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What is planning? 

Planning is a type of problem solving  

in which the agent uses  

beliefs about actions and their consequences  

to find a solution plan,  

where a plan is  

a sequence of actions  

that leads  

from an initial state  

to a goal state 



Previously described approaches 

 Planning by search (AI-03) 

 Atomic representations of states 

 Very large number of possible actions 

 Needs good domain heuristics to bound search space 

 Planning by logical reasoning (AI-04) 

 Hybrid agent can use domain-independent heuristics 

 But relies on propositional inference (no variables) 

 Model size rises sharply with problem complexity 

 Neither of these approaches scale directly to 
industrially significant problems 
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Factored plan representation 

 Factored representation of: 
 Initial state 

 Available actions in a state 

 Results of applying actions 

 Goal tests 

 Representation language PDDL 
 Planning Domain Definition Language 

 Developed from early AI planners, e.g. STRIPS, 
pioneering robot work at Stanford in early 1970ies 

 Used for classical planning 
 Environment is observable, deterministic, finite, 

static, and discrete 
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Representation of states and goals 

 States are represented by conjunctions of 
function-free ground literals in first-order logic 

 Example: At(Plane1, Melbourne)  At(Plane2, Sydney) 

 Closed-world assumption: Any condition not 
mentioned in a state is assumed to be false 

 Goal state - a partially specified state, 
satisfied by any state that contains the goal 
conditions 

 Example goal: At(Plane2, Tahiti) 
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Representation of actions 

 An action schema has three components 
 Action description: Name and parameters 

(universally quantified variables) 

 Precondition: Conjunction of positive literals stating 
what must be true before action application 

 Effect: Conjunction of positive or negative literals 
stating how situation changes with operator 
application 

 Example  
 Action(Fly(p, from, to),  

       PRECOND: At(p, from)  Plane(p)   
        Airport(from)  Airport(to), 
      EFFECT:  At(p, from)  At(p, to)) 
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How are planning actions applied? 

 Actions are applicable in states that satisfy its 
preconditions (by binding variables) 

 State: At(P1, JFK)  At(P2, SFO)  Plane(P1)  
Plane(P2)  Airport(JFK)  Airport(SFO) 

 Precondition: At(p, from)  Plane(p)   Airport(from) 
 Airport(to) 

 Binding: {p/P1, from/JFK, to/SFO} 

 State after executing action is same as before, 
except positive effects added (add list) and 
negative deleted (delete list) 

 New state: At(P1, SFO)  At(P2, SFO)  Plane(P1)  
Plane(P2)  Airport(JFK)  Airport(SFO) 
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Planning solution 

 The planned actions that will take the agent 
from the initial state to the goal state 

 Simple version:  

 An action sequence, such that when executed from 
the initial state, results in a final state that satisfies 
the goal 

 More complex cases: 

 Partially ordered set of actions, such that every 
action sequence that respects the partial order is a 
solution 
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Example - Air cargo planning in PDDL 

 Init(At(C1, SFO)  At(C2, JFK)  At(P1, SFO)  At(P2, JFK)  

Cargo(C1)  Cargo(C2)  Plane(P1)  Plane(P2)  Airport(JFK)  

Airport(SFO)) 

 Goal(At(C1, JFK)  At(C2, SFO)) 

 Action(Load(c, p, a),  
  PRECOND: At(c, a)  At(p, a)  Cargo(c)  Plane(p)  Airport(a),  
  EFFECT:  At(c, a)  In(c, p)) 

 Action(Unload(c, p, a),  
  PRECOND: In(c, p)  At(p, a)  Cargo(c)  Plane(p)  Airport(a),  
  EFFECT: At(c, a)   In(c, p)) 

 Action(Fly(p, from, to),  
  PRECOND: At(p, from)  Plane(p)  Airport(from)  Airport(to), 
  EFFECT:  At(p, from)  At(p, to)) 
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Example – Air cargo solution 

 From initial state 

 Init(At(C1, SFO)  At(C2, JFK)  At(P1, SFO)  

At(P2, JFK)  Cargo(C1)  Cargo(C2)  Plane(P1)  

Plane(P2)  Airport(JFK)  Airport(SFO)) 

 To goal state: 

 Goal(At(C1, JFK)  At(C2, SFO)) 

 Solution – a sequence of actions: 

 [Load(C1, P1, SFO), Fly(P1, SFO, JFK),  
 Unload(C1, P1, JFK), Load(C2, P2, JFK),  
 Fly(P2, JFK, SFO), Unload(C2, P2, SFO)] 

 

 How can the planner generate the plan? 



