INF5390-2102 - Kunstig intelligens Exercise 1 Solution

Roar Fjellheim

Exercise 1.1: Solving Problems by Searching (INF5390-03)

- You have 3 containers that may hold 12 liters, 8 liters and 3 liters of water, respectively, as well as access to a water faucet. You can fill a container from the faucet, pour it into another container, or empty it onto the ground. The goal is to measure out exactly one liter of water.
- a. Give a precise specification of the task as a search problem.
b. Select and provide arguments for a particular uninformed search algorithm to solve the problem
c. Draw a picture of a search tree for a solution (or program the algorithm)

Formulation of a problem

- Initial state
\checkmark Initial state of environment \longrightarrow Defines the
- Actions \longrightarrow state space

Set of actions available to agent

- Path

Sequence of actions leading from one state to another

- Goal test

Test to check if a state is a goal state

- Path cost

Function that assigns cost to a path

- Solution

Path from initial state to a state that satisfies goal test

States and actions

- State: [x, y, z] - Contents of 12, 8 and 3 liter jug
- Initial state: [0, 0, 0]
- Fill actions:
- Pour actions:
$\checkmark[x, y, z] \Rightarrow[12, y, z] \quad \vee$ Contents of 12 liter $\Rightarrow 8 \mathrm{I}$ jug
$\checkmark[x, y, z] \Rightarrow[x, 8, z] \quad \vee[x, y, z] \Rightarrow[x-\min (x, 8-y)$,
$\checkmark[x, y, z] \Rightarrow[x, y, 3]$
- Empty actions:
$\checkmark[x, y, z] \Rightarrow[0, y, z]$,
\checkmark E.g. $[10,5,2] \Rightarrow[7,8,2]$
Similar for $12 \Rightarrow 3,8 \Rightarrow 3$,
$\checkmark[x, y, z] \Rightarrow[x, 0, z]$,
$\checkmark[x, y, z] \Rightarrow[x, y, 0]$ $8 \Rightarrow 12,3 \Rightarrow 12,3 \Rightarrow 8$ I jugs
6 pour actions
- In all 12 actions (some may be <no-ops» in a given state)

Goal and solution cost

- Goal test:

```
v [1,y,z] or [x, 1, z] or [x, y, 1]
```

- Path cost:
\checkmark Number of actions in path from initial to goal state

(Uninformed) search algorithm

- Search path may be of infinite depth (without state duplication check)
\checkmark Depth first search not recommended
- With a branching factor of 12 , search tree rapidly becomes large (e.g. $12^{5}=248832$)
\checkmark Breadth first search not recommended
- Iterative deepening depth first search is recommended

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem)
returns a solution or failure
for depth $<=0$ to ∞ do
result <= DEPTH-LIMITED-SEARCH(problem, depth)
if result \neq cutoff then return result

- Modifies depth-limited search by iteratively trying all possible depths as the cutoff limit
- Combines benefits of depth-first and breadthfirst

Complexity of iterative deepening search

- May seem wasteful, since many states are expanded multiple times (for each cutoff limit)
- In exponential search trees most nodes are at lowest level, so multiple expansions at shallow depths do not matter much
- Time complexity is $O\left(b^{d}\right)$, space complexity $O(b d)$

Iterative deepening is the preferred (uninformed) search strategy when there is a large search space and the solution depth is unknown

Search tree with solution path

Exercise 1.2: Logical Agents (INF5390-04)

- Ref. figure 7.4 (a) in the AIMA text book, showing the agent in square [1,2], after having sensed nothing in [1,1], a breeze in $[2,1]$ and a stench in [1,2]. The agent is now concerned with the contents of [1,3], [2,2] and $[3,1]$. Each may contain a pit, and at most one can contain the monster (wumpus).
- Use a truth table to show that the wumpus is in $[1,3]$, i.e. that the statement "There is a wumpus in $[1,3]$ " is implied by the agent's knowledge base KB.

Exploring the Wumpus world (cont.)

(a)

- Fourth percept: [Stench, None, None, None, None]
- Deduction: Wumpus must be in [1,3], pit in [3,1]
- Action: Move right, etc.
- What does an intelligent agent need to know and how can it reason to succeed in the Wumpus world?

Propositional inference by checking

- Construct truth table with one row for each combination of truth values of the propositional symbols in the sentence
- Calculate truth value of the KB sentences for each row; if all are true, the row is a model of the KB
- All other sentences that are true in the same rows as the $K B$ is true, are entailed by the KB

Wumpus - Model checking by truth table

P[1,2]	P[2,2]	$\mathrm{P}[3,1]$	KB	$\begin{gathered} \alpha_{1}=\text { Not } \\ P[1,2] \end{gathered}$	$\begin{gathered} \alpha_{2}=\text { Not } \\ P[2,2] \end{gathered}$
T	T	T	F	F	F
T	T	F	F	F	F
T	F	T	F	F	T
T	F	F	F	F	T
F	T	T	T	T	F
F	T	F	T	T	F
F	F	T	T	T	T
F	F	F	F	T	T

Exercise 1.2 based on INF5390-04 case

- "The agent is now concerned with the contents of $[1,3],[2,2]$ and $[3,1]$. Each may contain a pit, and at most one can contain the wumpus"
- Modify INF5390-04 case
\checkmark Replace P[1,2] with P[1,3]
\checkmark Add columns for $W[1,3], W[2,2]$ and $W[3,1]$
\checkmark Would normally result in a truth table with 2^{6} lines
\checkmark However, restriction that there is only one wumpus eliminates one half of the table (see next slides)
- Just one statement to check: $\alpha=\mathrm{W}[1,3]$
- Rest similar to INF5390-04 case

Truth table - 1 . half

$\mathbf{P}[1,3]$	P [2,2]	P [3,1]	W[1,3]	W[2,2]	W[3,1]	KB	$\alpha=W[1,3]$
T	T	T	T	F	F	F	T
T	T	F	T	F	F	F	T
T	F	T	T	F	F	F	T
T	F	F	T	F	F	F	T
F	T	T	T	F	F	F	T
F	T	F	T	F	F	F	T
F	F	T	T	F	F	T	T
F	F	F	T	F	F	F	T
T	T	T	F	T	F	F	F
T	T	F	F	T	F	F	F
T	F	T	F	T	F	F	F
T	F	F	F	T	F	F	F
F	T	T	F	T	F	F	F
F	T	F	F	T	F	F	F
F	F	T	F	T	F	F	F
F	F	F	F	T	F	F	F
INF5390-2012 Exercise 1 Solution							15

$\mathbf{P}[1,3]$	$\mathbf{P}[2,2]$	$\mathbf{P}[3,1]$	$W[1,3]$	W[2,2]	$\mathbf{W}[3,1]$	KB	$\alpha=W[1,3]$
T	T	T	F	F	T	F	F
T	T	F	F	F	T	F	F
T	F	T	F	F	T	F	F
T	F	F	F	F	T	F	F
F	T	T	F	F	T	F	F
F	T	F	F	F	T	F	F
F	F	T	F	F	T	F	F
F	F	F	F	F	T	F	F
T	T	T	F	F	F	F	F
T	T	F	F	F	F	F	F
T	F	T	F	F	F	F	F
T	F	F	F	F	F	F	F
F	T	T	F	F	F	F	F
F	T	F	F	F	F	F	F
F	F	T	F	F	F	F	F
F	F	F	F	F	F	F	F

