INF5390 - Artificial Intelligence

AI - Introduction and Overview

Roar Fjellheim

INF5390 – Artificial Intelligence (AI)

Purpose of the course

- ✓ Present «state-of-the-art» of AI with *Intelligent Agents* as a common conceptual model
- ✓ Provide sufficient background for students so that they may pursue own reading of AI literature and initiate own AI projects

The first lecture

- High-level view of history and state of AI
- ▼ Prepare for the rest of the course

Text book

- Artificial Intelligence A Modern Approach (AIMA), Third edition
 - √ Stuart Russel, Peter Norvig
 - ✓ Prentice Hall, 2010
 - √ "The Intelligent Agent Book"
- Lectures will mainly be based on textbook contents
- Exercises will be given based on textbook material

Course contents

- 1. AI Introduction and Overview
- 2. Intelligent Agents
- 3. Solving Problems by Searching
- 4. Logical Agents
- 5. First-Order Logic
- 6. Knowledge Engineering in FOL
- 7. Knowledge Representation
- 8. Agents That Plan
- 9. Planning and Acting
- 10. Agents That Reason Under Uncertainty
- 11. Making Simple Decisions
- 12. Agents That Learn
- 13. Reinforcement Learning
- 14. Agents That Communicate
- 15. Foundations and Prospects

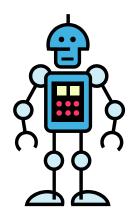
Course format

- Lectures at UiO/IfI see lecture plan
- Lecture notes published at the course site (pdf)
 - http://www.uio.no/studier/emner/matnat/ifi/INF5390/
- Two written exercises to be delivered during the semester
- Written 4-hour examination
- Lecturer
 - √ Roar Fjellheim, Adjunct professor (Prof. II)
 - √ Computas AS
 - √ E-mail <u>raf@computas.no</u>
 - √ Tel. 901 25 705

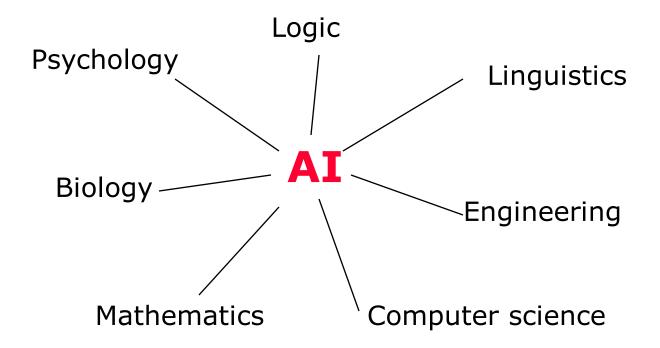
What is AI?

- Cross-disciplinary profession with dual goals:
 - √ Improve our understanding of human intelligence
 - Enable us to build intelligent systems
- Common methodology:
 - Construct computational models of intelligence

Systems thinking like humans	Systems thinking rationally	
Systems acting like humans	Systems acting rationally	



AI – Eclectic and cross disciplinary



Brief history of AI

- AI (Artificial Intelligence) formed (1945 1960)
 - √ Early connectionism
 - √ Dartmouth workshop (1956) John McCarthy
- Enthusiasm, great expectations (1960 1970)
 - √ GPS General Problem Solver A. Newell and H. Simon
 - √ Lisp
- Realism takes hold (1965 1975)
 - Combinatorial explosion
 - Natural language systems fail

Brief history (cont.)

- Knowledge based systems (1970 1980)
 - √ "Knowledge is power"
 - √ Expert systems Edward Feigenbaum
- AI is industrialized (1980 1990)
 - Startup companies
 - √ AI products
- New connectionism (1985)
 - √ Neural networks for learning
 - √ Symbol processing vs. connectionism

Brief history (cont.)

