

CMMI SM Mini-Assessments

Gary Natwick Harris Corporation Melbourne, Florida

SM - CMMI is a service mark of Carnegie Mellon University

5. Optimizing 4. Quantitatively Managed 3. Defined 2. Managed 1. Initial CMMI Capability Maturity Model[®] Integration Less Rework Continuous Improvement Improved Customer Satisfaction Faster Delivery Reduced Costs Improved Productivity Improved Program Performance for more a formation contact year Engineering Process Group ur e mail them it eporchains ann RRIS

next level solutions

Gary Natwick - 1 13 November 2002

Harris Corporation

next level solutions

Gary Natwick - 2 13 November 2002

Application Domains

Government Communications Systems Division

\$850 M in Sales • 5,400 Employees • ISO 9001 • SEI SW-CMM Level 4

Aerospace & Ground Communication Systems

- Advanced Avionics
- Airborne Communications
- Satellite Antennas
- Satellite Electronics

- C⁴I Systems
- Communications Systems (SATCOM and Terrestrial)
- Intelligence Systems
- Information Warfare and Network/Internet Security
- Commercial Systems and Products

- Computer-Controlled, Highly Distributed Communications and Control Systems to Support Air Traffic Management
- High-Reliability Satellite Communications Systems to Support Air Traffic Management
- GPS Applications for ATM—Automatic Dependent Surveillance

Integrated Information Communication Systems

- Data Handling and Control Systems
- Image Processing
- Meteorological
 Processing Systems
- Range Systems
- Air Traffic Control Systems
- Transportation Communications Systems

CMMI Mini-Assessments 2002 CMMI Technology Conference & User Group

CMMI-SE/SW (Staged Representation)

Maturity Level	Focus	Process Areas	Quality	
5 Optimizing	Continuous Process Improvement	Organizational Innovation and Deployment Causal Analysis and Resolution	d Deployment on	
4 Quantitatively Managed	Quantitative Management	Organizational Process Performance Quantitative Project Management		
3 Defined	Process Standardization	Requirements Development Technical Solution Product Integration Verification Validation Organizational Process Focus Organizational Process Definition Organizational Training Integrated Project Management Risk Management Decision Analysis and Resolution		
2 Managed	Basic Project Management	Requirements Management Project Planning Project Monitoring and Control Supplier Agreement Management Measurement and Analysis Process and Product Quality Assurance Configuration Management	Risk	
1 Initial			Rework	

- Periodic process assessment of projects to measure progress in achieving the organization's engineering process goals:
 - Adherence to CMMI-SE/SW⁽¹⁾ Level 3 and SW-CMM⁽²⁾ Level 4
 - Advancement towards CMMI-SE/SW Level 4
- Rating and evaluation method results provide:
 - Quick & easy way to assess projects engineering process maturity
 - EPG and division management with insight into the success of engineering process institutionalization efforts
- Method is based upon previous mini-assessment methods:
 - SW-CMM progress assessment process used by Motorola^{⁽³⁾}
 - Enhanced with CBA-IPI^(4,5) methods by Harris⁽⁶⁾
 - Updated with SCAMPI^{⁽⁷⁾} methods by Harris
- Not a formal assessment or evaluation!

- Project selection by Management
- Participant preparation led by EPG
 - Program Management, System Engineering, Software Engineering and Quality Assurance
 - PA worksheets completed (scores and artifact notes)
 - Inputs consolidated
- Delphi group meeting conducted by EPG
 - Lowest score if consensus cannot be reached
 - No examination of data
- Results presented to project by EPG
 - CMMI-SE/SW summary
 - PA strengths/weaknesses
- Action Plan developed and tracked by project
- Organizational improvements facilitated by EPG
 - Management involvement

- Scoring matrix is applied to all the PA practices (specific & generic) to ensure the CMMI goals are addressed
- Each PA practice is scored:
 - 5 : Exemplary Best Practice (Outstanding)
 - 4 : Fully Implemented
 - 3 : Largely Implemented (Marginal)
 - 2 : Partially Implemented
 - 1 : Not Implemented (Poor)
- Evidence is noted to include:
 - Direct Artifacts: tangible resulting directly from implementation of a specific or generic practice

(Strong)

(Weak)

 Indirect Artifacts: a consequence of performing a specific or generic practice or that substantiates its implementation

Evaluation Matrix

	Practice		
Score	Characterization	Deployment	
5 Outstanding	Exemplary Best Practice (FI+)	 Above expectations, organizational best practice Zealous leadership and management commitment to ensure consistent deployment World class results sought by others 	
4 Strong	Fully Implemented (FI)	 Process documented, consistently deployed, effective Strong infrastructure and management commitment to reinforce process implementation Appropriate evidence exists to verify implementation (direct and indirect artifacts) 	
3 Marginal	Largely Implemented (LI)	 Process documented, with mostly consistent deployment and positive results Some support provided by infrastructure/management Appropriate evidence exists to verify implementation One or more weaknesses are noted 	
2 Weak	Partially Implemented (PI)	 Some process documentation may exist Inconsistent deployment with spotty results Some evidence exists to substantiate partial deployment Significant weaknesses are noted 	
1 Poor	Not Implemented (NI)	 Documentation, deployment, and infrastructure are poor Little support, commitment, or recognition of the need Limited/no evidence to substantiate implementation 	

