v) + pn(x) + (P − p(x))n

and P (r, n) =
∑

v∈V −{x,y} rn(v) + rn(x) + (P − r(x))n.
So, P (p, n) ≥ P (r, n) means pn(x) + (P − p(x))n ≥
rn(x) + (P − r(x))n. We can now study the function
hn + (P − h)n. Through derivations and simple math-
ematical computations, we can find that this function (I)
attains its minimum for h = P/2, (II) is symmetrical
with respect to h = P/2, and (III) has a positive sec-
ond derivative. So, we can conclude that hn + (P − h)n

is greater for values that are farther away from P/2, i.e.,
pn(x) + (P − p(x))n ≥ rn(x) + (P − r(x))n if and only
if |p(x)−P/2| ≥ |r(x)−P/2|. Since all the weights w(n)
of the probabilities P (p, n) are nonnegative, we obtain that
C(p) ≥ C(r). We also assume that Axiom 4 is satisfied, as
that is not guaranteed by formula (8).

Under these hypotheses, the series of formula (8) con-
verges absolutely, so we can rewrite it as

C(p) =
∑

v∈V

∑

n∈N

w(n)pn(v) (9)

Formula (9) allows the computation of C(p) as a sum of Z-
transforms. The Z-transform Z(w; z) of a discrete function
w(n) is defined as

Z(w; z) =
∑

n∈0...∞

w(n)
zn

Thus, we can use the existing results for Z-transforms by
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rewriting formula (9) as

C(p) =
∑

v∈V

(Z(w;
1

p(v)
) − w(0)) =

∑

v∈V

Z(w;
1

p(v)
) − |V |w(0)

Now, we show how formula (9) can be used to build a num-
ber of concentration indices.

Herfindahl-Hirschman index [7]. The weighting func-
tion is w(2) = 1 and ∀n ∈ N − {2}, w(n) = 0. Thus,

CH(p) =
∑

v∈V

p2(v)

CH(p) ranges between CHmin(p) = 1
|V | and

CHMax(p) = 1. Note that other similar indices may be de-
fined as CH(p; j) =

∑
v∈V pj(v) with j ≥ 2, since the

choice j = 2 is somewhat arbitrary.
Constant weighting function. The weighting function

is w(n) = w, ∀n ∈ N . We have

CC(p) = w
∑

v∈V

∑

n∈N

pn(v) =

w
∑

v∈V

(
1

1 − p(v)
− 1) = w

∑

v∈V

p(v)
q(v)

where q(v) = 1 − p(v). So, the concentration index is
the sum of the odds of each event. CC(p) ranges between
CCmin(p) = w |V |

|V |−1 and ∞, as C(p) is defined except
when one event, say v, is certain, since q(v) = 0.

Linear weighting function. The weighting function is
w(n) = wn, ∀n ∈ N . Through computations, we have

CL(p) = w
∑

v∈V

p(v)
q2(v)

CL(p) ranges between CCmin(p) = w( |V |
|V |−1 )2 and ∞.

Information-like concentration. Formula

CI(p) = −
∑

v∈V

p(v)log2q(v) = −
∑

v∈V

p(v)log2(1 − p(v))

(10)
defines a concentration index:

CI(p) = −
∑

v∈V

p(v)
∑

n∈N

(−1)n+1 (−p(v))n

n
=

∑

v∈V

∑

n∈N

pn+1(v)
n

=
∑

v∈V

∑

n∈2...∞

pn(v)
n − 1

So, w(n) = 1
n−1 > 0 if n > 1 and w(1) = 0. CI(p) ranges

between CImin = −log2
|V |−1
|V | and ∞.

p1 p2 p3 p4 min Max
CH 0.046 0.180 0.0164 0.044 0.20 1
CC 1.506 2.271 1.338 1.513 1.333 ∞
CL 2.351 5.798 1.792 2.332 1.777 ∞
CI 0.565 1.068 0.4195 0.582 0.415 ∞
CP 0.433 0.476 0.4184 0.435 0.418 0.632

Table 1. Examples of concentration values.

