INF5390 – Kunstig intelligens Agents That Learn

Roar Fjellheim

INF5390-12 Agents That Learn

Outline

- General model
- Types of learning
- Learning decision trees
- Learning logical descriptions
- Other knowledge-based methods
- Summary

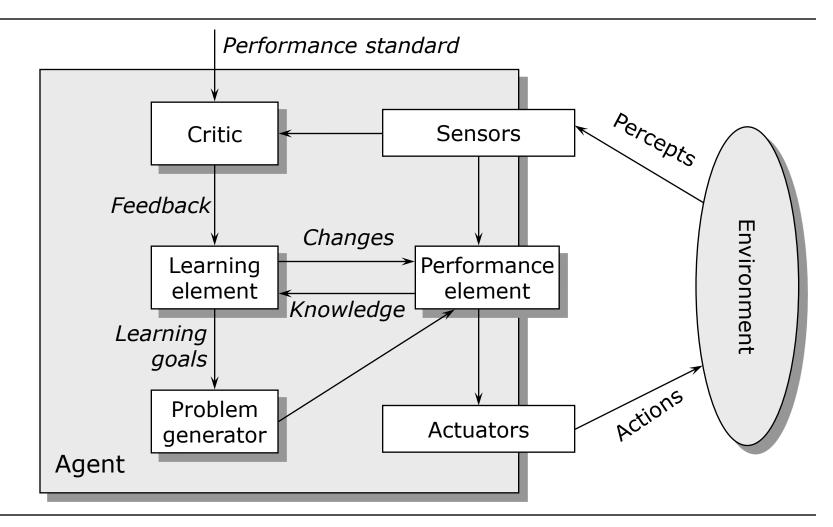
Extracts from

AIMA Chapter 18: Learning From Examples AIMA Chapter 19: Knowledge in Learning

Why should agents learn?

- Agents in previous lectures have assumed "builtin" knowledge, provided by designers
- In order to handle incomplete knowledge and changing knowledge requirements, agents must *learn*
- Learning is a way of achieving agent *autonomy* and the ability to *improve performance* over time
- The field in AI that deals with learning is called machine learning, and is very active

General model of learning agents



Elements of the general model

Performance element

- Carries out the task of the agent, i.e. processes percepts and decides on actions
- Learning element
 - Proposes improvements of the performance element, based on previous knowledge and feedback
- Critic
 - Evaluates performance element by comparing results of its actions with imposed performance standards
- Problem generator
 - Proposes exploratory actions to increase knowledge

Aspects of the learning element

- Which components of the performance element are to be improved
 - Which parts of the agent's knowledge base is targeted
- What *feedback* is available
 - Supervised, unsupervised or reinforcement learning differ in type of feedback agent receives
- What *representation* is used for the components
 - E.g. logic sentences, belief networks, utility functions, etc.
- What *prior information* (*knowledge*) is available

Performance element components

- Possible components that can be improved
 - Direct mapping from states to actions
 - Means to infer world properties from percept sequences
 - Information about how the world evolves
 - Information about the results of possible actions
 - Utility information about the desirability of world states
 - ✓ Desirability of specific actions in specific states
 - Goals describing states that maximize utility
- In each case, learning can be sees as learning an unknown function y = f(x)

Hypothesis space H

- H: the set of hypothesis functions h to be considered in searching for f(x)
- Consistent hypothesis: Fits with all data
 - If several consistent hypotheses choose simplest one! (Occam's razor)
- *Realizability* of learning problem:
 - ✓ *Realizable* if H contains the "true" function
 - Unrealizable if not
 - We do normally know what the true function is
- Why not choose H as large as possible?
 - May be very inefficient in learning and in applying

Types of learning - Knowledge

Inductive learning

- ✓ Given a collection of *examples* (x, f(x))
- Return a function h that approximates f
- Joes not rely on prior knowledge ("just data")
- Deductive (or analytical) learning
 - Going from known general f to a new f' that is logically entailed
 - Based on prior knowledge ("data+knowledge")
 - Resemble more human learning