CMMI Mini-Assessments 2002 CMMI Technology Conference & User Group next level solutions

Process Area	Goal & Practice	Title	Statement	Typical Work Products / Evidence	Score	Project Artifacts/Notes
Project Monitoring and Control	SG2	Manage Corrective Action to Closure	Corrective actions are managed to closure when the project's performance or results deviate significantly from the plan.			
Project Monitoring and Control	SP2.1	Analyze Issues	Collect and analyze the issues and determine the corrective actions necessary to address the issues.	List of issues needing corrective actions		
Project Monitoring and Control	SP2.2	Take Corrective Action	Take corrective action on identified issues.	Corrective action plan		
Project Monitoring and Control	SP2.3	Manage Corrective Action	Manage corrective actions to closure.	Corrective action results		

next level solutions

Not-Satisfied

- Score < 4 on all goals</p>
- Indicates no organizational institutionalization
- <u>Will NOT pass</u> a formal assessment or evaluation

Red

- Partially-Satisfied
 - Score of 4+ on majority of goals
 - Indicates partial organizational institutionalization
 - May NOT pass a formal assessment or evaluation

- Fully-Satisfied
 - Score 4+ on all goals
 - Indicates organizational institutionalization
 - Will likely pass a formal assessment or evaluation
- Goal Variance is the minimum & maximum for process area

CMMI-SE/SW Summary (example)

CMMI Mini-Assessments 2002 CMMI Technology Conference & User Group next level solutions

Gary Natwick - 13 13 November 2002

Process Area Analysis (example)

PA	Met	Areas of Strength	Areas for Improvement
Requirements Management (REQM)	F	 Requirements managed via System & Software Spec's Requirements DB 	• None
Project Planning (PP)	F	 Plans complete & approved Detailed IMS Risks identified 	None
Project Monitoring and Control (PMC)	F	 Plans used & weekly status review Risks tracked and reported Technical Performance Measures 	 Improve communication with team on approved changes
Supplier Agreement Management (SAM)	F	No subcontracts	Be aware of division policies and procedures for future use
Measurement and Analysis (M&A)	F	Organizational measurement and analysis metrics implemented	None
Process and Product Quality Assurance (PPQA)	F	Quality PlanQA Audits	• None
Configuration Management (CM)	F	CM PlanAudits & Reports	None Quality Record

F = Fully-Satisfied | P = Partially-Satisfied | N = Not-Satisfied | N/A = Not Applicable

Gary Natwick - 14 13 November 2002

CMMI Mini-Assessments 2002 CMMI Technology Conference & User Group next level solutions

- Analyzed all business areas in organization
 - Areas of Strength
 - Areas for Improvement
 - Best Practices
- Organizational improvement
 - Problem analysis
 - Improvement plans
 - Action teams
 - Quarterly reviews with Management
- Independent external appraisals
 - High correlation between SW-CMM Mini-Assessments and SCEs
 - Expect similar correlation with CMMI Mini-Assessments
 - SCE/CMMI aligned with CMMI Mini-Assessments
- Corporate adoption for use across company

- Good feedback of project process strengths and weaknesses
- Team building is a side benefit
- Guidance on practices that appear to be repetitive
- Definition on CMMI vs. organizational terminology
- Complete worksheet in multiple vs. single sessions
- Provide guidance to participants of typical organizational artifacts supporting CMMI practices
- Consensus on generic practices at a Maturity Level vs. PA
- Mini-Assessments foster organizational process improvement

Gary Natwick Harris Corporation P.O. Box 37 Melbourne, Florida 32902-0037

gnatwick@harris.com http://www.harris.com/ 321-729-3970

References

- CMMISM for Systems Engineering/Software Engineering, Version 1.1, Staged Representation, Carnegie Mellon University, CMU/SEI-2002-TR-002, December 2001
- Mark Paulk, Charles V. Weber, Suzanne M. Garcia, Mary Beth Chrissis and Marilyn W. Bush "Capability Maturity Model for Software, Version 1.1", Carnegie Mellon University, CMU/SEI-1993-TR-24, February 1993
- M.K. Daskalantonakis, "Achieving Higher SEI Levels," IEEE Software, July 1994, Vol. 11, No. 4, pages 17-24. Reprinted in CrossTalk, September 1994, Vol. 7, No. 9, pages 12-18
- Donna K. Dunaway and Steve Masters, CMM Appraisal for Internal Process Improvement (CBA IPI) Method Description, Carnegie Mellon University, CMU/SEI-1996-TR-007), 1996
- Donna K. Dunaway, CMM-Based Appraisal for Internal Process Improvement (CBA IPI) Lead Assessor's Guide, CMU/SEI-1996-HB-003, Carnegie Mellon University, 1996
- Gary Natwick, Geoff Draper and Lennis Bearden, "Software Mini-Assessments: Process and Practice", Crosstalk, October 1999, http://stsc.hill.af.mil/crosstalk/1999/oct/natwick.asp
- Standard CMMISM Assessment Method for Process Improvement (SCAMPISM), Version 1.1: Method Definition Document, Carnegie Mellon University, CMU/SEI-2001-HB-001, December 2001

CMMI and SCAMPI are service marks of Carnegie Mellon University. CMM[®] is registered in the U.S. Patent and Trademark Office.