- AI becomes a science (1985)
 - √ From ad hoc to structured
 - √ Scientific methods and "accumulation"
- Intelligent agents (1990)
 - √ Distributed AI and Internet/Web
 - Common frameworks/conceptualizations
- AI applications "second wave" (1995)
 - √ Embedded applications and integration
 - √ "Invisible AI"?
- AI on the Web (2005)
 - √ Semantic web Tim Berners-Lee
 - AI for intelligent search

AI today – Myth or reality?

"Today's AI does not try to re-create the brain. Instead, it uses machine learning, massive data sets, sophisticated sensors and clever algorithms to master discrete tasks."

Wired, Jan. 2011

Watson won!

Watson wins 'Jeopardy!' finale

February 16, 2011 "Jeopardy!" has a

new champion, and its name is Watson. During the Wednesday finale of the three-day "Jeopardy!" challenge that pitted all-stars Ken Jennings and Brad Rutter against an IBM-engineered supercomputer, the machine ultimately beat the men.

Watson design principles

Massive parallelism

 Exploit massive parallelism in the consideration of multiple interpretations and hypotheses.

Many experts

Facilitate the integration, application, and contextual evaluation of a wide range of loosely coupled probabilistic question and content analytics.

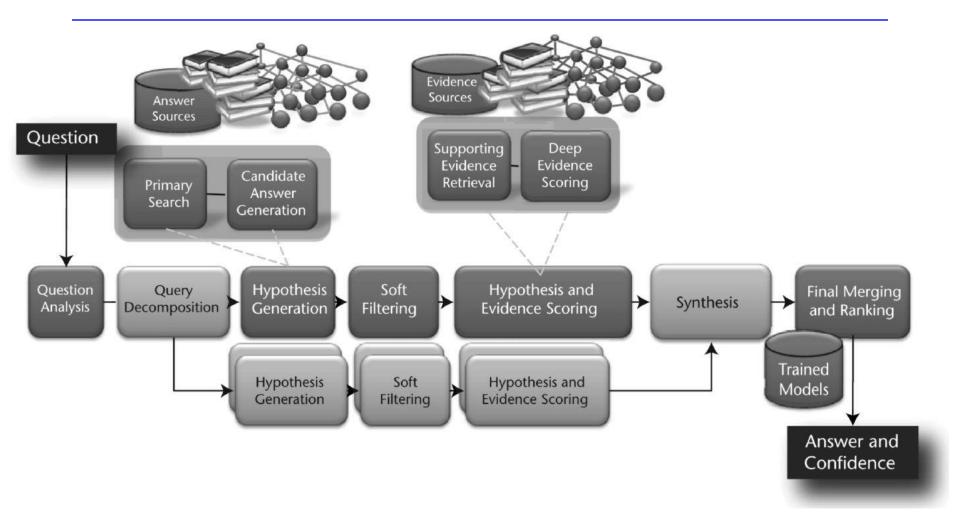
Pervasive confidence estimation

No component commits to an answer; all components produce features and associated confidences, scoring different question and content interpretations. An underlying confidence-processing substrate learns how to stack and combine the scores.

Integrate shallow and deep knowledge

Balance the use of strict semantics and shallow semantics, leveraging many loosely formed ontologies.