Current popular planning approaches 

 Forward state-space search with strong heuristics 

 Planning graphs and GRAPHPLAN algorithm 

 Partial order planning in plan space 

 Planning as Boolean satisfiability (SAT) 

 Planning as first-order deduction   

 Planning as constraint-satisfaction 

 

 We will consider the three first ones 
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Forward and backward state search 
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Forward state-space search 

 Progression planning: 

 Start in initial state 

 Apply actions whose preconditions are satisfied 

 Generate successor states by adding/deleting literals 

 Check if successor state satisfies goal test 

 Can be highly inefficient 

 All actions are applied, even when irrelevant 

 Large branching factor (many possible actions) 

 Heuristics to guide search are required! 
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Backward state-space search 

 Regression planning: 

 Start in goal state 

 Apply actions that are relevant and consistent 

• Relevant: The action can lead to the goal (adds goal 
literal) 

• Consistent: The action does not undo (delete) a goal 
literal 

 Create predecessor states 

 Continue until initial state is satisfied 

 More efficient, but still requires heuristics 

 State-space searches can only produce linear plans 



Heuristics for planning 

 Neither forward nor backward search is efficient 
without a good heuristic, which has to be 
admissible (i.e. optimistic) 

 Possible heuristics include: 

 Adding more edges to the search graph, thereby 
making it easier to find a solution path, e.g. ignore pre-
conditions or ignore delete lists 

 Create state abstractions, many-to-one mapping from 
ground states to abstract ones, solve problem in the 
abstract space, and map down to ground again 

 Heuristics generate estimates h(s) for remaining 
cost of a state that can be used by e.g. A* 
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Planning graphs 

 A planning graph is a special data structure that 
can be used as a heuristic in search algorithms 
or directly in an algorithm that generates a 
solution plan 

 Directed graph organized into one level for each 
time step of plan, where a level contains all 
literals that may be true at that step. Literals 
may be mutually exclusive (mutex links)  

 Works only for propositional planning problems 
(no variables), but action schemas with 
variables may be converted to this form  



Example planning problem 

 Goal: “Have cake and eat cake too”  

 

 Init(Have(Cake)) 

 Goal(Have(Cake)  Eaten(Cake))  

 Action(Eat(Cake)  
 PRECOND: Have(Cake)  
 EFFECT:  Have(Cake)  Eaten(Cake)) 

 Action(Bake(Cake) 
 PRECOND:  Have(Cake)  
 EFFECT: Have(Cake)) 
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Planning graph for the example 

 Alternating state and action layers 

 Real and «persistence» actions (small rectangles) 

 Mutex links (grey arcs) btw. incompatible states  

 Graph levels off at S2 (states repeat themselves) 
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Mutex links (mutual exclusion) 

 Between two actions: 

 Inconsistent effects – one action negates an effect of 
the other (e.g. Eat(Cake) and persistent Have(Cake)) 

 Interference – an effect of one action negates  a pre-
condition of the other (e.g. Eat(Cake) and Have(Cake)) 

 Competing needs – a pre-condition of one action 
negates a pre-condition of the other (e.g. Eat(Cake) 
and Bake(Cake)) 

 Between two states (literals): 

 One literal is the negation of the other 

 Each possible pair of actions that could achieve the two 
literals is mutually exclusive 
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The GRAPHPLAN algorithm 

 Uses a planning graph to extract a solution to 
a planning problem 

 Repeatedly 

 Extend planning graph by one level 

 If all goal literals are included non-mutex in level 

• Try to extract solution that does not violate any 
mutex links, by following links backward in graph 

• Return solution if successful extraction 

 If the graph has leveled off then report failure 

 Creating planning graph is only of polynomial 
complexity, but plan extraction is exponential 



Extracting a solution 

 The goal is Have(Cake)  Eaten(Cake) 

 Both goal literals non-mutex in S2 

 Bake(Cake) and Eaten(Cake) non-mutex in A1 

  Have(Cake) and Eaten(Cake) non-mutex in S1 

 Eat(Cake) non-mutex in A0 

 Have(Cake) in S0 is initial state 
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Partial order planning in plan space 

 Each node in the search space corresponds to a 
(partial) plan 

 Search starts with empty plan that is expanded 
progressively until complete plan is found 

 Search operators work in plan space, e.g. add 
step, add ordering, etc. 