Poisson weighting function. The weighting function is
w(n) = λn/n!e−λ. We have

CP (p) =
∑

v∈V

∑

n∈N

λn

n!
e−λpn(v) =

e−λ
∑

v∈V

∑

n∈N

(λp(v))n

n!
= e−λ

∑

v∈V

(eλp(v) − 1) =

∑

v∈V

e−λq(v) − e−λ|V |

CP (p) ranges between CPmin = |V |e−λ(e
λ

|V | − 1) and
CPMax = 1 − e−λ. In this case, the number of selections
n may also be viewed as a random variable distributed ac-
cording to a Poisson distribution. Other discrete distribu-
tions (e.g., binomial, geometric) may be used as well. Table
1 contains the values of the above indices for the distribu-
tions p1 − p4 in Figure 4 (e.g., CC(p3) = 1.338). We used
w = 1 for both CC and CL, and λ = 1 for CP . The last
two columns of Table 1 contain the minimum and the max-
imum value for each index. As all distributions in Figure
4 have four values, the minimum and maximum value of a
concentration index is the same across all distributions.

Table 1 shows that the indices capture concentration dif-
ferently. For instance, CH(p1) > CH(p4), but CC(p1) <
CC(p4). This is not unexpected, as formula (8) shows that
C(p) can be built as a weighted sum of the probabilities
P (p, n), in a similar way to the definition of other indices as
weighted sums, where the weights may be different in dif-
ferent applications. The existence of a number of concentra-
tion indices allows users to choose the one that best fits their
needs. Also, though the lack of a finite range for some in-
dices may seem to be a problem, we note that the existence
of a finite range is no condition for a better interpretabil-
ity of an index, as it is no guarantee that the distribution of
the values of the index is uniform in practice.

Axiom 3 characterizes concentration from dispersion in-
dices. It can be shown that a dispersion index D(p) satisfies
Axioms 1, 2, 4, and an axiom that closely mirrors Axiom
3, with the only difference of replacing C(p) ≥ C(r) with
D(p) ≤ D(r). More specific axioms have also been intro-
duced for the definition of specific dispersion measures. For
instance, the following formula describes an addition ax-
iom for the definition of Shannon’s H (other dispersion in-
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dices have different addition rules)

H(p(v), p(x), p(y), . . . , p(z)) =
H(p(v) + p(x), p(y), . . . , p(z)) +

(p(v) + p(x))H(
p(v)

p(v) + p(x)
,

p(x)
p(v) + p(x)

)

At any rate, concentration indices may be used instead of
dispersion indices to extract information on the spread of a
distribution. Thus, they may also be used in the building of
decision trees, by maximizing a combination of the concen-
trations of the distributions of the nominal measure used for
the dependent attribute measured on the newly created sub-
sets at each splitting of the data set.

4. Means for ordinal measures

It is often said that the mean is not a sensible index of
central tendency for ordinal scales because its use would
lead to meaningless statements. For instance, take a failure
criticality measures m, e.g., m′′

cr or m′′
cr of Section 2.1. Sup-

pose that we have obtained two sets of failures on two dif-
ferent programs (or on two versions of a program), with fre-
quencies p(i) and r(i) for each failure criticality category,
where each category is indexed in increasing order of criti-
cality by an integer number. Comparing the two arithmetic
means leads to the following statement

Ep(m) =
∑

i∈1...|V |
p(i)m(i) > Er(m) =

∑

i∈1...|V |
r(i)m(i)

(11)
which may be true for some ordinal measures and false for
others, as simple examples can show.