Types of learning - Feedback

Unsupervised learning

- Agent learns patterns in data even though no feedback is given, e.g. via clustering
- Reinforcement learning
 - Agent gets reward or punishment at the end, but is not told which particular action led to the result
- Supervised learning
 - Agent receives learning examples and is explicitly told what the correct answer is for each case
- Mixed modes, e.g. semi-supervised learning
 - Correct answers for some but not all examples

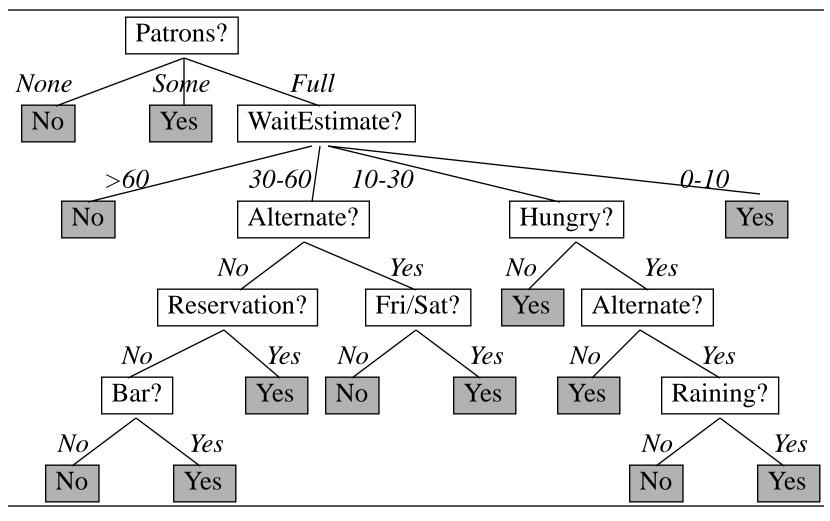
Learning decision trees

- A *decision situation* can be described by
 - A number of attributes, each with a set of possible values
 - ✓ A *decision* which may be Boolean (yes/no) or multivalued
- A *decision tree* is a tree structure where
 - Each internal node represents a *test* of the value of an attribute, with one branch for each possible attribute value
 - Each leaf node represents the value of the *decision* if that node is reached
- Decision tree learning is one of simplest and most successful forms of machine learning
- An example of *inductive* and *supervised* learning

Example: Wait for restaurant table

- Goal predicate: WillWait (for restaurant table)
- Domain attributes
 - Alternate (other restaurants nearby)
 - Bar (to wait in)
 - Fri/Sat (day of week)
 - Hungry (yes/no)
 - Patrons (none, some, full)
 - Price (range)
 - Raining (outside)
 - Reservation (made before)
 - Type (French, Italian, ..)
 - WaitEstimate (minutes)

One decision tree for the example



INF5390-12 Agents That Learn

Expressiveness of decision trees

 The tree is equivalent to a conjunction of implications

 $\forall rPatrons(r, Full) \land WaitEstimate(r, 10-30) \land Hungry(r, No) \Rightarrow WillWait(r)$

- Cannot represent tests on two or more objects, restricted to testing attributes of one object
- Fully expressive as propositional language, e.g. any Boolean function can be written as a decision tree
- For some functions, exponentially large decision trees are required
- E.g. decision trees are good for some functions and bad for others

Inducing decision trees from examples

Terminology

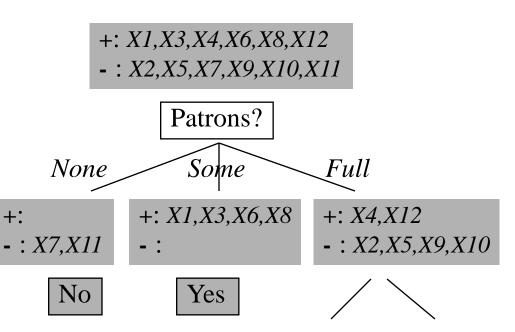
- *Example* Specific values for all attributes, plus goal predicate
- Classification Value of goal predicate of the example
- *Positive/negative example* Goal predicate is true/false
- Training set Complete set of examples
- The task of inducing a decision tree from a training set is to *find the simplest tree that* agrees with the examples
- The resulting tree should be more *compact* and *general* than the training set itself

