
INF5390 – Kunstig intelligens

Solving Problems by Searching

Roar Fjellheim

Sony Vaio VPC-Z12

INF5390-AI-03 Solving Problems by Searching 2

Outline

 Problem-solving agents

 Example problems

 Search programs

 Uninformed search

 Informed search

 Summary

AIMA Chapter 3: Solving Problems by Searching

INF5390-AI-03 Solving Problems by Searching 3

Problem-solving agents

 Goal-based agents know their goals and the
effect of their actions

 How do such agents determine the sequence
of actions that lead to the goal?

 Problem-solving agents are goal-based agents
that use search to find action sequences

 The agent must formulate the search problem
in terms of goals and actions before solving it

INF5390-AI-03 Solving Problems by Searching 4

Aspects of a search problem

 Initial state
 State of the environment at the outset

 Goal
 A set of desirable states of the environment

 Actions
 Transition between states

 Search
 The process of finding good action sequences

 Solution
 An action sequence that leads to a goal

 Execution
 Carrying out the solution

INF5390-AI-03 Solving Problems by Searching 5

Simple problem-solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq, an action sequence, initially empty; state, some description of the

current world state; goal, a goal, initially null; problem, a problem formulation

state <= UPDATE-STATE(state, percept)

if seq is empty then

 goal <= FORMULATE-GOAL(state)

 problem <= FORMULATE-PROBLEM(state, goal)

 seq <= SEARCH(problem)

 if seq = failure then return a null action

action <= FIRST(seq)

seq <= REST(seq)

return action

INF5390-AI-03 Solving Problems by Searching 6

Implied environment properties

 Fully observable

 Agent has full knowledge

 Deterministic

 No surprises

 Static

 No changes under deliberation

 Discrete

 Discrete alternative actions

Simplest possible

environment type!

INF5390-AI-03 Solving Problems by Searching 7

Formulation of a problem

 Initial state
 Initial state of environment

 Actions
 Set of actions available to agent

 Path
 Sequence of actions leading from one state to another

 Goal test
 Test to check if a state is a goal state

 Path cost
 Function that assigns cost to a path

 Solution
 Path from initial state to a state that satisfies goal test

Defines the

state space

INF5390-AI-03 Solving Problems by Searching 8

Example toy problem: 8-puzzle

 States

 Location of each tile

 Operators

 Blank moves left, right,
up, down

 Goal test

 State matches goal
configuration

 Path cost

 Number of moves

5 4

6 1 8

7 3 2

5 4 6

1

8 7

3 2

Start

state

Goal

state

INF5390-AI-03 Solving Problems by Searching 9

Some real-world problems

 Route finding

 E.g. airline travel planning

 Traveling salesman problem

 E.g. movements of circuit board drills

 Robot navigation

 Route finding in continuous space

 Automatic assembly sequencing

 Synthesizing assembly operation sequences

INF5390-AI-03 Solving Problems by Searching 10

Searching for solutions

 The search starts in an initial state

 Thereafter, it iteratively explores the state space
by selecting a state node and applying operators
to generate successor nodes

 The choice of which node to expand at each
level is determined by the search strategy

 The part of the state space that is explored is
called the search tree

INF5390-AI-03 Solving Problems by Searching 11

Expanding a search tree

1

2

3

4

5

Search tree  State space!

Tree search vs. graph search

 The state space may contain loops (path back
to earlier state) or redundant paths (more
than one path between two states)

 Simple tree expansion will run infinitely or
“explode” in such search spaces

 To avoid the problem, tree search can be
replaced by generalized graph search

 In graph search, the algorithm keeps track
and avoids expanding already visited nodes

 In the lecture, we will only study tree search

INF5390-AI-03 Solving Problems by Searching 12

INF5390-AI-03 Solving Problems by Searching 13

Data structures for search trees

 Datatype node with components:
 STATE - search space state corresponding to the node

 PARENT-NODE - node that generated this node

 ACTION - action that was applied to generate this node

 PATH-COST - cost of path from initial node (called g)

 DEPTH - number of nodes on path from initial node

 Search tree nodes kept in a queue with operators:
 MAKE-QUEUE(Elements) - create queue with given elements

