
64	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

Continued on page 66

Metrics Say Quality
Better than Words
Tom Gilb

Traditional software
engineering jumps

too quickly from
high-level quality

statements, such as
“user friendly,” to

design ideas.

Q
uality requirements such as usability,
reliability, security, and adaptability
drive software system costs. Func-
tions and use cases are far less interest-
ing and, in many cases, state only the
functionality that stakeholders already

have—albeit with less quality than they want.
Software engineers and project managers must
quantify quality requirements to manage proj-
ect results, control risks and costs, and priori-
tize tasks intelligently. Otherwise, we risk con-
tinuing our already embarrassing reputation for
software project costs and results.

Traditional software engineering jumps too
quickly from high-level quality statements to
design ideas. To be clear about design, we must
add a step to quantify the quality levels required.
Words are ambiguous and lead to misunder-
standings. Compare “I want a user-friendly sys-
tem” to “I want a system that reduces the num-
ber of accidental errors made by novice users to
fewer than five per 1,000 transactions.” You
can engineer and prove the latter.

I’ve defined 10 principles for quantifying
quantification and a notation system for them:

 1. Stakeholders expect many different system
qualities, but developers must focus on the
most critical top 10, until they achieve these
in practice. And they should start with the
top three.

 2. Decompose complex qualities such as us-
ability, maintainability, and adaptability
into requirement subhierarchies, and select
those that matter most to your project.

 3. Give each quality requirement at least one
defined scale of measure (“Scale”). All qual-
ities vary in a scalar manner, so you can al-
ways quantify qualities along a defined scale
of measure.

 4. State the current benchmark levels—that is,
“Past” performance levels.

 5. Specify one or more target levels for each
quality requirement. I advise my clients
to use “Goal” for a committed target,
“Stretch” for an ambitious target that’s not
essential, and “Wish” for stakeholder inter-
est in the level but with no developer com-
mitment yet to achieving it.

 6. All specified and delivered quality levels can
vary—from worthlessly bad levels, to toler-
able, satisfactory, and beyond-satisfactory
levels. Specify the constraint levels first. For
example, use “Fail” (for pain levels), and
maybe even “Catastrophe” for total system
failures.

 7. Consider future quality level trends, and
set your targets to compete with trend lev-
els. You can use a “Trend” specification to
quantify your best estimate of degrading
quality levels of your systems, or perhaps
to specify improving levels of competitors’
systems.

 8. As quality levels near the state of the art,
costs will likely increase exponentially. I ad-
vise clients to use a “Record” specification
to capture the state-of-the-art level of any
given quality. This knowledge of what is

point

0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 March/April 2008 I E E E S o f t w a r E 	 65

Continued on page 66

Subjective Quality Counts
in Software Development
Alistair Cockburn

Software
development is
about deciding
what to build, and
subjective quality
issues predominate
in this process.

I
keep hunting for evidence that quantified
quality requirements have a demonstrable
ROI for increasing stakeholder value. I’m
just not finding it.

Since the early 1990s, I’ve interviewed
dozens of project teams worldwide. I

started when I was looking for things to in-
clude in IBM’s methodology for object-oriented
projects, but I’ve continued the practice for 15
years now. IBM gave me no restrictions—only
to find out what mattered—and I still use the
same guidelines. I ask each team to tell me the
project’s history, what they liked and didn’t like,
what they would do differently next time, and
their top-priority items to attend to.

Quantified quality requirements are stun-
ningly missing from the results. Not a single
project team said, “If only we’d had quantified
quality requirements, our project would have
turned out differently.” I finally asked a proj-
ect leader the question directly. I was hopeful,
briefly, when he replied, “Yes, we should have
quantified the response time requirement. It was
terrible and made the product unusable.”

Sadly, his answer contains his own rebuttal:
they never needed to quantify response time.
“Terrible” means that it exceeded all reason-
able bounds. Programmers don’t have to be
told “our definition of interactive is 3 seconds.”
They already know what “interactive” means
because they use computers daily.

The presence or absence of the number
“3” didn’t cause this project’s failure. It was
a basic process failure. The system was obvi-
ously interactive, so the group should have run

user tests for being “acceptable” with respect
to response time. I expect that they would
have found “acceptable” to have different val-
ues at different places in the user interface. In
other words, “3 seconds” would have been the
wrong number anyway.

This gets us to the difficult issues with quan-
tified quality requirements.

First, most projects succeed or fail on the
basis of two or three primary factors. Many
researchers have studied and listed these fac-
tors. Lack of a good sponsor, lack of interaction
with real users, lack of a qualified lead designer,
sloppy design and testing habits—all these are
on the list. Quantified quality requirements
hasn’t yet been on any list I’ve seen.