 The solution is the final plan, the path to it is 
irrelevant 

 Can create partially ordered plans 
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Example - Partial and total order plans 

Start 

Left 
Sock 

Finish 

Right 
Sock 

Left 
Shoe 

Right 
Shoe 

LeftSockOn RightSockOn 

LeftShoeOn  RightShoeOn 

Ordering 

Start 

Right 
Sock 

Left 
Sock 

Right 
Shoe 

Left 
Shoe 

Finish 

Start 

Left 
Sock 

Left 
Shoe 

Right 
Sock 

Right 
Shoe 

Finish 

In all six 
different 

total order 
plans, or 

linearizations 
of the  

partial plan 
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Partial-order plan representation 

 A set of steps, where each step is an action (taken 
from action set of planning problem) 

 Initial empty plan contains just Start (no precondition, 
initial state as effect) and Finish (goal as precondition, 
no effects) 

 A set of step ordering constraints of the form  
A < B (“A before B”): A must be executed before B 

 A set of causal links A           B, “A achieves c for B”: 
the purpose of A is to achieve precondition c for B; no 
action is allowed between A and B that negates c 

 Set of open preconditions, not achieved by any action 
yet. The planner must reduce this set to empty set 

c
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Protected causal links 

 Causal links in a partial plan are protected by 
ensuring that threats (steps that might delete the 
protected condition) are ordered to come before or 
after the protected link 

A 

B 

c 

C 

c 

A 

B 

c 

C 

c 

A 

B 

c 

C 

c 

C threatens  
A            B 

C ordered to 
come before A 

C ordered to 
come after B 

c
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POP – Partial Order Planning 

 Start with initial plan  
 Contains Start and Finish steps  

 All preconditions of Finish (goals) as open preconditions  

 The ordering constraint Start < Finish, no causal links 

 Repeatedly 
 Pick arbitrarily one open precondition c on an action B  

 Generate a successor plan for every consistent way of 
choosing an action A that achieves c 

 Stop when a solution has been found, i.e. when there 
are no open preconditions for any action 

 Successful solution plan 
 Complete and consistent plan the agent can execute 

 May be partial, agent may choose arbitrary linearization 
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Example – Change tire 

 Init(At(Flat, Axle)  At(Spare, Trunk)) 

 Goal(At(Spare, Axle)) 

 Action(Remove(Spare, Trunk), 
 PRECOND: At(Spare, Trunk), 
 EFFECT: At(Spare, Trunk)  At(Spare, Ground)) 

 Action(Remove(Flat, Axle), 
 PRECOND: At(Flat, Axle), 
 EFFECT: At(Flat, Axle)  At(Flat, Ground)) 

 Action(PutOn(Spare, Axle), 
 PRECOND: At(Spare, Ground)  At(Flat, Axle), 
 EFFECT: At(Spare, Ground)  At(Spare, Axle)) 

Uses ADL language, extends STRIPS 
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Tire (1) - Initial plan 

 For each planning 
iteration, one step will 
be added. If this leads 
to an inconsistent state, 
the planner will 
backtrack 

 The planner will only 
consider steps that 
serve to achieve a 
precondition that has 
not yet been achieved 

Start 

Finish 

     At(Spare, Axle) 

         At(Spare, Trunk)  At(Flat Axle) 
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Tire (2) - Achieving open preconditions 

 Start by selecting PutOn action that achieves Finish 

 Select At(Spare, Ground) precondition of PutOn, and 
choose Remove(Spare, Trunk) action 

 The planner will protect the causal links by not 
inserting new steps that violate achievements 

Causal link 
(+Ordering) 
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Tire (3) – Finishing the plan 

 Planner selects to achieve At(Flat, Axle) 
precondition of PutOn by Remove(Flat, Axle) 

 Final two preconditions are satisfied by Start 
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Summary 

 Planning agents produce plans - sequences of 
actions - that contribute to reaching goals 

 Planning systems operate on explicit 
representation of states, actions, goals, and 
plans  

 PDDL (Planning Domain Definition Language) 
describes action schemas in terms of 
precondition and effects 

 State-space planning operates on situations, 
searches in forward or backward direction, and 
produces fully ordered plans 
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Summary (cont.) 

 A planning graph is a data structure that can 
constructed efficiently and be used to extract 
solution plans (GRAPHPLAN algorithm) 

 Plan-space planning (POP algorithm) operates 
on plans, starting with a minimal plan and 
extending it until a solution is found, and can 
create partially ordered plans 

 Planning is a very active AI field, where 
techniques are evolving rapidly, and no 
consensus on best approach exists yet 