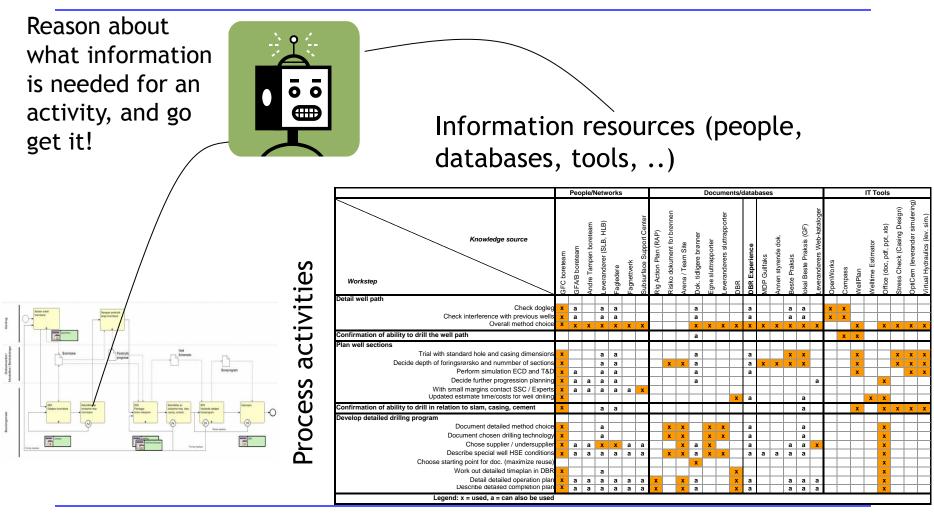
Watson high-level architecture



Other examples of real world AI

- Warehouses with mobile robots that store and fetch items upon request
- Agents following stock exchange trends, outperforming humans in selling and buying
- Automated scanning and interpretation of X-ray images in medicine
- Image matching and recognition in mobile
 Internet search (Google Goggles)
- Neural networks for fraud detection in banking transactions
- Autonomous cars navigating and driving unassisted in normal urban traffic (still in trial mode ...)

AI in oil drilling – AKSIO (Statoil/Computas)



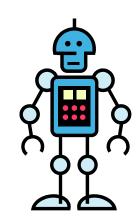
"Clever AI algorithms" – An inventory

- Intelligent agents
- Search algorithms
- Constraint satisfaction
- Logic and reasoning
- Knowledge representation
- Planning systems

- Uncertain information
- Making decisions
- Machine learning
- Neural networks
- Genetic algorithms
- Semantic web

Agents, rationality and AI

- An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators
- A rational agent is an agent that for each situation selects the action that maximizes its performance based on its perception and built-in knowledge
- The task of AI is to build problem solving computer programs as rational agents

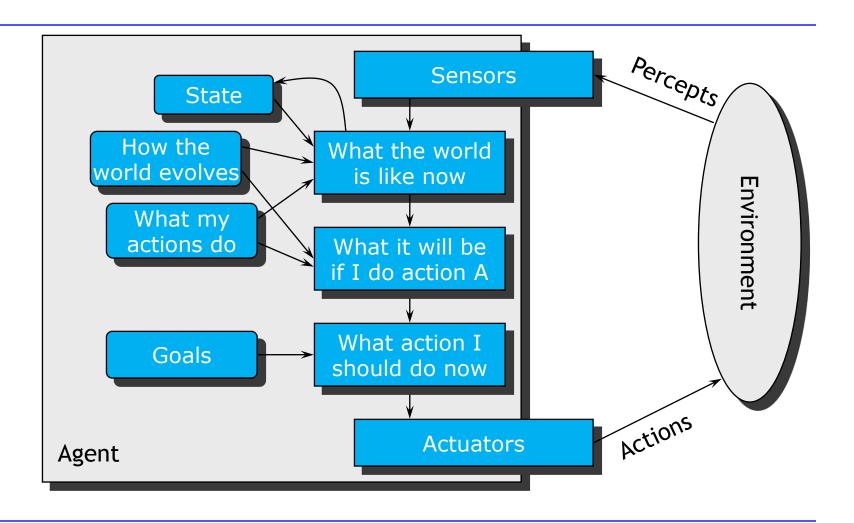


Agent categories

- Table driven agent
- Simple reflex agent
- Model-based reflex agent
- Goal-based agent
- Utility-based agent
- Learning agents



Example: Goal-based agent



Solving problems by searching

- The search starts in an initial state
- Then, it iteratively explores the state space by selecting a state node and applying operators to generate successor nodes until it finds the goal state node or has to give up
- The choice of which node to expand at each level is determined by the search strategy
- The part of the state space that is explored is called t he search tree