 EMPTY?(Queue) - true if no more elements in queue

 FIRST(Queue) – returns first element of the queue

 REMOVE-FIRST(Queue) - removes and returns first element

 INSERT(Element, Queue) - inserts an element into queue

 INSERT-ALL(Elements, Queue) - inserts set of elements into
queue

INF5390-AI-03 Solving Problems by Searching 14

General tree-search algorithm

function TREE-SEARCH(problem, frontier) returns a solution, or failure

frontier <= INSERT(MAKE-NODE(problem.INITIAL-STATE), frontier)

loop do

 if EMPTY?(frontier) then return failure

 node <= REMOVE-FIRST(frontier)

 if problem.GOAL-TEST applied to node.STATE succeeds

then return SOLUTION(node)

 frontier <= INSERT-ALL(EXPAND(node,problem), frontier)

function EXPAND(node, problem) returns a set of nodes

-frontier is an initially empty queue of a certain type (FIFO, etc.)

-SOLUTION returns sequence of actions back to root

-EXPAND generates all successors of a node

INF5390-AI-03 Solving Problems by Searching 15

Evaluation of search strategies

 Completeness

 Guaranteed to find a solution when there is one?

 Optimality

 Finds the best solution when there are several
different possible solutions?

 Time complexity

 How long does it take to find a solution?

 Space complexity

 How much memory is needed?

INF5390-AI-03 Solving Problems by Searching 16

Uninformed search strategies

 Uninformed

 No information on path cost from current to goal
states

 Six uninformed strategies

 Breadth-first

 Uniform-cost

 Depth-first

 Depth-limited

 Iterative deepening

 Bidirectional

 Differ by order in which nodes are expanded

INF5390-AI-03 Solving Problems by Searching 17

Breadth-first search

 FIFO – First In First Out (add nodes as last)

 Expands all nodes at a certain depth of search
tree before expanding any node at next depth

 Exhaustive method - if there is a solution,
breadth-first will find it (completeness)

 Will find the shortest solution first (optimal)

function BREADTH-FIRST-SEARCH(problem)

 returns a solution or failure

 return TREE-SEARCH(problem, FIFO-QUEUE())

INF5390-AI-03 Solving Problems by Searching 18

Complexity of breadth-first search

 Branching factor (b) - number of successors of
each node (average)

 If solution is found at depth d, then max.
number of nodes expanded is
 1 + b + b2 + b3 + .. + bd

 Exponential complexity (O(bd))
 For b=10, 1000 nodes/sec, 100 bytes/node problem,

time/memory increases from 1ms/100 bytes at
depth 0 to 35 years/10 petabytes at depth 12 (1013
nodes)

 In general, we wish to avoid exponential
search

Uniform-cost search

 Breadth-first is optimal because it always
expands the shallowest unexpanded node

 Uniform-cost search expands the node n with
lowest path cost g(n)

 This is done by storing the frontier as a priority
queue ordered by g

 Uniform-cost search is optimal since it always
expands the node with the lowest cost so far

 Completeness is guaranteed if all path costs>0

INF5390-AI-03 Solving Problems by Searching 19

INF5390-AI-03 Solving Problems by Searching 20

Depth-first search

 LIFO – Last In First Out (add nodes as first)

 Always expands a node at deepest level of the
tree, backtracks if it finds node with no successor

 May never terminate if it goes down an infinite
branch, even if there is a solution (not complete)

 May return an early found solution even if a better
one exists (not optimal)

function DEPTH-FIRST-SEARCH(problem)

 returns a solution or failure

 return TREE-SEARCH(problem, LIFO-QUEUE())

INF5390-AI-03 Solving Problems by Searching 21

Complexity of depth-first search

 Depth-first has very low memory
requirements, only needs to store one path
from the root

 With branching factor b and depth m, space
requirement is only bm.
 For b=10, 100 bytes/node problem, memory

increases from 100 bytes at depth 0 to 12 Kilobytes
at depth 12

 Worst case time complexity is O(bm), but
depth-first may find solution much quicker if
there are many solutions (m may be much
larger than d – the depth of the shallowest
solution)

INF5390-AI-03 Solving Problems by Searching 22

Depth-limited search

 Modifies depth-first search by imposing a
cutoff on the maximum depth of a path

 Avoids risk of non-terminating search down an
infinite path

 Finds a solution if it exists within cutoff limit
(not generally complete)

 Not guaranteed to find shortest solution (not
optimal)

 Time and space complexity as for depth-first

INF5390-AI-03 Solving Problems by Searching 23

Iterative deepening search

 Modifies depth-limited search by iteratively
trying all possible depths as the cutoff limit