Surprisingly, even for ordinal measures, statement (11)
may be meaningful, i.e., in some cases, statement (11) is al-
ways true or always false independent of the ordinal mea-
sure chosen. We characterize the general case in which this
happens with Theorem 1. Before stating and proving the
theorem, we discuss a few cases via the eight frequency dis-
tributions in Table 2, starting from an obvious, extreme one.
In Table 2, for instance, the frequency of criticality #4 fail-
ures according to distribution p3 is p3(4) = 0.25. We de-
note the mean of distribution pk of Table 2 as Ek.

Let us compare the means obtained with distributions
p1 and p2. Statement (11) becomes E1(m) = m(5) >
E2(m) = m(1), so it is obviously true for all possible
ordinal measures, and thus it is meaningful. Let us now
compare the means obtained with distributions p3 and p4:
statement (11) becomes E3(m) = 0.1m(1) + 0.15m(2) +
0.2m(3) + 0.25m(4) + 0.3m(5) > E4(m) = 0.11m(1) +
0.17m(2)+0.18m(3)+0.24m(4)+0.3m(5). So, the ques-
tion is: is this inequality true (or false) for all possible ordi-
nal measures m, i.e., is it meaningful? Also, is statement
E4(m) > E5(m) is meaningful? Let us now consider the

1 2 3 4 5
p1 0 0 0 0 1
p2 1 0 0 0 0
p3 0.1 0.15 0.2 0.25 0.3
p4 0.11 0.17 0.18 0.24 0.3
p5 0.08 0.17 0.18 0.27 0.3
p6 0.08 0.18 0.18 0.26 0.3
p7 0.17 0.25 0.3 0.18 0.1
p8 0.15 0.20 0.33 0.22 0.1

Table 2. Failure frequency distributions.

two comparisons E3(m) > E5(m) and E3(m) > E6(m).
Distributions p5 and p6 are quite similar if compared to dis-
tribution p3: both p5 and p6 have higher frequencies for cat-
egories #2 and #4 than distribution p3; lower frequencies
for categories #1 and #3; and the same frequency for cat-
egory #5. Does this allow us to say that both statements
E3(m) > E5(m) and E3(m) > E6(m) are meaning-
ful? That neither is meaningful? Note that the median ob-
tained for all distributions from p3 to p6 is the same, i.e.,
#4. Does meaningfulness of the comparison depend on the
value of the median in any way? So, let us take distribu-
tions p7 and p8, both of which have median equal to #3.
Is statement E7(m) > E8(m) meaningful? Or, is statement
E6(m) > E7(m) meaningful? Theorem 1 provides the gen-
eral answer to this kind of meaningfulness questions.

Theorem 1 Let m be an ordinal measure with |V | > 1 val-
ues, and let us denote its values in nondecreasing order
by identifying each of the |V | categories with an in-
teger value, so m(1) < m(2) < . . . < m(|V |). Let
w(1), w(2), . . . , w(|V |) be a set of real numbers (the
weights) such that

∑
i∈1...|V | w(i) = 0. We have

∑

i∈1...|V |
w(i)m(i) > 0 (12)

for every possible choice of an ordinal measure m if and
only if for all i ∈ 1 . . . |V |

∑

j∈i...|V |
w(j) ≥ 0 (13)

and for at least one i ∈ 2 . . . |V |
∑

j∈i...|V |
w(j) > 0 (14)

Proof. The weighted sum of (12) can be rewritten via a
discrete version of the integration rule by parts:
[m(|V |) − (|V | − 1)][w(|V |)]+
[m(|V | − 1) − m(|V | − 2)][w(|V |) + w(|V | − 1)]+
[m(|V |−2)−m(|V |−3)][w(|V |)+w(|V |−1)+w(|V |−
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2)] + ...
[m(1)][w(|V |) + w(|V | − 1) + w(|V | − 2) + . . . + w(1)]

and, since
∑

i∈1...|V | w(i) = 0, we have

∑

i∈2...|V |
(

∑

j∈i...|V |
w(j))(m(i) − m(i − 1)) (15)

The condition is sufficient. In the sum of (15), each term
(
∑

j∈i...|V | w(j))(m(i) − m(i − 1)) ≥ 0, since we have
(m(i) − m(i − 1)) ≥ 0 by hypothesis. Also, we have
(
∑

j∈i...|V | w(j))(m(i) − m(i − 1)) > 0 for at least one
i ∈ 1 . . . |V |. So, the left-hand side of (12) is positive.