Comparing uninformed search strategies

Criterion	Breadth- first	Uniform- cost	Depth- first	Depth- limited	Iterative deepening	Bi- directional
Complete	Yes	Yes	No	No	Yes	Yes
Time	b^d	$b^{1+c/e}$	b^m	b^l	b^d	$b^{d/2}$
Space	b^d	$b^{1+c/e}$	bm	bl	bd	$b^{d/2}$
Optimal	Yes	Yes	No	No	Yes	Yes

b - branching factor m - maximum depth of tree

d - depth of solution 1 - depth limit

c - cost of solution e - cost of action

Constraint satisfaction problem

- A constraint satisfaction problem (CSP) is a search problem defined by
 - √ Variables define search states
 - √ Constraints included in the goal test
- Example: 8 queen problem
 - Variables location of each queen on the board
 - √ Constraints no queen in same row, column or diagonal
- Many design and scheduling problems can be formulated as CSP

CSP search strategies

- CSP can be solved by general search methods, but special algorithms are more efficient
- General flow in CSP search
 - Assign variable values from their domains
 - √ Backtrack if a constraint is violated by the assignment
 - Propagate constraints reducing variable domains
 - √ Backtrack if any domain becomes empty
- Efficient CSP search algorithms are required for many important AI applications and are available as commercial packages

Logic for representation and reasoning

- First-order logic is based on "common sense" concepts: √ Objects: people, houses, numbers, ...
 - √ Properties: tall, red, ...
 - √ Relations: brother, bigger than, ...
 - √ Functions: father of, roof of, ...
 - √ Variables: x, y, .. (takes objects as values)

```
\forall m, c \; Mother(c) = m \Leftrightarrow Female(m) \land Parent(m, c)

\forall w, h \; Husband(h, w) \Leftrightarrow Male(h) \land Spouse(h, w)

\forall g, c \; Grandparent(g, c) \Leftrightarrow \exists p \; Parent(g, p) \land Parent(p, c)

\forall x, y \; Sibling(x, y) \Leftrightarrow x \neq y \land \exists p \; Parent(p, x) \land Parent(p, y)
```

 First-order logic is the most important and best understood logic in philosophy, mathematics, and AI

Commitments of some logic languages

Language	Ontological Commitment	Epistemological Commitment	
Propositional logic	Facts	True/false/unknown	
First-order logic	Facts, objects, relations	True/false/unknown	
Temporal logic	Facts, objects, relations, times	True/false/unknown	
Probability theory	Facts	Degree of belief 0 1	
Fuzzy logic	Facts w/degree of truth	Known interval value	

Inference rules and chaining

 An inference rule is a standard pattern of inference that can be applied to drive chains of conclusions leading to goal

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

- Forward chaining
 - √ Start with sentences in KB and generate consequences
 - Uses inference rules in forward direction
 - √ Also called data-driven procedure
- Backward chaining
 - √ Start with goal to be proven and look for premises
 - √ Uses inference rules in backward direction.
 - √ Also called goal-directed procedure

Agents and knowledge bases

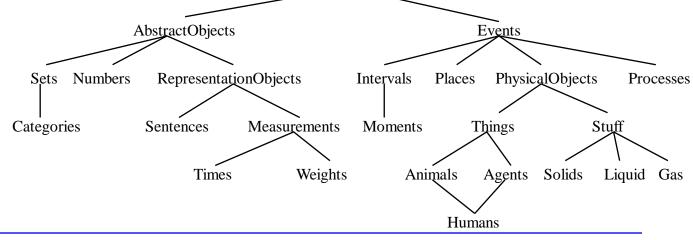
- A knowledge base is a set of representations of facts about the world, called sentences, expressed in a knowledge representation language
- Knowledge base (KB) interface
 - TELL(KB, fact) Add a new fact
 - fact <= ASK(KB, query) Retrieves a fact
 - RETRACT(KB, fact) Removes a fact
- A knowledge-base agent can be built by TELLing it what it needs to know (declarative approach)
- The agent can be used to solve problems by ASKing questions