 Combines benefits of depth-first and breadth-
first

function ITERATIVE-DEEPENING-SEARCH(problem)

 returns a solution or failure

 for depth <= 0 to  do

 result <= DEPTH-LIMITED-SEARCH(problem, depth)

 if result  cutoff then return result

INF5390-AI-03 Solving Problems by Searching 24

Complexity of iterative deepening search

 May seem wasteful, since many states are
expanded multiple times (for each cutoff limit)

 In exponential search trees most nodes are at
lowest level, so multiple expansions at shallow
depths do not matter much

 Time complexity is O(bd), space complexity
O(bd)

Iterative deepening is the preferred (uninformed)

search strategy when there is a large search space

and the solution depth is unknown

INF5390-AI-03 Solving Problems by Searching 25

Bidirectional search

 Searches simultaneously both forward from initial
state and backward from goal state

 Time complexity reduced from O(bd) to O(bd/2)

 E.g. for b=10, d=6, reduction from 1.1 mill nodes to
2.200

 But …

 Does the node predecessor function exist?

 What if there are many possible goals?

 Must check a new node if it exists in other tree

 Must keep at least one tree, space complexity
O(bd/2)

INF5390-AI-03 Solving Problems by Searching 26

Comparing uninformed search strategies

Criterion Breadth-

first

Uniform-

cost

Depth-

first

Depth-

limited

Iterative

deepening

Bi-

directional

Complete Yes Yes No No Yes Yes

Time bd b1+c/e bm bl bd bd/2

Space bd b1+c/e bm bl bd bd/2

Optimal Yes Yes No No Yes Yes

 b - branching factor m - maximum depth of tree

d - depth of solution l - depth limit

c – cost of solution e – cost of action

INF5390-AI-03 Solving Problems by Searching 27

Informed search methods

 Search can be improved by applying
knowledge to better select which node to
expand (best-first)

 An function to estimate the cost to reach a
solution is called a search heuristic (h)

 Greedy search: Minimizes h(n) - the estimated
cost of the cheapest path from n to the goal

 Greedy search reduces search time compared
to uninformed search, but is neither optimal
nor complete

INF5390-AI-03 Solving Problems by Searching 28

A* search

 A* - most widely known informed search method

 Identical to Uniform-Cost except that it
minimizes f(n) instead of g(n):

 g(n) - the cost of the path so far

 h(n) - the estimated cost of the remaining path to goal

 f(n) = g(n) + h(n)

 Restriction: h must never overestimate the actual
cost – i.e. h is “optimistic” (admissible)

 Properties of A*

 Optimal (and optimally efficient)

 Complete

 Time/space exponential (space most severe problem)

Heuristic functions

 Some admissible h for 8-puzzle

 h1 – number of misplaced tiles

 h2 – sum of distances of tiles from
their goal positions

 Neither overestimate true cost

 Branching factor b of 8-puzzle approx. 3

 Effective branching factor b* using A*
depends on chosen heuristic function h

 h1 – effective b* 1.79-1.48 (depending on d)

 h2 – effective b* 1.79-1.26 (always better than h1)

 Dramatic reduction of search time/space
compared to uninformed search

INF5390-AI-03 Solving Problems by Searching 29

5 4

6 1 8

7 3 2

INF5390-AI-03 Solving Problems by Searching 30

Summary

 An agent can use search when it is not clear
which action to take

 The problem environment is represented by a
state space

 A search problem consists of an initial state, a
set of actions, a goal test, and a path cost

 A path from the initial to the goal state is a
solution

 Search algorithms treat states and actions as
atomic – do not consider internal structure

 General tree search considers all possible paths,
while graph search avoids redundant paths

INF5390-AI-03 Solving Problems by Searching 31

Summary (cont.)

 Properties of search algorithms

 completeness – finds a solution if there is one

 optimality – finds the best solution

 time complexity

 space complexity

 Uninformed search strategies have no
information on cost to reach goal and include

 breadth-first search

 uniform-cost search

 depth-first search

 depth-limited search

 iterative-deepening search

 bidirectional search

Summary (cont.)

 Informed search uses knowledge on remaining
cost to goal (search heuristics) to improve
performance

 A* is a complete and optimal informed search
algorithm that uses search heuristics

 Heuristic function h in A* must be admissible,
and can greatly improve search performance

INF5390-AI-03 Solving Problems by Searching 32