A training set for the restaurant example

Example	Attributes										Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	wait
X1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
X5											
X6											
X7											
X8						ETC.					
X9											
X10											
X11											
X12											

General idea of induction algorithm

- Test the most important attribute first, i.e. the one that makes the most difference to the classification
- Patrons? is a good choice for the first attribute, because it allows early decisions
- Apply same principle recursively

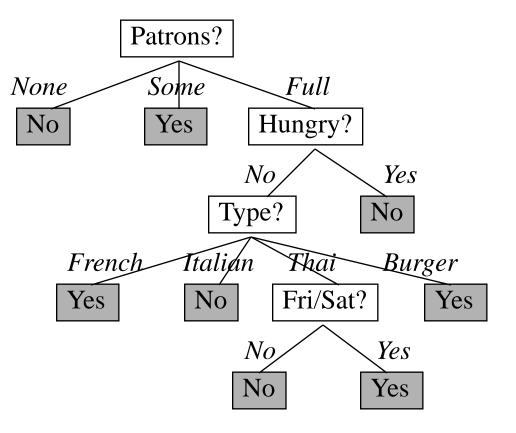


Recursive step of induction algorithm

- The attribute test splits the tree into smaller decision trees, with fewer examples and one attribute less
- Four cases to consider for the smaller trees
 - If some positive and some negative examples, choose best attribute to split them
 - ✓ If examples are all positive (negative), answer Yes (No)
 - If no examples left, return a default value (no example observed for this case)
 - If no attributes left, but both positive and negative examples: Problem! (same description, different classifications - *noise*)

Induced tree for the example set

- The induced tree is simpler than the original "manual" tree
- It captures some regularities that the original creator was unaware of



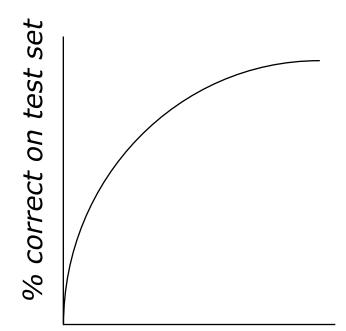
Broaden applicability of decision trees

Missing data

- How to handle training samples with partially missing attribute values
- Multi/many-valued attributes
 - How to treat attributes with many possible values
- Continuous or integer-valued input attributes
 - How to branch the decision tree when attribute has a continuous value range
- Continuous-valued output attributes
 - Requires regression tree rather than a decision tree,
 i.e. output value is a linear function of input
 variables rather than a point value

Assessing learning performance

- Collect large set of examples
- Divide into two disjoint sets, training set and test set
- Use learning algorithm on training set to generate hypothesis h
- Measure percentage of examples in test set that are correctly classified by h
- Repeat steps above for differently sized training sets



Training set size

PAC – The theory of learning

- How can we be sure that the learning algorithm gives a function h that predicts correctly?
 - How many learning examples are needed?
 - What hypothesis space H should be used?
 - √ Etc.
- Computational learning theory tries to answer such questions
 - Underlying principle: Any *h* that is consistent with a sufficient large number of examples is *probably approximately correct* (PAC)
- PAC theory can be used to bound hypothesis space and size of example set

A logical formulation of learning

- Inductive learning can be seen as searching for a good hypothesis in a large search space
- The hypothesis space is defined by a particular representation language, e.g. logic
- Define learning in terms of logical connections between hypotheses, examples, and goals
- This approach enables extensions of simple inductive decision tree learning to applying full logical inference

Hypothesis space

- Let Q be a unary goal predicate, and C_i a candidate definition, i.e. a hypothesis H_i for classifying examples x correctly is that $\forall x Q(x) \Leftrightarrow C_i(x)$
- Example: Induced decision tree is equivalent to

 $\forall r WillWait(r) \Leftrightarrow Patrons(r, Some)$

 \lor *Patrons*(r, *Full*) $\land \neg$ *Hungry*(r) \land *Type*(r, *French*)

 \lor *Patrons*(r, *Full*) $\land \neg$ *Hungry*(r) \land *Type*(r, *Thai*) \land *Fri* / *Sat*(r)

 \lor *Patrons*(r, *Full*) $\land \neg$ *Hungry*(r) \land *Type*(r, *Burger*)