Knowledge engineering

- Knowledge engineering is the process of building a knowledge base for a domain
 - Investigate the domain
 - Determine important concepts
 - √ Create formal representation
 - √ Populate knowledge base
- Carried out by knowledge engineers doing knowledge acquisition, e.g. interviewing domain experts
- The declarative (knowledge-based) approach has advantages over programming: can concentrate on stating what is true instead of worrying about how problems are solved (generic problem solvers)

Ontologies

- An ontology is a vocabulary and a "theory" of a certain part of reality
- Special-purpose ontologies apply to restricted domains (e.g. electronics, drilling equipment, ..)
- General-purpose ontologies have wider applicability across domains



Planning as problem solving

Planning is a type of problem solving in which the agent uses beliefs about actions and their consequences

to find a solution plan, where a plan is a sequence of actions that leads from an initial state to a goal state

Representing planning problems – PDDL

- Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO))
- Goal(At(C1, JFK) ∧ At(C2, SFO))
- Action(Load(c, p, a), PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a), EFFECT: ¬At(c, a) ∧ In(c, p))
- Action(Unload(c, p, a), PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a), EFFECT: At(c, a) ∧ ¬ In(c, p))
- Action(Fly(p, from, to), PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to), EFFECT: ¬At(p, from) ∧ At(p, to))

Current planning approaches

- Forward state-space search with strong heuristics
- Planning graphs and GRAPHPLAN algorithm
- Partial order planning in plan space
- Planning as Boolean satisfiability (SAT)
- Planning as first-order deduction
- Planning as constraint-satisfaction

Planning in the real world

- Nondeterministic worlds
 - √ Bounded nondeterminism: Effects can be enumerated, but agent cannot know in advance which one will occur
 - Unbounded nondeterminism: The set of possible effects is unbounded or too large to enumerate
- Planning for bounded nondeterminism
 - Sensorless planning
 - √ Contingent planning
- Planning for unbounded nondeterminism
 - Online replanning
 - Continuous planning

Probability, utility and decisions

- The agent can use probability theory to reason about uncertainty
- The agent can use utility theory for rational selection of actions based on preferences
- Decision theory is a general theory for combining probability with rational decisions

Decision theory = Probability theory + Utility theory

Other approaches to uncertainty

- Default reasoning
- Rule-based methods
- Dempster-Shafer theory
- Fuzzy sets and fuzzy logic

Bayes' rule

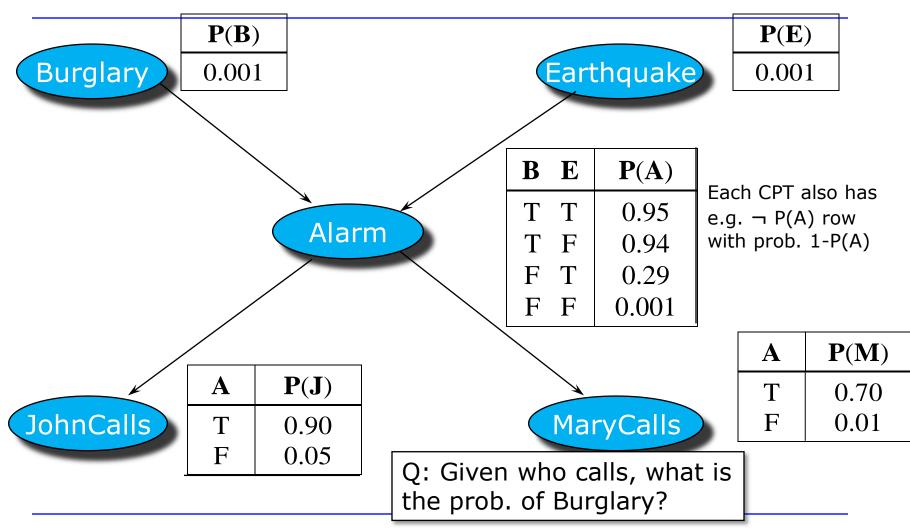
• Bayes' rule:
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- Underlies modern AI systems for probabilistic inference
- Main application: How to use prior and causal knowledge (cause ⇒ effect) to derive diagnosis (effect ⇒ cause)

$$P(cause \mid effect) = \frac{P(effect \mid cause)P(cause)}{P(effect)}$$

 Use of causal knowledge is crucial in making probabilistic reasoning sufficiently robust in applications