Finding those two or three primary factors
and taking care of them is orders of magnitude
more important than chasing decimal places on
quality requirements.

Second, many quality requirements can’t be
known until users review the system. Outside the
software industry, quality researchers recognize
that “objective quality” (including Philip Cros-
by’s infamous “conformance to requirements”)
becomes important when manufacturing items
in quantity. By that time, the “subjective qual-
ity” issues—those related to “user satisfac-
tion”—have already been investigated and set-
tled. Subjective quality issues predominate when
deciding what to build in the first place.

Software development is all about decid-
ing what to build, or subjective quality. We

counterpoint

66	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

possible might help warn us about too
risky ambitions for our Goal levels.

 9. Specify the conditions under which
each level is required—for example, by
the end of next year, in China, for the
teenage market. Use square brackets to
identify these conditions: Goal [End of
Next Year, China, Teenage Market] 20
percent.

 10. Specify some means of testing and mea-
suring the quality level. Use “Meter”
specification. Consider the cost of car-
rying out the measurement.

Using these principles, we could give the
following example of a “user friendly”
requirement:

User Friendly: “The number of errors a
user accidentally makes.”
Scale of Measure: The average number
per defined [Number of Transactions:
Default = 1,000] of defined [Error Type]
that a defined [User Type] makes when
carrying out a defined [Transaction].
Meter: A combination of system data-
entry statistics and database analysis.
Past [Incorrect Code, Novice, Or-

■

■

■

■

der Entry, March 2007]: 52 <- Audit
Report>.
Goal [Incorrect Code, Novice, Entry,
August 2008]: Fewer than 15 <- CEO.
Goal [Incorrect Code, Novice, Order
Entry, January 2009]: Fewer than 5
<- CEO
Fail [Incorrect Code, Novice, Order
Entry, January 2009]: Fewer than 15
<- CEO
Stretch [Incorrect Code, Expert, Order
Entry, January 2009]: Fewer than 2 <-
Marketing Director

Yes, you could make some headway if
you were simply told “be user friendly,” but
controlling costs and, importantly, control-
ling contract payments will improve with
quantified quality specifications.

Once you’ve clarified and agreed to the
initial quality requirements, you can iden-
tify potential designs to meet these qual-
ity levels. You can use analytical methods
such as “impact estimation” (which quanti-
fies the impacts of different designs on the
quantified requirements) to help you iterate
the requirements, designs, and costs un-
til you find an initial satisfactory solution.

■

■

■

■

Then you can use an “evolutionary” feed-
back project-management methodology
to deliver the solution, in a series of steps,
that let you actively seek quantitative feed-
back from each delivered step, monitor the
real results, and modify requirements and
design solutions—as relevant. Once you’ve
reached a requirement’s target level, don’t
spend any more resources on it. Repriori-
tize your limited resources on the most im-
portant gaps between the current levels and
target quality levels for other requirements.

Today, most software projects don’t even
attempt to quantify their quality require-
ments. If we could adopt only one practice
to help systems engineering, quantifying
quality should be it. But an organization
won’t quantify quality requirements on the
initiative of programmers. It happens only
when management makes it the standard.

Tom Gilb is an international consultant, teacher, and
author. Competitive Engineering (Elsevier, 2005) is his ninth
book. His book Software Metrics (Winthrop Publishing, 1976)
was the inspiration leading to CMMI Level 4. Contact him at
tom@gilb.com; www.gilb.com.

generally don’t know what to require until
we’ve built something and the users com-
ment on what they see. Experienced prod-
uct designers know that users often misre-
port what they will like and then change
their minds after they see the result.

Third, subjective quality requirements
vary across product design elements within
a single system. Developers can tweak the
quality in many ways as they design and
test the system, using the idea that product

design elements fall into three categories
of subjective quality: baseline, linear, and
exciter.

Baseline design elements (such as brakes
on a car) simply must be there. Users be-
come happier as they get more of the linear
elements (examples being cargo space, en-
gine power, gas mileage). They are happy to
see an exciter (a sunroof, perhaps) but not
worried by its absence.

We can often delight users by first re-

ducing the set of baseline items to generate
some play in the budget, and then interact-
ing with the users to discover how to give
them the most linear and exciter items their
budget will allow. We can’t name the opti-
mal set of baseline, linear, and exciter prod-
uct elements in advance, certainly not when
we’re writing the requirements. We discover
it in dialogue as the system grows.