The condition is necessary, and we prove it by con-
tradiction. Suppose that condition (14) does not hold, so
for all i ∈ 2 . . . |V |, ∑

j∈i...|V | w(j) = 0. It is immedi-
ate that all the terms in (15) become zero. So, condition
(14) is necessary. Now, suppose that that condition (13)
does not hold, so there exists one value i = h such that∑

j∈h...|V | w(j) < 0. We now show that a measure m
exists such that (12) does not hold. Suppose that there is
the same difference m(i) − m(i − 1) = t between the
measures for all consecutive pairs of categories, except for
m(h)−m(h− 1) = u. Expression (15) can be rewritten as

t
∑

i�=h∈2...|V |
(

∑

j∈i...|V |
w(j)) + u

∑

j∈h...|V |
w(j)))

Now, for any given set of weights w(1), w(2), . . . , w(|V |),
we can choose u > 0 large enough and t > 0 small enough
to make the expression in (15) negative. (End of proof ) ♦

Theorem 1 can be applied to the comparison of the mean
values of ordinal measures by writing Ep(m) > Er(m) as

∑

i∈1...|V |
(p(i) − r(i))m(i) > 0 (16)

The left-hand sides of (16) and (12) coincide by taking
w(i) = p(i) − r(i). Now, (13) can be rewritten as

∑

j∈i...|V |
w(j) ≥

∑

j∈1...|V |
w(j) = 0 (17)

i.e., via basic computations
∑

j∈1...i−1

w(j) ≤ 0 (18)

Thus, based on (18), conditions (13) and (14) actually re-
quire that, for all i ∈ 2 . . . |V |

∑

j∈1...i−1

p(j) ≤
∑

j∈1...i−1

r(j) (19)

with strict inequality for at least one i ∈ 2 . . . |V |.
In Table 3, Pk denotes the cumulative frequency of pk,

where Pk(i) =
∑

j∈1...i−1 p(j), i.e., the value in each cell

1 2 3 4 5
P1 0 0 0 0 0
P2 0 1 1 1 1
P3 0 0.1 0.25 0.45 0.7
P4 0 0.11 0.28 0.46 0.7
P5 0 0.08 0.25 0.43 0.7
P6 0 0.08 0.26 0.44 0.7
P7 0 0.17 0.42 0.72 0.9
P8 0 0.15 0.35 0.68 0.9

Table 3. Cumulative failure frequencies.

of Table 3 is the sum of the values of Table 2 that ap-
pear in the previous columns of the same row. So, Table
3 can help provide the answers to the questions about the
comparisons between the means of the distributions in Ta-
ble 2. For all values i, P1(i) ≤ P2(i), and for a least
one value i, P1(i) < P2(i). This confirms the obvious re-
sult we already explained above. Likewise, for all values i,
P3(i) ≤ P4(i), and for a least one value i, P3(i) < P4(i),
so E3(m) > E4(m) is meaningful. In much the same way,
E4(m) > E5(m) and E3(m) > E5(m) are meaningful,
but E3(m) > E6(m) is not, because P3(2) > P6(2) and
P3(3) < P6(3). Finally, E7(m) < E8(m) and E6(m) >
E7(m) are meaningful.