Example Bayesian network



Other uses of Bayesian networks

- Make decisions based on probabilities in the network and agent utilities (MEU)
- Decide which additional evidence variables should be observed in order to gain useful information
- Perform sensitivity analysis to understand which aspects of model have greatest impact on probabilities of query variables
- Explain results of probabilistic inference to users

Maximum Expected Utility (MEU)

- Let
 - $\lor U(s)$ Utility of state s
 - √ RESULT(a) Random variable whose values are possible outcome states of action a in current state
- Then the expected utility EU of a, given e is

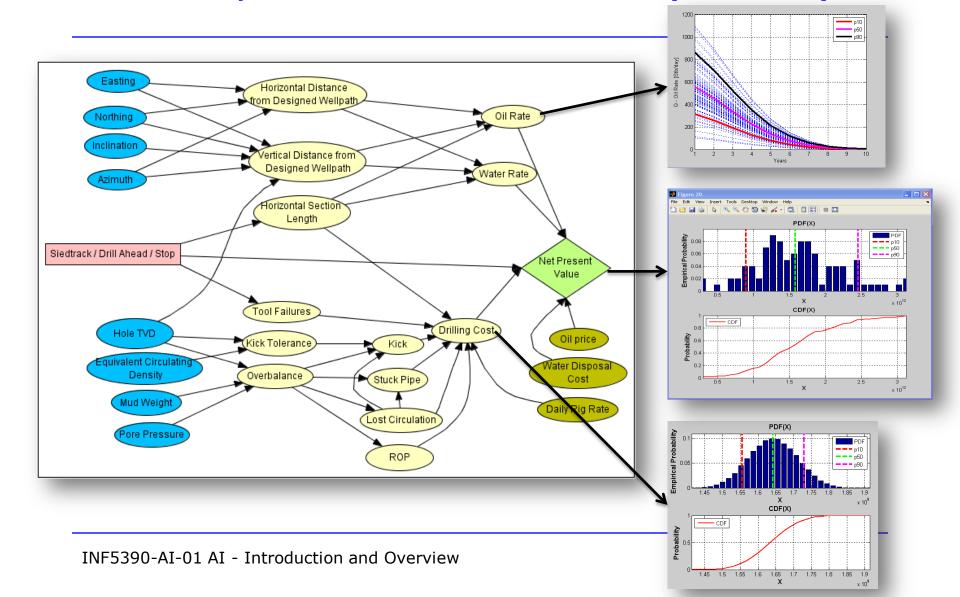
$$EU(a \mid e) = \sum_{s'} P(RESULT(a) = s' \mid a, e)U(s')$$