 Hypothesis space is the set {H₁, ..., H_n}, of which one is believed to be correct: H₁ V H₂ V ... H_n

Examples for learning

- An example is an object X_i to which the goal concept Q may or may not apply (Q(X_i) or ¬Q(X_i)), and which has a logical description D_i(X_i)
- E.g. first induction example X_1 $Alternate(X_1) \land \neg Bar(X_1) \land \neg Fri / Sat(X_1) \land Hungry(X_1) \land ...$ with classification $WillWait(X_1)$
- Complete training set is the conjunction of all X_i
- A hypothesis agrees with all examples if and only if it is *logically consistent* with the training set

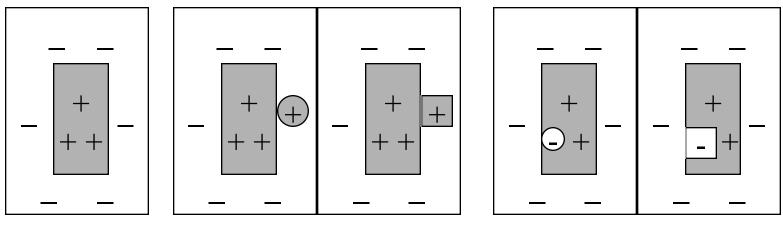
False examples and inductive learning

- If a hypothesis H_i is consistent with the entire training set, it must be consistent with each example
- An example can be a *false negative* for the hypothesis, i.e. H_i says it should be negative but it is positive
- An example can be a *false positive* for the hypothesis, i.e. H_i says it should be positive but it is negative
- If the example is false negative or false positive, the example and hypothesis are *inconsistent*, and the hypothesis can be *ruled out*

Inductive learning in a logical setting is the process of gradually eliminating hypotheses that are inconsistent with the examples

Current-best-hypothesis search

 Current-best-hypothesis search maintains a single hypothesis which is adjusted as new examples arrive to maintain consistency



ConsistentFalseGeneralizedFalseSpecializedhypothesisnegativehypothesispositivehypothesis

Generalizing and specializing hypotheses

 If hypothesis H1 with definition C1 is a generalization of H2 with definition C2, then

 $\forall x \ C_2(x) \Longrightarrow C_1(x)$

 Generalization of a hypothesis can be achieved by dropping conditions

 $C_2(x) = Alternate(x) \land Patrons(x, Some)$ $C_1(x) = Patrons(x, Some)$

- Specialization of a hypothesis can similarly be achieved by adding conditions
- Current-best-hypothesis search with generalization and specialization and backtracking has been used in many learning programs, but does not scale well

Least commitment search

- The current-best-hypothesis approach has to backtrack because it is forced to choose one hypothesis even if it does not have enough data
- A better approach is to keep all hypotheses consistent with data so far, and gradually remove hypotheses inconsistent with new examples
- Assuming that the right hypothesis is contained in the original set, it will still be in the reduced set (the version space)
- The algorithm is *incremental*, need not backtrack

Other knowledge-based learning methods

- EBL Explanation-based learning
 - Extracts general rules from single examples accompanied by an explanation
- RBL Relevance-based learning
 - Uses prior knowledge to identify relevant attributes thereby reducing hypothesis space
- KBIL Knowledge-based inductive learning
 - Uses prior knowledge to find inductive hypotheses that explain sets of observations
- ILP Inductive logic programming
 - Performs KBIL on knowledge expressed in first-order logic, and can learn relational knowledge

Summary

- Learning is an essential capability for agents in unknown or resource-constrained environments
- Learning agents have a *performance* element and a *learning* element
- The learning element tries to improve various parts of the performance element, generally seen as functions y = f(x)
- Learning can be *inductive* (from examples) or *deductive* (based on knowledge)
- Differ in types of *feedback* to the agent: unsupervised, reinforcement or supervised learning

Summary (cont.)

- Learning a function from examples of inputs and outputs is an example of inductive/supervised learning, of which learning *decision trees* is a simple case
- A logical formulation of learning uses currentbest-hypothesis approach to maintain a single hypothesis which is updated with new examples
- Other logical or knowledge-based learning methods include EBK, RBIL, KBIL and IPL