As a consequence to Theorem 1, it is possible to show
that, if condition (19) holds, with strict inequality for at least
one i ∈ 2 . . . |V |, and ∀i ∈ 1..|V |, m(i) > 0, then even the
comparison of geometric means is meaningful, i.e.,

∏

i∈1...|V |
(m(i))p(i) >

∏

i∈1...|V |
(m(i))r(i) (20)

for all possible choices of m. To show this, let us take the
logarithm of both sides of (20). We obtain

∑

i∈1...|V |
p(i) log m(i) >

∑

i∈1...|V |
r(i) log m(i) (21)

As the logarithm is a monotonically increasing function of
its argument, m′ = log m is an ordinal measure too. So,
Theorem 1 shows that comparison (21) is meaningful and
so is comparison (20).

For instance, these results may help us gain more con-
fidence in assessing if there is a difference between the
central tendencies of two distributions, e.g., we may be
more confident in our belief that there has been, say, a
decrease in failure criticality from one version of a pro-
gram to another, as the “center” of failure distribution has
decreased. As the examples of Table 2 show, the median
may not be enough to this end: the median of both distri-
butions p3 and p4 is on category #4, but we have proved
that E3(m) > E4(m). However, there is a relationship
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between the comparisons of medians and the comparisons
of means. In general, if Theorem 1 holds, then we also
have medianp ≥ medianr, so the fact that medianp ≥
medianr is a necessary condition for Ep > Er for all pos-
sible ordinal measures. Based on formulae (13) and (14), we
have that

∑
j∈1...medianp−1 p(j) ≤ ∑

j∈1...medianp−1 r(j),
so medianr cannot be greater than medianp.

5. Hierarchical ordinal measures

We generalize the results of Section 4 to the two irregu-
lar scales of Section 2.3, starting from scales built on strict
weak orders (Section 5.1) and then addressing the case of
general hierarchies (Section 5.2). In this section, the weight
w(k) found in a weighted sum for a category k denotes the
difference between the frequencies of category k in two dis-
tributions p and r, i.e., w(k) = p(k)−r(k). Also, m(k) de-
notes the common value that measure m associates with all
entities belonging to k.

5.1. Strict weak orders

We suppose that (E,R) and (V, S) are strict weak or-
ders (Definition 9). Many possible total orders are com-
patible with a strict weak order. For instance, for the
example of Figure 3, (b, a, d, c, e, f, h, g, i, j) is a to-
tal order compatible with the strict weak order, while
(b, a, d, c, f, e, h, g, i, j) is not, because e precedes f in the
strict weak order. Unless otherwise noted, by “total order”
we mean “total order compatible with the strict weak or-
der” in the rest of this section. As an example, rows p and
r of Table 4 contain two frequency distributions for the ex-
ample of Figure 3 (e.g., the frequency of the category with
d according to distribution r is r(d) = 0.1), and row w con-
tains the differences between the corresponding frequen-
cies according to the two distributions. Note that p gives
higher frequency than r only for 2 out of the 10 val-
ues.

If we want E =
∑

k∈K w(k)m(k) > 0 to be meaning-
ful, we need to make sure that Theorem 1 holds on all total
orders. For each total order, we apply Statement 1 by re-
quiring that the condition in formula (18) holds for all cu-
mulative weights and with strict inequality for at least one
cumulative weight. So, we need to identify all possible cu-
mulative weights of all possible total orders.

Take one total order (e.g., (b, a, d, c, e, f, h, g, i, j)) and
consider a cumulative weight that contains weights asso-
ciated with the categories belonging to IND(lev) (e.g.,
lev = 3 in our example, i.e., IND(3) = {f, g, h}), but
not IND(lev + 1), IND(lev + 2), etc. In other words,
consider the cumulative weights for a given subsequence
of categories in the total order that reaches level lev (e.g.,
(b, a, d, c, e, f, h) for level lev = 3) but goes no further.

In this cumulative weight, the weights of all the categories
in PREC(lev) must appear, since all the categories of
PREC(lev) precede all the categories of IND(lev) in ev-
ery total order. So, the sum of the weights of the categories
of PREC(3) is w(a)+w(b)+w(c)+w(d)+w(e), to which
we add 1, 2, or 3 weights from the set w(f), w(g), w(h), de-
pending on the length of the subsequence considered. In the
general case, we add from 1 to |IND(lev)| weights to the
sum of the weights of all the categories in PREC(lev).