MEU: Agent should select a that maximizes EU

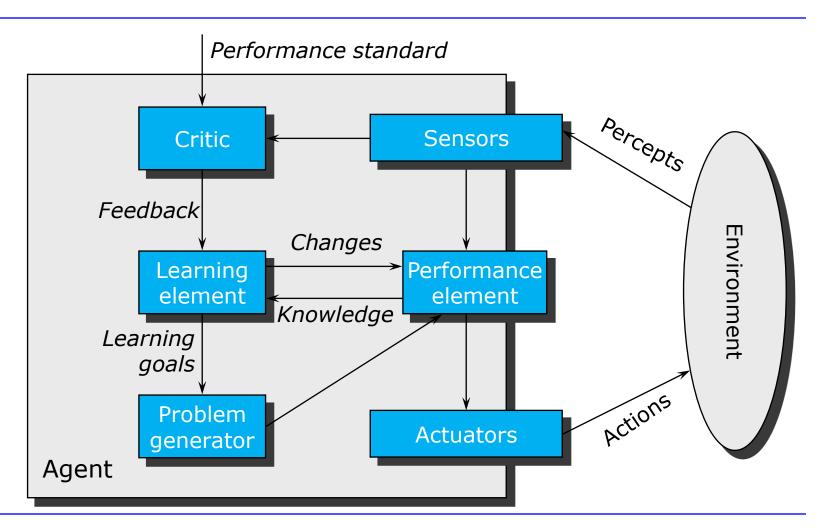
Decision networks

- Decision networks (also called influence diagrams) are a general mechanism for making rational decisions
- Decision networks combine belief networks with nodes for actions and utilities, and can represent
 - √ Information about agent's current state
 - Agent's possible actions
 - √ States that will follow from actions
 - √ Utilities of these states
- Therefore, decision networks provide a substrate for implementing rational, utility-based agents

Example decision network (CODIO)



Learning agents



What can be learned?

- Possible components that can be improved
 - Direct mapping from states to actions
 - Infer world properties from percept sequences
 - Information about how the world evolves
 - Information about the results of possible actions
 - ↓ Utility information about the desirability of world states
 - Desirability of specific actions in specific states
 - Goals describing states that maximize utility
- In each case, learning can be sees as learning an unknown function y = f(x)

Types of learning - Knowledge

Inductive learning

- \checkmark Given a collection of examples (x, f(x))
- √ Return a function h that approximates f
- Does not rely on prior knowledge ("just data")
- Deductive (or analytical) learning
 - √ Going from known general f to a new f' that is logically entailed
 - √ Based on prior knowledge ("data+knowledge")
 - Resembles more human learning

Types of learning - Feedback

- Unsupervised learning
 - ✓ Agent learns patterns in data even though no feedback is given, e.g. via clustering
- Reinforcement learning
 - Agent gets reward or punishment at the end, but is not told which particular action led to the result
- Supervised learning
 - Agent receives learning examples and is explicitly told what the correct answer is for each case
- Mixed modes, e.g. semi-supervised learning
 - Correct answers for some but not all examples

Learning decision trees

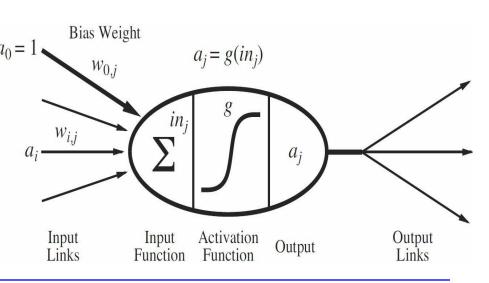
- A decision situation can be described by
 - A number of attributes, each with a set of possible values
 - A decision which may be Boolean (yes/no) or multivalued
- A decision tree is a tree structure where
 - √ Each internal node represents a test of the value of an attribute, with one branch for each possible attribute value
 - Each leaf node represents the value of the decision if that node is reached
- Decision tree learning is one of simplest and most successful forms of machine learning
- An example of inductive and supervised learning

Other knowledge-based learning methods

- EBL Explanation-based learning
 - Extracts general rules from single examples accompanied by an explanation
- RBL Relevance-based learning
 - √ Uses prior knowledge to identify relevant attributes thereby reducing hypothesis space
- KBIL Knowledge-based inductive learning
 - Uses prior knowledge to find inductive hypotheses that explain sets of observations
- ILP Inductive logic programming
 - Performs KBIL on knowledge expressed in first-order logic, and can learn relational knowledge

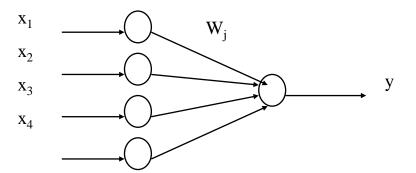
Neural networks

- The network consists of units (nodes, "neurons") connected by links
 - \checkmark Carries an activation a_i from unit i to unit j
 - ✓ The link from unit i to unit j has a weight $W_{i,j}$
 - ✓ Bias weight $W_{0,j}$ to fixed input $a_0 = 1$
- Activation of a unit j
 - ✓ Calculate input $in_j = \sum W_{i,j} a_i$ (i=0...n)
 - ✓ Derive output a_j = g(in_j) where g is the activation function



Learning in neural networks

How to train the network to do a certain function (e.g. classification) based on a training set of input/output pairs?



