INF5390-2102 – Kunstig intelligens Exercise 2 Solution

Roar Fjellheim

INF5390-2012 Exercise 2 Solution

Exercise 2.1: Agents That Plan (INF5390-08)

- The figure shows the robot Shakey in a world consisting of 4 rooms along a corridor, where each room has a door and a light switch. Shakey can move from location to location, push boxes, climb up and down boxes, and switch lights on and off. He can only reach switches by standing on a box.
- The rooms, doors, corridor and switches mentioned are given location constants. You will also need to define constants for initial locations of Shakey and the boxes, as well as a predicate *In* to define that a position is in a room.

Exercise 2.1: Agents That Plan (INF5390-08) (cont.)

Shakey's 6 actions are:

- Go(x,y,r) which requires that Shakey be At x and that x and y are locations in the same room r. By convention a door joining two rooms is in both of them.
- Push(b,x,y,r): Push a box b from location x to location y in the same room r.
- ClimbUp(b), ClimbDown(b): Climb up and down a box b.
- *TurnOn(I), TurnOff(I)*: Turn on and turn off light switch / (by convention, we use the switch constants both for the locations of the switches and for the objects that can be switched on/off).
- Your tasks are the following:
 - ✓ 1.1 Write down PDDL sentences for Shakey's 6 actions and the initial state shown in the figure.
 - 1.2 Show a plan for Shakey to switch on light Switch 2 using Box 2 to stand on.

Representation of actions

- An *action schema* has three components
 - Action description: Name and parameters (universally quantified variables)
 - *Precondition*: Conjunction of positive literals stating what must be true before action application
 - *Effect*: Conjunction of positive or negative literals stating how situation changes with operator application
- Example

Action(Fly(p, from, to), PRECOND: At(p, from) ^ Plane(p) ^ Airport(from) ^ Airport(to), EFFECT: ¬ At(p, from) ^ At(p, to))

How are planning actions applied?

- Actions are *applicable* in states that satisfy its preconditions (by binding variables)
 - State: At(P₁, JFK) ^ At(P₂, SFO) ^ Plane(P₁) ^ Plane(P₂) ^ Airport(JFK) ^ Airport(SFO)
 - Precondition: At(p, from) ^ Plane(p) ^ Airport(from)
 ^ Airport(to)
 - ✓ Binding: $\{p/P_1, from/JFK, to/SFO\}$
- State after executing action is same as before, except positive effects added (*add list*) and negative deleted (*delete list*)
 - New state: At(P₁, SFO) ^ At(P₂, SFO) ^ Plane(P₁) ^ Plane(P₂) ^ Airport(JFK) ^ Airport(SFO)

Shakey's actions in PDDL

- Action(Go(x, y, r), PRECOND: Location(x) ~ Location(y) ~ Room(r) ~ In(x, r) ~ In(y, r) ~ At(Shakey, x), EFFECT: ¬ At(Shakey, x) ~ At(Shakey, y))
- Action(Push(b, x, y, r), PRECOND: Box(b) ∧ Location(x) ∧ Location(y) ∧ Room(r) ∧ In(x, r) ∧ In(y, r) ∧ At(b, x) ∧ At(Shakey, x), EFFECT: ¬At(b, x) ∧ ¬At(Shakey, x) ∧ At(b, y) ∧ At(Shakey, y))

 Action(ClimbUp(b), PRECOND: Box(b) ∧ Location(x) ∧ At(b, x) ∧ At(Shakey, x) ∧ ¬ On(Shakey, b), EFFECT: On(Shakey, b))

Shakey's actions in PDDL (cont.)

- Action(ClimbDown(b), PRECOND: Box(b) ∧ Location(x) ∧ At(b, x) ∧ On(Shakey, b), EFFECT: ¬On(Shakey, b))
- Action(TurnOn(I), PRECOND: Switch(I) ~ Location(x) ~ At(I, x) ~ Box(b) ~ At(b, x) ~ On(Shakey, b), EFFECT: TurnedOn(I))
- Action(TurnOff(I), PRECOND: Switch(I) ^ Location(x) ^ At(I, x) ^ Box(b) ^ At(b, x) ^ On(Shakey, b), EFFECT: ¬ TurnedOn(I))

Initial state and goal in PDDL

Init(Room(Room1) \land ... \land Room(Room4) \land Room(Corridor) \land Location(Door1) \lambda ...
Location(Door4) In(Door1, Room1) \land In(Door1, Corridor) $\land \dots \land$ In(Door4, Room4) \land In(Door4, Corridor) \land Location(Switch1Loc) ^ ... Location(Switch4Loc) *In(Switch1Loc, Room1)* \land *...* \land *In(Switch4Loc, Room4)* \land $Box(Box1) \land ... \land Box(Box4) \land$ Location(Box1InitLoc) \lambda ...
Location(Box4InitLoc) At(Box1, Box1InitLoc) \lambda ... $In(Box1InitLoc, Room1) \land ... \land In(Box4InitLoc, Room1) \land$ Location(ShakeyInitLoc) ~ In(ShakeyInitLoc, Room3) ~ At(Shakey, ShakeyInitLoc))

Goal and plan to achieve goal

- **Goal**(On(Shakey, Box2) ∧ TurnedOn(Switch2))
- Plan(Go(ShakeyInitLoc, Door3, Room3), Go(Door3, Door1, Corridor), Go(Door1, Box2InitLoc, Room1), Push(Box2, Box2InitLoc, Door1, Room1), Push(Box2, Door1, Door2, Corridor), Push(Box2, Door2, Switch2Loc, Room2), ClimbUp(Box2), SwitchOn(Switch2))

Exercise 2.2: Agents That Reason Under Uncertainty (INF5390-10)

Show from first principles including the definition of conditional probability that:

$P(A|B \wedge A) = 1$

Basic probability notation (cont.)

- Probability *distribution* of variable $\mathbf{P}(v)$
 - $\mathbf{P}(Weather) = (0.7, 0.2, 0.08, 0.02)$
- Joint probability distribution
 - ✓ Table of probabilities for all *combinations*: $P(v_1, v_2)$
 - P(Weather, Cavity) is a 4 x 2 table of probabilities (must sum to 1)
 - *Full joint distribution*: all domain variables included
- Conditional (posterior) probability: P(A|B)
 - \checkmark *P*(*Cavity*|*Toothache*) = 0.8
- Product rule:
 - $\checkmark P(A \land B) = P(A|B) P(B)$
 - $\checkmark P(A \land B) = P(B|A) P(A)$
 - $\checkmark P(A|B) = P(A \land B) / P(B)$

Axioms of probability

Basic axioms

 $0 \le P(A) \le 1$ $P(True) = 1 \quad P(False) = 0$ $P(A \lor B) = P(A) + P(B) - P(A \land B)$

• All other properties can be derived, e.g. $P(A \lor \neg A) = P(A) + P(\neg A) - P(A \land \neg A)$ $P(True) = P(A) + P(\neg A) - P(False)$ $1 = P(A) + P(\neg A)$ $P(\neg A) = 1 - P(A)$

Expression derived

$P(A \mid B \land A)$

- = $P(A \land (B \land A))/P(B \land A)$ Product rule (3rd form)
- = $P(A \land B \land A)/P(B \land A)$ Remove parentheses
- = $P(B \land A \land A)/P(B \land A)$ \land is commutative
- = $P(B \land A)/P(B \land A)$

_ 1

- Initial
- $-A \wedge A = A$