We now focus only on the “contribution” to the cumu-
lative weight given by categories belonging to IND(k).
For instance, in the subsequence (b, a, d, c, e, f, h), portion
(f, h) gives the contribution w(f) + w(h) that is added to
the sum of preceding weights w(a)+w(b)+w(c)+w(d)+
w(e). However, we are not really interested in the order
with which the categories appear in the last portion of the
subsequence. Portion (h, f) would give exactly the same
contribution w(f) + w(h). We are interested only in which
subset of categories of IND(lev) appears in the portion.
Since there is no mandatory order between the categories
in IND(lev), all possible nonempty subsets of the sets of
IND(lev) may provide a different contribution. So, there
are 2|IND(lev)| − 1 different contributions for each level,
which are independently added to the sum of the weights of
all the categories in PREC(lev). The algorithm is clearly
exponential in the maximum number of categories for each
single level. In practical cases, the maximum number of cat-
egories at the same level may be not so large as to make the
algorithm unusable.

In general, the following statement holds (the proof is
omitted as it is similar to the proof of Theorem1).

Theorem 2 Let the categories be ordered in a strict weak
order, and let {w(a), w(b), . . .} be a set of real numbers.
We have

∑
k∈K w(k)p(k) > 0 (with |K| > 1) for every

possible total order of categories compatible with the strict
weak order, if and only if, for each level lev, the sum of
the weights of the categories in PREC(lev) is less than
or equal to the sum of the weights of any nonempty sub-
set of the categories in IND(lev), with strict inequality for
at least one nonempty subset of one level. (By convention,
the sum of weights of the categories in PREC(lev) is zero.)

As for our example of Figure 3 and Table 4, it is possible
to show that Ep > Er is meaningful.

5.2. The general case of hierarchies

In Figure 2, we cannot identify levels, i.e., equivalence
classes, since an order relationship cannot be established be-
tween the category whose representative element is s4, on
the one side, and those whose representative elements are
s2 and s3, on the other side, so this is not a strict weak or-
der. We can still use Theorem 1 by applying it to all pos-
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a b c d e f g h i j
p 0.05 0.05 0.1 0.15 0.1 0.15 0.1 0.05 0.2 0.05
r 0.06 0.06 0.13 0.18 0.12 0.07 0.1 0.08 0.15 0.05
w -0.01 -0.01 -0.03 -0.03 -0.02 +0.08 0 -0.03 +0.05 0

Table 4. Strict Weak Order: Frequencies.

sible total orders compatible with the hierarchy, or (equiva-
lently) Theorem 2 on all possible strict weak orders. In the
example, we have two possible strict orders that are not to-
tal orders: (1) one in which we have an indifference class
given by the categories whose representative elements are
s2 and s4, and (2) one in which we have an indifference
class given by the categories whose representative elements
are s3 and s4. Note that the sums of weights for all the lev-
els before and after these indifference classes do not change,
so the sets of weights for the strict weak orders are not dis-
joint. The worst case might seem to be the one in which
there is no order at all among the categories, but we only
need that all the single weights are not positive, with at least
one of them being negative.

6. Conclusions and future work

In this paper, we have investigated the definition and the
use of aggregate indices for two regular scales, i.e., nomi-
nal and ordinal scales, and for two irregular scales, based
on strict weak orders and hierarchies. In particular, we have
characterized the necessary and sufficient condition under
which the mean can be used even with ordinal and the two
irregular scales. When the necessary and sufficient condi-
tion is not satisfied, then comparing two means is not a
meaningful statement.

Future work will address

• the definition of irregular scales for software attributes

• the definition of measures of association for the kinds
of scales investigated in this paper, in addition to the
ones existing for ordinal measures [5].
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