- Basic idea
 - Adjust network link weights to minimize some measure of the error on the training set
 - Adjust weights in direction that minimizes error

Genetic algorithms (GA)

 Genetic algorithms is a search method that "evolves" a solution by a process of natural selection in a population of solutions, inspired by natural evolution

Properties of GA

- GA are easy to program and apply, but optimal results are not guaranteed
- GA search is parallel, since each individual is a search by itself
- The search is hill climbing, since small genetic changes are used to explore space
- The search avoids local maxima by using "mutation" jumps
- It can be shown that GA allocates search resources in an optimal way (under certain assumptions)

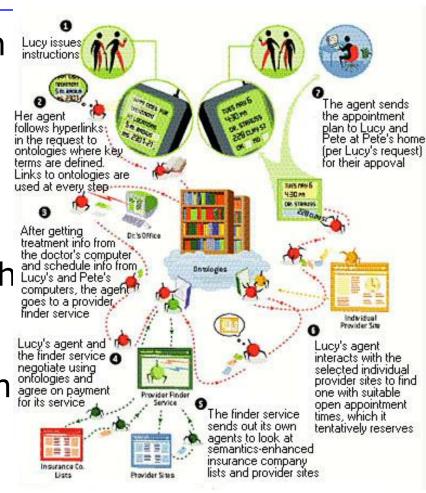
Semantic Web – AI for the Internet?

- The classical Web lacks semantics and requires human users to interpret content
- The Semantic Web adds metadata to Web contents and is machine processable
- The technological basis for the Semantic web are metadata, ontologies, logic, and agents
- Implementation of the Semantic web follows a layered set of representation languages

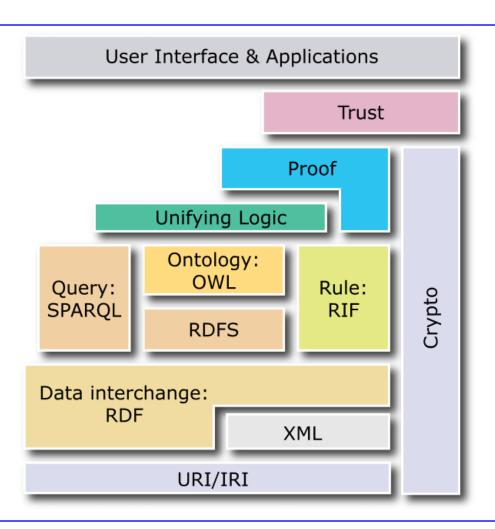
Semantic Web - Original vision

- Agents collect information from Web-pages
- Use semantics to disambiguate data
- Process information using logical inference
- Exchange information with and schedule info from Lucy's and Pete's computer, the agent and negotiate with other agents

 Lucy's agent and the finder service
- Automate routine problem solving



Semantic Web «layer cake»



Recapitulation: AI as agent design

- The AI "project" can be seen as the design of intelligent agents
- Different agent designs are possible, from reflex agents to deliberative knowledge-based ones
- Different paradigms are being used: logical, probabilistic, "neural"
- Do we have the necessary tools to build a complete, general-purpose agent?

Uneven status of AI disciplines

- Some parts of AI are mature, and agents can be built that outperform humans in these areas
 - ✓ E.g.: Game playing, logical inference, theorem proving, planning, diagnosis
- Other parts of AI are evolving, where progress is being made
 - √ E.g.: Learning, vision, robotics, natural language understanding

AI - Summary

- AI is a cross disciplinary profession and can be defined as the theory of how to build intelligent agents
- Intelligent agents must be able to solve problems, possess knowledge, be able to reason, plan, handle uncertainty, learn, and communicate
- AI is being applied to solve problems of practical and economic value
- AI has a 50+ year history, is in continuous evolution, and has an open future!