All this makes it less and less meaning-
ful to produce numbers for quality items in-

counterpointcontinued from page 65

point continued from page 64

	 March/April 2008 I E E E S o f t w a r E 	 67

side the requirements document.
Even the Point-Counterpoint topic it-

self, “quantifying quality requirements,” al-
ready contains the hidden implication that
there won’t be much feedback about the
requirements’ quality. Lack of feedback is
one of the known key failure factors. Take

care of feedback from the users while you
develop the system, and the quality charac-
teristics should make themselves known in
good time.

(Note: Noriaki Kano identified the three
subjective quality categories in 1984. I used
Mike Cohn’s simpler words for them. Jeff

Patton taught me how to move baseline
items to the linear category.)

Alistair Cockburn is an internationally renowned
project witchdoctor and IT strategist, several-time winner of
the Jolt & Productivity book awards, co-founder of the agile
development movement, and expert in project management.
Contact him at acockburn@aol.com.

Tom Responds
I agree with Alistair: “Finding those two or three primary

factors, and taking care of them, is orders of magnitude more
important than chasing decimal places on quality require-
ments.” But if any of those critical factors is a quality, then
I suggest we need to agree on their order of magnitude, at
least. That’s critical. Nice words don’t do the job as well as a
number. Using numbers doesn’t mean they must be exact. Us-
ing numbers doesn’t mean they’re static either!

I agree with another point Alistair makes: “Take care of
feedback from the users while you develop the system, and
the quality characteristics should make themselves known
in good time.” That’s why my clients initially use approxi-
mate numbers (“Goal: 20 minutes”), then use feedback from
rough measures on a weekly cycle to adjust their percep-
tions—not only to the reality of stakeholders’ feedback but
also to the technology’s effectiveness, and the costs incurred.
I assume it’s well known that numeric feedback is a pretty
powerful tool—it beats nice words. Of course, we need
to listen to any useful nonnumeric feedback, too. Numeric
doesn’t mean “no words.”

I understand when Alistair observes, “Quantified qual-
ity requirements are stunningly missing from the results.” Of
course they’re missing. Led by nonengineer programmers,
software people (I won’t call them engineers or scientists)
don’t know how to quantify quality. And they couldn’t care
less, as long as they’re well paid for their frequently failed
projects. A project I saw last year had used $100 million
over eight years to fail to achieve any of its eight major ob-
jectives. All were qualitative objectives, such as “increased
robustness,” “better ease of use,” and so on. The project
hadn’t delivered any result to any stakeholder. The system
developers weren’t even made aware of the project’s initial
objectives. But they were having a good time spending mil-
lions, while delivering nothing the managers who funded the
project desired. A fool and his money will soon be parted—
by programmers. Such projects are common, we observe
first hand.

We software people are so immature regarding a “numeric
quality culture” that we don’t even understand that lack of it
might be a major problem.

Alistair Responds
Tom never argued that quantified quality requirements

have a demonstrated ROI for increasing stakeholder value. He
simply made the unsubstantiated assertion, “If there were one
thing we should adopt to help with the engineering of systems,
quantifying quality would be it.”

The one thing? The nearest failure factor I find substantiated
is “unclear requirements.” Even that phrase is misleading. For
example, consider the task of choosing a color (although the
problems come with any topic). You could report each of the
following seven situations as “unclear requirements”:

 1. No usage experts show up. The customer says, “Discuss
requirements? Of course not—that’s why we hired you!”
Nobody knows if the color should be red or blue.

 2. Users don’t know what they want. They speculate the need
for red but decide after they see the results.

 3. Nobody asks, “Why red?” If the users work in dark rooms
and want to protect their dark vision, then “dim red, to pro-
tect their dark vision” would be better than the quantified
“720 nm 100 lumens.”

 4. Business changes. Red was correct last month, but orange
is the color this month.

 5. Developers don’t design for change. They code with in-
line constants. When it changes, they scream that the
change will take too long, and “The requirements experts
should have figured out the correct value at the start!”

 6. Undetected feature creep. Someone slips in the need for a
strip of red on the side. The product is late, and no one can
find out where this requirement came from.

 7. Developers don’t listen. They decide that orange is re-
ally the color needed, no matter what was written.

None of these situations is fixed by expanding “red” into “720
nm 100 lumens.” However, six are helped by improving the
communication-feedback cycle.

To revise Tom’s statement, “If there were one thing we
should adopt to help with the engineering of systems, then im-
proving the communication-feedback cycle would be it.”

Quantifying quality requirements is like fixing the nth deci-
mal place when the first digit is still unknown. It could become
significant at some time, but there are order-of-magnitude
more important things to attend to first.

